KR20030054427A - Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction - Google Patents

Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction Download PDF

Info

Publication number
KR20030054427A
KR20030054427A KR1020010084569A KR20010084569A KR20030054427A KR 20030054427 A KR20030054427 A KR 20030054427A KR 1020010084569 A KR1020010084569 A KR 1020010084569A KR 20010084569 A KR20010084569 A KR 20010084569A KR 20030054427 A KR20030054427 A KR 20030054427A
Authority
KR
South Korea
Prior art keywords
steel sheet
annealing
less
temperature
slab
Prior art date
Application number
KR1020010084569A
Other languages
Korean (ko)
Other versions
KR100544723B1 (en
Inventor
한규석
김재관
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010084569A priority Critical patent/KR100544723B1/en
Publication of KR20030054427A publication Critical patent/KR20030054427A/en
Application granted granted Critical
Publication of KR100544723B1 publication Critical patent/KR100544723B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A method for manufacturing grain-oriented electrical steel sheet having low core loss and high magnetic induction is provided. CONSTITUTION: The method includes the steps of reheating a steel slab comprising Si 2.0 to 4.0 wt.%, sol.Al 0.006 to 0.040 wt.%, N 0.006 to 0.012 wt.%, 0.007 wt.% or less of S, 0.5 wt.% or less of Cu, Mn 0.08 to 1.0 wt.%, 0.015 wt.% or less of C, a balance of Fe and incidental impurities at 1100 to 1250°C, followed by hot rolling; annealing the hot rolled steel sheet at 900 to 1200°C; cold rolling the annealed steel sheet at a reduction ratio of greater than 90 % to the thickness of less than 0.27 mm; annealing the cold rolled steel sheet under an atmospheric condition including nitrogen ion at 750 to 950 deg.C in order to penetrate nitrogen ion into the steel sheet in an amount of 0.0010 to 0.0300 %; applying an annealing separator primarily consisting of MgO, followed by coiling; heating the steel sheet under an atmospheric condition including 5 to 90 % nitrogen to the temperature range of 1150 to 1250°C; and soaking the steel sheet in pure hydrogen atmosphere for more than 10 hrs, followed by cooling.

Description

저철손 및 고자속밀도를 갖는 방향성 전기강판의 제조방법{Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction}Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction}

본 발명은 발전기와 같은 대형회전기 및 각종 변압기와 전자기기의 철심재료로 사용되는 방향성 전기강판을 제조하는 방법에 관한 것으로서, 보다 상세하게는 저철손과 고자속밀도를 갖는 자기특성이 우수한 방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as a core material of a large rotor, such as a generator and various transformers and electronic devices, and more particularly, a grain-oriented electrical steel sheet having excellent magnetic properties with low iron loss and high magnetic flux density. It relates to a method of manufacturing.

일반적으로, 방향성전기강판은 냉간압연과 소둔공정을 통하여 모든 결정립들이 (110)[001]방향으로 배열함으로써 압연방향으로 우수한 자기특성을 갖는 것이 특징이다.In general, the grain-oriented electrical steel sheet is characterized by having excellent magnetic properties in the rolling direction by arranging all grains in the (110) [001] direction through cold rolling and annealing processes.

일반 방향성 전기강판은 주로 2-4%의 실리콘(Silicon)과 입성장 억제제로 MnS나 MnSe를 함유하며, 용해하여 스라브를 만든후 재가열 - 열간압연 - 예비소둔 - 중간소둔이 포함된 2회 냉간압연 - 탈탄소둔 - 융착방지제 도포 - 최종 고온소둔의 매우 복잡한 공정을 통하여 최종제품으로 완성된다.Ordinary oriented electrical steel sheet contains 2-4% silicon and MnS or MnSe as grain growth inhibitor, and melted to make slab and then reheated-hot rolled-preannealed-two cold rolled with intermediate annealing -Decarbonization-Application of fusion inhibitor-Finished into final product through the very complicated process of final high temperature annealing.

이러한 복잡한 공정은 결정립 성장억제제로 MnS 혹은 MnSe를 사용하여 2차재결정현상을 일으키는 일반적인 제조방법에서는 필수적인 공정들이다.These complex processes are essential in the general manufacturing method that causes secondary recrystallization using MnS or MnSe as grain growth inhibitors.

방향성 전기강판의 2차재결정은 결정립 성장억제제에 의해서 1차재결정된 입자들의 정상적인 성장이 억제된 가운데 일부 자기적특성이 우수한 집합조직을 갖는 입자들만이 선택적으로 비정상적인 성장을 하게 된다.Secondary recrystallization of the grain-oriented electrical steel sheet suppresses the normal growth of the first recrystallized particles by grain growth inhibitors, and only particles having an aggregate structure having some excellent magnetic properties selectively undergo abnormal growth.

2차재결정을 잘 일으키기 위해서는 결정립 성장억제제인 MnS와 같은 석출물를 미세하게 석출시켜 1차재결정립의 정상적인 성장을 효과적으로 억제해야 한다.In order to induce secondary recrystallization, precipitates such as MnS, a grain growth inhibitor, should be finely precipitated to effectively suppress normal growth of the primary recrystallized grain.

미세하게 MnS를 석출시키기 위해서는 MnS를 고용시킬수 있는 1400℃의 매우 높은 고온에서 스라브를 재가열해야만 한다.To deposit MnS finely, the slab must be reheated at a very high temperature of 1400 ° C. where MnS can be dissolved.

또한, 고온에서 스라브를 재가열시에 생기는 자성에 악영향을 미치는 주상정조직의 조대성장 및 황(Sulfur)의 중심편석을 방지하기 위하여 탄소를 일정량 첨가하여야만 한다.In addition, a certain amount of carbon should be added to prevent coarse growth of columnar tissue and central segregation of sulfur, which adversely affects the magnetism generated when the slab is reheated at a high temperature.

상기 탄소는 페라이트-오스테나이트 상변태를 일으켜 주상정조직의 형성을 억제하기도 하고 결정립 성장억제제인 AlN의 고용을 촉진하기도 하며 황(Sulfur)의 중심편석을 억제한다.The carbon causes ferrite-austenite phase transformation to inhibit the formation of columnar tissues, to promote the employment of AlN, a grain growth inhibitor, and to inhibit central segregation of sulfur.

그러나, 탄소가 최종제품에 잔류하게 되면 200℃의 낮은 온도영역에서도 석출하여, 철손을 크게 상승시킴으로서 전자기기의 효율을 크게 떨어뜨리게 된다.However, when carbon remains in the final product, it precipitates even in a low temperature range of 200 ° C., thereby greatly increasing the iron loss, thereby greatly reducing the efficiency of the electronic device.

그러므로, 탄소는 반드시 탈탄소둔공정을 통하여 2차재결정소둔이 이루어지기 전에 제거되어진다Therefore, carbon must be removed prior to secondary recrystallization annealing through decarbonization annealing.

그동안 전기강판의 복잡한 제조공정을 개선하고자 많은 연구가 이루어져 왔다.Many studies have been made to improve the complicated manufacturing process of electrical steel sheet.

초기에는 냉간압연공정을 1회로 단축하고 MnS와 AlN을 복합석출시켜서 고자속밀도의 특성을 갖는 방향성전기강판을 제조하는 방법이 개발되었다.Initially, a method of manufacturing a grain-oriented electrical steel sheet having high magnetic flux density characteristics by shortening the cold rolling process by one time and combining MnS and AlN was developed.

이 방법은 기존의 방향성 전기강판보다 고자속밀도와 저철손의 자기적특성을 확보할수 있었지만 탄소의 함량은 오히려 증가하였고 스라브가열도 1400℃의 고온에서 이루어지기 때문에 잦은 스라브가열로 보수와 고온에서의 스라브 워싱으로 실수율이 떨어지는 문제점을 안고 있었다.This method was able to secure the magnetic properties of high magnetic flux density and low iron loss than conventional oriented electrical steel sheet, but the carbon content was increased and the slab heating was performed at high temperature of 1400 ℃. Slab wash had a problem of falling error rate.

그 후로는 스라브 고온가열의 문제점을 개선하고 생산성을 높히기 위해서 스라브 재가열온도의 하향화 연구가 많이 진행되었다.Since then, many researches have been conducted to reduce the slab reheating temperature in order to improve the slab high temperature heating and improve productivity.

이들 연구의 대부분은 스라브 재가열을 스라브가 녹지않는 약 1300℃이하의 온도에서 행하고 열간압연한 다음 열연판 이후의 공정에서 2차재결정에 필수적인 결정립성장억제제를 부가하는 공정을 통하여 고자속밀도 방향성 전기강판을 제조하는 방법에 집중되었다.Most of these studies are performed by reheating the slab at a temperature below about 1300 ℃ where the slab does not melt, hot rolling, and then adding grain growth inhibitors necessary for secondary recrystallization in the post-hot-rolling process. Concentrated on how to prepare.

이러한 방법은 기존의 고온스라브 가열로 결정립성장억제제를 완전히 고용시킨 다음 열간압연단계에서 미세하게 석출시켜서 2차재결정을 조절하는 방법과 크게 다르다.This method is very different from the conventional method of controlling the secondary recrystallization by completely employing the grain growth inhibitor by high temperature slab heating and then finely depositing it in the hot rolling step.

또한, 열간압연 이후의 단계에서 결정립성장억제제를 부가하기 위해서 질화처리를 수행하게 되는데, 이러한 질화처리는 탄소가 강중에 많이 존재하게 되면 질화가 되지 않기 때문에 통상 탈탄소둔을 실시한 후, 다음 단계에서 수행하여야 한다.In addition, nitriding treatment is performed to add grain growth inhibitors at the stage after the hot rolling. Since nitriding treatment is not carried out when carbon is present in steel, it is usually carried out in the next step after decarbonization annealing. shall.

그러한 이유로 탈탄소둔과는 별도로 질화처리가 가능한 소둔로가 필요하기 때문에 추가적인 제조설비의 확충이 필수적이다.For this reason, it is necessary to expand additional manufacturing facilities because an annealing furnace capable of nitriding treatment is required separately from decarbonization annealing.

본 발명은 제강단계에서 첨가되는 탄소의 함량을 극저로 관리하여 스라브 가열온도를 1250℃이하로 낮추고 탈탄소둔공정을 생략함과 동시에 1회 강냉간압연법으로 최종제품의 두께를 0.27mm 이하로 냉간압연하고 질화처리소둔으로 추가적인 결정립성장억제제를 보강함으로서 철손이 보다 낮고 자속밀도가 보다 높은 방향성전기강판을 보다 경제적으로 제조할 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.The present invention is to control the content of carbon added in the steelmaking step extremely low to lower the slab heating temperature to 1250 ℃ or less and omit the decarbonization annealing process and cold-rolled final product thickness of 0.27mm or less by one-time cold rolling method By reinforcing additional grain growth inhibitors by rolling and nitriding annealing, an object of the present invention is to provide a method for more economically manufacturing oriented electrical steel sheet having lower iron loss and higher magnetic flux density.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로 C:0.015wt%이하, Si: 2.0~4.0wt%, 산가용성Al: 0.006~0.040wt%, N: 0.006~0.012wt%, S: 0.007wt%이하, Cu: 0.5wt%이하, Mn: 0.08~1.0wt%, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 스라브를 1100~1250℃로 재가열한 후 열간압연을 행하고 이어서 900~1200℃의 온도에서 단시간 열연판 소둔을 실시한 다음, 냉간압연율 90%이상으로 1회 강냉간압연법으로 최종제품의 두께를 0.27mm 이하로 냉간압연한 후, 탈탄공정은 생략하고 750~950℃의 온도에서 질소이온을 함유하는 개스분위기를 사용하여 0.0010~0.0300 wt%의 질소이온이 강판에 도입되는 질화처리소둔을 실시하고, MgO를 주성분으로 하는 융착방지제를 도포하여 권취한 다음, 5~90%의 질소를 함유하는 수소개스분위기에서 1150∼1250℃의 온도구간까지 승온하고 100%의 수소개스분위기에서 총 10시간 이상 균열하고 냉각시키는 고온소둔을 행하여 저철손과 고자속밀도를 갖는 방향성 전기강판을 제조하는 방법에 관한 것이다.In the present invention, C: 0.015wt% or less, Si: 2.0 ~ 4.0wt%, acid soluble Al: 0.006 ~ 0.040wt%, N: 0.006 ~ 0.012wt%, S: 0.007wt% or less, Cu: 0.5wt % Or less, Mn: 0.08 ~ 1.0wt%, remainder Fe and other unavoidable impurities, the slab is reheated to 1100 ~ 1250 ℃ and hot rolled, followed by short time hot roll annealing at 900 ~ 1200 ℃ After cold rolling the thickness of final product to 0.27mm or less by one cold rolling method with rolling rate over 90%, decarburization process is skipped and 0.0010 using gas atmosphere containing nitrogen ion at the temperature of 750 ~ 950 ℃. Nitriding annealing in which ˜0.0300 wt% of nitrogen ions are introduced to the steel sheet is carried out, followed by winding up by applying a fusion inhibitor containing MgO as a main component, and then 1150 to 1250 ° C. in a water atmosphere containing 5 to 90% of nitrogen. It is heated up to the temperature range of and it cracks and cools more than 10 hours in 100% water atmosphere. The present invention relates to a method for producing a grain-oriented electrical steel sheet having low iron loss and high magnetic flux density by performing annealing.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

방향성전기강판 제품을 가공하여 최종 수요가들이 사용할 때에 시간이 경과함에 따라 소재의 자기특성이 떨어지는 현상이 나타난다.When the oriented electrical steel sheet is processed and used by end users, the magnetic properties of the material deteriorate with time.

이와 같은 현상을 자기시효(magnetic aging)라 하는데, 이는 주로 소재내에 고용되어 존재하는 잔류탄소가 제품 사용시에 발생하는 열에너지에 의하여 결정립계에 Fe3C와 같은 탄화물로 석출하여, 자구의 이동을 방해하기 때문에 자기특성이 떨어지게 된다.This phenomenon is called magnetic aging, which mainly causes the residual carbon, which is dissolved in the material, to precipitate as carbide, such as Fe 3 C, at the grain boundary due to the thermal energy generated when the product is used. As a result, the magnetic properties are reduced.

물론, 기타 불순물도 자기시효를 일으키기는 하지만, 탄소만큼 큰 손실을 일으키지는 않기 때문에 제품생산시 잔류탄소함량이 30ppm을 넘지 않도록 집중관리하고 있다.Of course, other impurities also cause self-aging, but they do not cause as much loss as carbon, so the residual carbon content in the production of the product is not more than 30 ppm.

이러한 탄소를 초기 제강단계에서부터 낮게 관리함으로서 최종제품의 자기특성 열화현상을 방지하고자 하는 노력은 계속되었으나, 스라브 가열단계에서 결정립성장억제제를 완전히 고용시켜야 하는 기존의 성분계에서는 불가능하였다.Efforts to prevent the deterioration of the magnetic properties of the final product by managing such carbon from the initial steelmaking stage continued, but this was not possible in the existing component system that requires full employment of grain growth inhibitors in the slab heating stage.

이와 관련하여 한국특허공개1998-034055에는 AlN을 결정립성장억제제로서 사용하는 성분계에서 탄소의 함량을 0.002wt%의 극저로 관리하면서 스라브를 1220~1280℃의 온도에서 재가열하고 2회 냉간압연법을 사용하여 자속밀도가 1.87 Tesla수준의 일반방향성 전기강판을 제조하는 방법이 제시되어 있다.In this regard, Korean Patent Laid-Open Publication No. 1998-034055 re-heats a slab at a temperature of 1220 ~ 1280 ° C and uses two cold rolling methods while managing carbon content at an extremely low level of 0.002wt% in a component system using AlN as a grain growth inhibitor. Therefore, a method of manufacturing a general grain electrical steel sheet having a magnetic flux density of 1.87 Tesla level is presented.

그러나, 상기 방법에 있어서, 상기 스라브 온도는 탄소가 극저일경우에 스라브의 결정립이 조대해져서 열간압연판에 연신립을 형성할 수 있는 충분히 높은 온도이다.However, in the above method, the slab temperature is a sufficiently high temperature at which the crystal grains of the slab are coarse to form stretched grains in the hot rolled sheet when carbon is extremely low.

열간압연판에 연신립이 존재하게 되면 이후의 냉간압연공정과 소둔공정에서도 연신립이 존재하게 되며 결국 2차재결정을 방해하게 되어 자기특성을 떨어뜨리게 된다. 또한 2회냉간압연법을 사용하고 제품두께가 0.3mm인 경우에는 자속밀도가 1.87 Tesla정도의 일반적인 방향성 전기강판 수준밖에 얻지 못한다.When the stretched grain is present in the hot rolled plate, the stretched grain is also present in the cold rolling process and the annealing process, which in turn hinders the secondary recrystallization and degrades the magnetic properties. In the case of using the two cold rolling method and the product thickness is 0.3mm, the magnetic flux density is only about 1.87 Tesla.

이에 본 발명자들은 제강단계에서의 탄소함량을 탈탄공정이 필요없는 수준까지 저감하면서도 스라브를 결정립이 조대하게 성장하지 않는 온도인 1250℃이하의 온도에서 가열한 다음 열간압연하여 조대한 연신립의 생성을 적극 억제하는 방법과 1.89Tesla이상의 고자속밀도를 갖는 방향성 전기강판 제조방법을 연구하였다.Accordingly, the present inventors heated the slab at a temperature below 1250 ° C., which is a temperature at which crystal grains do not grow coarsely while reducing the carbon content in the steelmaking step to a level where no decarburization process is required, and then hot rolling is performed to produce coarse stretched grains. The method of positive suppression and the method of manufacturing oriented electrical steel sheets with high magnetic flux density of 1.89 Tesla or higher were studied.

그 결과, 제강단계에서 첨가되는 결정립성장억제제인 AlN 이외에 부가적으로 후공정에서 강판에 질소이온을 도입함으로서 기존 AlN이외에 추가적인 AlN석출물을 생성함으로서 결정성장억제력을 배가시키게 되면, 탈탄공정을 생략할 수 있는 정도의 소강탄소를 함유하는 성분계에서도 조대한 결정립을 형성하지 않는 1250℃이하의 스라브 가열이 가능하다는 것을 밝혀냈다.As a result, in addition to AlN, a grain growth inhibitor added in the steelmaking step, by introducing nitrogen ions into the steel plate in a later step, the AlG precipitates can be omitted by adding additional AlN precipitates in addition to the existing AlN, thereby eliminating the decarburization process. It has been found that slab heating below 1250 ° C., which does not form coarse grains, is possible even in a component system containing a small amount of carbon steel.

더불어, 부가적인 결정립성장억제제의 도입으로 1회 강냉간압연법에 의해서도 방향성 전기강판의 생산이 가능하며, 특히 0.27mm이하의 두께로 냉간압연함으로서 고자속밀도와 저철손을 갖는 자기특성이 우수한 방향성 전기강판을 제조하는 방법을 개발하게 되었다.In addition, with the introduction of additional grain growth inhibitors, it is possible to produce oriented electrical steel sheets even by one-time cold-rolling. Especially, by cold rolling to a thickness of 0.27mm or less, excellent directionality with excellent magnetic properties with high magnetic flux density and low iron loss. A method of manufacturing electrical steel sheet has been developed.

이와 같은 연구결과는 한국특허공개 1998-034055보다 앞선 기술로서 기존의 결정립성장억제제인 AlN과 후공정에서 강판에 도입된 질소이온에 의해서 부가적으로 형성되는 AlN의 복합적인 억제력으로 인하여 탈탄공정을 생략할수 있는 소강탄소를 함유하는 성분계에서 1250℃이하의 온도로 스라브가열이 가능하며, 0.27mm이하의두께로 1회 강냉간압연함으로서 저철손과 고자속밀도의 방향성 전기강판을 제조할 수가 있다.The result of this study is an advanced technology than Korean Patent Publication No. 1998-034055, which omits the decarburization process due to the combined inhibitory power of AlN, which is an existing grain growth inhibitor, and AlN, which is additionally formed by nitrogen ions introduced into the steel sheet in the subsequent process In the component system containing carbon steel, slab can be heated up to 1250 ℃ and cold rolled once with a thickness of 0.27mm or less can produce oriented electrical steel sheet with low iron loss and high magnetic flux density.

이하. 본 발명의 성분 한정이유에 대하여 보다 상세하게 설명한다.Below. The reason for component limitation of this invention is demonstrated in more detail.

상기 Si는 전기강판의 기본 조성으로 소재의 비저항을 증가시켜 철심손실 즉 철손을 낮추는 역할을 하는 원소로서, 그 함량이 2.0wt%미만인 경우에는 비저항이 감소하여 철손특성이 열화되고, 4.0wt%이상으로 과잉 함유시에는 강의 취성이 커져 냉간압연성이 극히 나빠지며 동시에 2차 재결정형성이 불안정해지므로, 상기 Si의 함량은 2.0~4.0wt%로 설정하는 것이 바람직하다.The Si is an element that plays a role of lowering iron core loss, that is, iron loss by increasing the resistivity of the material as the basic composition of the electrical steel sheet, when the content is less than 2.0wt%, the resistivity decreases and the iron loss property is deteriorated, and more than 4.0wt%. When excessively contained, the brittleness of the steel becomes large, the cold rolling property becomes extremely poor, and at the same time, the secondary recrystallization becomes unstable, so the content of Si is preferably set to 2.0 to 4.0 wt%.

상기 Mn은 Si와 동일하게 비저항을 증가시켜 철손을 감소시키는 효과가 있으며 스라브 재가열시에 오스테나이트를 형성하도록하여 AlN의 고용을 용이하게 하는 원소로 0.08wt%이하로 첨가된 경우 철손을 감소시키는 효과가 미약하며, 오스테나이트형성이 불충분하여 AlN의 충분한 고용에 도움을 주지 못한다.The Mn has the effect of reducing the iron loss by increasing the specific resistance similar to Si and to reduce the iron loss when added to less than 0.08wt% as an element to facilitate the solid solution of AlN by forming austenite when reheating the slab It is weak and lacks austenite formation, which does not help sufficient employment of AlN.

그러나, 1.0wt%이상 첨가시에는 강의 강도가 증가하여 냉간압연시 판형상이 불균일해지고 고온소둔중 상변태를 일으켜서 2차재결정 형성을 방해한다.However, when 1.0 wt% or more is added, the strength of the steel increases, which causes the plate shape to become uneven during cold rolling and prevents secondary recrystallization by causing phase transformation during high temperature annealing.

따라서, 상기 Mn의 함량은 0.08∼1.0wt%로 제한하는 것이 바람직하다.Therefore, the content of Mn is preferably limited to 0.08 to 1.0wt%.

상기 Al성분은 N과 함께 AlN의 석출물을 형성하여 입성장억제력을 확보하는 중요원소이며, 총량적인 Al함량보다는 N과 반응하여 AlN을 형성할수 있는 산가용성의 Al함량이 중요하다.The Al component is an important element to form the precipitate of AlN together with N to secure the grain growth inhibitory force, and the acid content of Al which can form AlN by reacting with N is important rather than the total Al content.

상기 산가용성 Al함량이 0.006wt%미만인 경우는 결정립의 성장을 억제하기에 충분한 석출물을 형성하지 못하므로 2차재결정이 불안정해지고, 0.040wt%이상 첨가된경우에는 석출물의 양이 너무 증가하여 , 2차재결정의 핵인 고스(Goss)결정립을 포함한 모든 1차재결정입자들의 성장을 강력히 억제한 결과, 2차재결정이 전혀 형성되지 않게 된다.If the acid-soluble Al content is less than 0.006wt%, the secondary recrystallization becomes unstable because it does not form enough precipitates to suppress the growth of the grains, and when added more than 0.040wt%, the amount of precipitates is too high, 2 As a result of the strong inhibition of the growth of all primary recrystallized particles, including Goss grains, the core of the secondary recrystallization, no secondary recrystallization is formed.

따라서, 상기 산가용성 Al의 함량은 0.006 ∼ 0.040wt%로 설정하는 것이 바람직하다.Therefore, the content of the acid-soluble Al is preferably set to 0.006 ~ 0.040wt%.

상기 N은 산가용성 Al과 반응하여 AlN 석출물을 형성함으로서 1차재결정립의 성장을 억제하기 때문에 2차재결정형성에 있어서 필수적인 성분이다.N is an essential component in secondary recrystallization because it inhibits the growth of primary recrystallized grains by reacting with acid-soluble Al to form AlN precipitates.

제강단계에서 N이 0.012wt% 이상 첨가되는 경우에는 스라브내에 조대한 AlN을 형성하여 결정성장억제효과가 떨어지며, 강판표면에 브리스터(blister)가 발생하여 제품의 표면특성을 열화시킨다.When N is added at 0.012wt% or more in the steelmaking step, coarse AlN is formed in the slab, and the effect of inhibiting crystal growth is reduced, and a blister occurs on the surface of the steel sheet, thereby deteriorating the surface characteristics of the product.

한편, 제강단계에서 0.006wt%보다 적게 첨가된 경우에는 1차 결정성장억제제로서 충분한 AlN을 형성하지 못하게 되므로 1차재결정 미세조직이 조대하게 성장하여 2차재결정 형성이 불안정해진다.On the other hand, when less than 0.006wt% is added in the steelmaking step, it is impossible to form sufficient AlN as the primary crystal growth inhibitor, so that the primary recrystallized microstructure grows coarsely and the secondary recrystallization becomes unstable.

따라서, 상기 산가용성 N의 함량은 0.012 ∼ 0.006wt%로 설정하는 것이 바람직하다Therefore, the content of the acid soluble N is preferably set to 0.012 to 0.006wt%.

상기 Cu는 오스테나이트 형성원소로서 AlN의 고용 및 미세석출에 기여하여 2차재결정을 안정화시키는 원소이다. 또한 Cu는 S와 결합해서 Cu2S라는 석출물을 형성하는데, 본 발명성분계에서는 Cu2S형성으로 S의 중심편석을 방지할 뿐만 아니라, MnS가 형성되는 온도보다 낮은 온도에서 빠르게 Cu2S를 형성함으로서 고용온도가 높은 MnS의 형성을 억제하는 효과가 있으므로 일정량 첨가하는 것이 좋다.Cu is an austenite forming element and contributes to the solid solution and fine precipitation of AlN to stabilize the secondary recrystallization. In addition, Cu combines with S to form a precipitate called Cu 2 S. In the component system of the present invention, Cu 2 S formation not only prevents central segregation of S, but also forms Cu 2 S rapidly at a temperature lower than the temperature at which MnS is formed. Since it is effective in suppressing the formation of MnS having a high solid solution temperature, it is preferable to add a certain amount.

상기 Cu가 0.5wt%이상 첨가되는 경우에는 탈탄소둔시에 생성되는 산화물에 의해서 절연피막형성에 악영향을 줄 뿐만 아니라 2차 재결정립의 크기가 조대해져서 철손이 증가하므로 Cu는 0.5wt%이하로 제한하는 것이 바람직하다.If the Cu is added more than 0.5wt% Cu not only adversely affect the insulating film formation by the oxide produced during the decarbonization annealing, but also the iron loss increases due to the coarse size of the secondary recrystallized grains is limited to less than 0.5wt% It is desirable to.

상기 S는 Cu나 Mn과 유화물 형태의 석출물을 형성하여 억제제의 역할을 하는 성분이지만 본 성분계에서는 황화물을 억제제로서 사용하지 않기 때문에 가급적 낮게 관리한다.The S is a component that acts as an inhibitor by forming a precipitate in the form of emulsion with Cu or Mn, but is managed as low as possible because the sulfide is not used as an inhibitor in the present component system.

특히, MnS의 경우 고용온도가 매우 고온이기 때문에 석출물이 제강단계에서 형성되지 않도록 하기위해서는 상기 S가 0.007wt%이하로 함유되도록 하는 것이 바람직하다.Particularly, in the case of MnS, since the solid solution temperature is very high, in order to prevent the precipitate from being formed in the steelmaking step, it is preferable that the S is contained in an amount of 0.007 wt% or less.

이하, 상기 C의 함량을 0.015wt%이하로 설정한 이유에 대하여 설명한다.Hereinafter, the reason why the content of C is set to 0.015 wt% or less will be described.

상기 C는 0.02wt%이상 첨가되면 강의 오스테나이트변태를 촉진하여 열연시 열간압연조직을 미세화시키고 아울러 AlN의 고용과 석출을 촉진시켜 결정립성장 억제제로서의 효과를 상승시키는 성분이지만, 앞서 설명하였듯이 최종제품에 잔류하게 되면 탄화물을 형성하여 자성열화를 초래하므로 필수적으로 탈탄공정을 통하여 최종제품에서는 0.0030wt%이하로 관리하여야만 했다.The C is a component that promotes austenite transformation of steel when added to 0.02wt% to refine the hot-rolled structure during hot rolling and promotes the solubility and precipitation of AlN to increase the effect as a grain growth inhibitor. If it remains, it forms carbide and causes magnetic deterioration. Therefore, it was necessary to manage it to less than 0.0030wt% in the final product through the decarburization process.

그러나, 본 발명자들은 상기와 같은 탈탄공정이 필요없는 최소한의 소강탄소함량 조건을 실험을 통하여 조사하였다.However, the present inventors investigated the minimum carbon steel content condition that does not require the decarburization process through experiments.

다른 성분들은 변경하지 않고 소강탄소의 함량을 하기 표 1과 같이 변경하여 진공용해하고 스라브를 만들어 1200℃까지 가열한 다음, 열간압연한 후 열연판소둔을 실시하고 0.23mm까지 1회 강냉간압연을 실시한 다음, 별도의 탈탄공정은 생략하고850℃의 온도와 질소이온을 함유하는 개스분위기에서 소둔을 실시하였다.Other components were changed without changing the content of carbon steel as shown in Table 1, vacuum melted, made a slab and heated up to 1200 ℃, then hot rolled and then subjected to hot-rolled sheet annealing, once cold rolled to 0.23mm Then, an additional decarburization step was omitted and annealing was performed in a gas atmosphere containing a temperature of 850 ° C. and nitrogen ions.

그런 다음 소둔판에 MgO를 도포하고 최종 고온소둔을 실시하여 2차재결정을 형성하였다.Then, MgO was applied to the annealing plate and the final high temperature annealing was performed to form secondary recrystallization.

고온소둔후에 강판에 잔류하는 탄소의 함량과 자기특성을 측정하고, 그 결과를 하기 표 1에 나타내었다.After hot annealing, the carbon content and magnetic properties remaining in the steel sheet were measured, and the results are shown in Table 1 below.

제조공정별 잔류탄소함량(wt%)의 변화Changes in Residual Carbon Content (wt%) by Manufacturing Process 자속밀도(Tesla)Magnetic flux density (Tesla) 철 손(W17/50)Iron hand (W17 / 50) 소강탄소량Steel carbon content 열연판Hot rolled sheet 열연판소둔Hot Rolled Annealing 최종소둔판Final Annealed Plate 0.00500.0050 0.00300.0030 0.00200.0020 0.00100.0010 1.9151.915 0.9130.913 0.00900.0090 0.00550.0055 0.00330.0033 0.00140.0014 1.9281.928 0.9320.932 0.01500.0150 0.00840.0084 0.00510.0051 0.00220.0022 1.9171.917 0.8910.891 0.01900.0190 0.01250.0125 0.00870.0087 0.00360.0036 1.9111.911 1.0831.083

상기 표 1에 나타난 바와 같이, 소강탄소함량이 0.019wt%이었을 때에는 스라브가열후 열간압연과 열연판소둔 그리고 고온소둔후에도 잔류탄소함량이 0.0030wt%이하로 감소하지 않았다.As shown in Table 1, when the carbon steel content was 0.019wt%, the residual carbon content did not decrease below 0.0030wt% even after hot rolling, hot rolling annealing and hot annealing after slab heating.

그러한 이유로 2차재결정은 양호하게 이루어져 자속밀도는 우수하였지만 철손이 다소 열위한 것으로 밝혀졌다.For this reason, the secondary recrystallization was good and the magnetic flux density was good, but the iron loss was found to be somewhat inferior.

그러나 탄소함량이 0.015wt%이하인 경우에는 최종 고온소둔후에 잔류탄소함량이 0.0030wt%이하로 감소하였고 자속밀도와 철손특성도 우수함을 알 수 있다.However, when the carbon content is less than 0.015wt%, after the final high temperature annealing, the residual carbon content is reduced to less than 0.0030wt%, and the magnetic flux density and iron loss characteristics are also excellent.

따라서, 본 발명의 목적을 성공적으로 수행하기 위해서는 제강단계에서 첨가되는 탄소의 함량은 0.015wt%이하로 제한하는 것이 바람직하다.Therefore, in order to successfully carry out the object of the present invention, the content of carbon added in the steelmaking step is preferably limited to 0.015wt% or less.

본 발명의 강 성분은 이상과 같으며 그 외는 Fe 및 불가피한 미량의 불순물로 구성된다. 상기와 같은 규소강 소재는 통상의 여하한 용해법, 조괴법, 연주법 등을 이용하여 제조한 경우에도 본 발명의 소재로 사용할 수 있다.The steel component of the present invention is as described above, and the other components are composed of Fe and inevitable trace impurities. The silicon steel material as described above can be used as the material of the present invention even when manufactured using any conventional dissolution method, ingot method, performance method, or the like.

이하, 제조조건에 대하여 설명한다.Hereinafter, manufacturing conditions are demonstrated.

상기와 같이 조성되는 강 스라브는 1100~1250℃의 온도로 가열한다.The steel slab formed as described above is heated to a temperature of 1100 ~ 1250 ℃.

상기 강스라브를 1250℃이상의 온도로 가열하게 되면 제강단계에서 첨가되어 스라브에 존재하는 AlN 석출물을 더 많이 고용시키고 결정립성장억제력을 갖는 미세한 석출물로 재석출 시킬 수 있겠지만, 스라브의 결정립들이 아주 조대하게 성장한다. 이러한 스라브를 열간압연하게 되면 조대한 결정립들이 압연방향으로 길게 연신된 미세조직을 형성하게 된다.When the steel slab is heated to a temperature above 1250 ° C., the AlN precipitate present in the slab may be added to the steelmaking step and reprecipitated as a fine precipitate having grain growth inhibition, but the grains of the slab grow very coarsely. do. When the slab is hot rolled, coarse crystal grains form a microstructure elongated in the rolling direction.

이러한 연신립들이 열연판에 많이 존재하게 되면 고스(Goss) 결정립의 성장을 방해하여 2차재결정이 매우 어렵게 된다.The presence of many of these stretched grains in the hot rolled sheet prevents the growth of Goss grains, making secondary recrystallization very difficult.

따라서, 스라브의 결정립들이 조대하게 성장하지 않는 1250℃이하의 온도로 가열한 다음 열간압연 하고, 다음 공정인 열연판소둔 공정에서 다시 열간변형된 결정립을 재결정시켜서 연신립이 없는 미세조직을 만들고 동시에 스라브 가열단계와 동일한 AlN석출물의 고용과 재석출이 일어나도록 열처리 한다.Therefore, the grains of the slab are heated to a temperature of 1250 ° C. or less where they do not grow coarsely, and then hot rolled. Then, the hot-deformed grains are recrystallized again in the subsequent hot-rolled sheet annealing process to make microstructures without stretch grains and at the same time, The heat treatment is performed so that the same solid solution and re-precipitation of AlN precipitate as the heating step occurs.

그러나 스라브 가열온도가 1100℃이하인 경우에는 AlN의 고용에 많은 시간이 필요하며 열간압연시 변형응력이 매우 커서 열연공정의 부하를 높이게 된다.However, when the slab heating temperature is less than 1100 ℃, it takes a lot of time for the AlN solid solution and the strain stress during hot rolling is very large, thereby increasing the load of the hot rolling process.

따라서, 상기 강 스라브의 가열온도는 1100~1250℃로 설정하는 것이 바람직하다.Therefore, the heating temperature of the steel slab is preferably set to 1100 ~ 1250 ℃.

그리고, 열간압연은 최적의 냉간압연율을 고려하여 1.5~3.0mm의 두께로 열간압연 한 다음 600℃이하의 온도에서 권취한다.Then, hot rolling is hot rolled to a thickness of 1.5 ~ 3.0mm in consideration of the optimal cold rolling rate, and then wound at a temperature of 600 ℃ or less.

상기 열연판소둔은 열간압연으로 변형된 결정립을 재결정시켜서 연신립이 없는 균일한 미세조직을 만들고, 또한 스라브 가열단계와 동일하게 AlN석출물의 고용과 재석출이 일어나도록 하여 미세한 석출물을 형성함으로서 고온소둔전의 1차결정조직의 결정성장을 조절하여 2차재결정에 유리한 미세조직을 형성하도록 도와준다. 이러한 역할을 수행하기 위해서는 900~1200℃의 온도구간에서 단시간 동안 열처리가 요구된다.The hot-rolled sheet annealing recrystallizes the crystal grains deformed by hot rolling to make a uniform microstructure without stretching grains, and also forms a fine precipitate by solid solution and reprecipitation of AlN precipitates in the same manner as the slab heating step. By controlling the growth of the former primary crystal structure helps to form a microstructure favorable to the secondary recrystallization. In order to perform this role, heat treatment is required for a short time in the temperature range of 900 ~ 1200 ℃.

900℃이하의 온도에서는 석출물의 고용보다는 석출현상이 더 많기 때문에 석출물이 조대해지는 경향이 있다. 이러한 경우 결정립성장 억제력이 떨어지기 때문에 900℃이상의 온도로 가열함으로서 조대한 석출물이 고용되어 석출물들이 균일한 크기의 분포를 갖을 수 있다.At temperatures below 900 ° C, the precipitation tends to be coarse because there is more precipitation than solid solution. In this case, since the grain growth inhibitory power is lowered, coarse precipitates may be dissolved by heating to a temperature of 900 ° C. or higher, and the precipitates may have a uniform size distribution.

그러나, 1200℃이상의 온도로 가열하는 경우는 결정립이 조대하게 성장하게 되며 작은 석출물들 대부분이 고용되고 후속 냉각공정에서 아주 미세한 입자들로 재석출하면서 전체적인 석출물들의 크기분포가 커지게 된다. 이러한 석출물분포는 2차재결정이 불균일하게 일어나게 만들어 안정적인 자기특성을 확보하기가 어렵다.However, when heated to a temperature of 1200 ° C or more, the grains grow coarse, and most of the small precipitates are dissolved and the size distribution of the overall precipitates is increased as the fine particles are reprecipitated in the subsequent cooling process. Such precipitate distribution causes secondary recrystallization to be non-uniform, making it difficult to secure stable magnetic properties.

따라서 열연판소둔의 온도범위는 900~1200℃가 바람직하다.Therefore, the temperature range of the hot rolled sheet annealing is preferably 900 ~ 1200 ℃.

상기와 같이 열연판소둔이 끝난후에는 산세 후에 90%이상의 압연율로 0.27mm이하의 두께까지 냉간압연을 실시한다.After the hot-rolled sheet annealing as described above, after the pickling, cold rolling is performed to a thickness of 0.27 mm or less at a rolling rate of 90% or more.

냉간압연은 최종제품의 두께를 만들기위한 목적 이외에도 강판내에 이상적인 고스(Goss)결정립들만 존재하게 하여 고온소둔시 이러한 이상적인 고스(Goss)결정립들이 2차재결정하여 우수한 자기특성을 확보하는데 그 목적이 있다.In addition to the purpose of making the thickness of the final product, cold rolling has only the ideal Goss grains in the steel sheet, and the ideal Goss grains are secondary recrystallized at high temperature annealing to secure excellent magnetic properties.

따라서, 본 발명의 성분계와 같은 극저탄소를 함유하는 성분계에서는 냉간압연율을 90%이상으로 하여야만 이상적인 결정들이 존재하게 된다.Therefore, in the ultra low carbon component system such as the component system of the present invention, the cold crystallinity must be 90% or more so that ideal crystals exist.

냉간압연율이 90%미만인 경우에는 이상적인 (110)[001]방위에서 벗어난 유사 고스(Goss)결정립들이 존재하게 되고 고온소둔에서 2차재결정함으로서 자기특성이 떨어지게 된다.If the cold rolling rate is less than 90%, pseudo-gos grains deviating from the ideal (110) [001] orientation are present and the magnetic properties are degraded by secondary recrystallization at high temperature annealing.

또한, 철심손실을 낮추기 위해서는 우수한 자속밀도를 확보하는 것도 중요하지만 제품두께를 낮추는 것이 가장 효과적이다. 따라서 저철손과 고자속밀도의 자기특성을 얻기위해서는 냉간압연율이 90%이상으로 하고 0.27mm이하의 두께로 냉간압연 하여야 한다.In addition, it is important to secure excellent magnetic flux density in order to lower the core loss, but it is most effective to lower the thickness of the product. Therefore, in order to obtain magnetic properties of low iron loss and high magnetic flux density, cold rolling should be over 90% and cold rolling should be less than 0.27mm thick.

상기와 같이 냉간압연이 끝난 후에는 탈탄공정을 생략하고, 추가적인 결정성장억제력을 확보하기 위해서 질소이온을 함유하는 개스분위기에서 단시간동안 열처리를 수행한다.After the cold rolling as described above, the decarburization process is omitted, and heat treatment is performed for a short time in a gas atmosphere containing nitrogen ions in order to secure additional crystal growth inhibition.

이는 고온소둔에 앞서 소둔분리제인 MgO를 효과적으로 도포하기 위해서도 필요한 열처리공정으로서, 본 발명의 특징인 탈탄공정 생략이 가능하기 때문에 생산성을 높일 수 있다.This is a heat treatment step necessary to effectively apply the annealing separator MgO prior to high temperature annealing, and can increase productivity because the decarburization step, which is a feature of the present invention, can be omitted.

또한, 탈탄공정에 필요한 가습설비가 필요 없으며, 탈탄반응에서 생겨나는 표면산화물층의 양을 감소시킬 수 있다.In addition, there is no need for a humidification apparatus necessary for the decarburization process, and the amount of the surface oxide layer generated in the decarburization reaction can be reduced.

표면산화층의 많은 경우에는 최종 고온소둔후에 무기질 산화층표면에 형성이 방해되어 표면결함이 발생할 가능성이 아주 많다.In many cases of the surface oxide layer, formation of the surface of the inorganic oxide layer after the final high temperature annealing is very likely to cause surface defects.

따라서, 탈탄공정의 생략은 생산성증대의 효과뿐만 아니라 고온소둔시 표면결함의발생을 상당히 감소시킬 수 있다.Thus, elimination of the decarburization process can significantly reduce the occurrence of surface defects upon high temperature annealing as well as the effect of increased productivity.

한편, 질소이온을 함유하는 개스분위기에서 단시간 소둔을 실시함으로서 추가적인 결정성장억제제를 확보하게 되는데, 이는 본 발명성분계의 전기강판 스라브를 1100~1250℃로 가열하여 조대한 결정립형성을 억제함에 따른 AlN 결정립성장억제제의 약화된 억제력을 보강하기 위한 것이다.On the other hand, by performing annealing for a short time in a gas atmosphere containing nitrogen ions to secure an additional crystal growth inhibitor, which is AlN grains by suppressing coarse grain formation by heating the electrical steel slab of the component system of the present invention to 1100 ~ 1250 ℃ This is to reinforce the weakened inhibitory effect of the growth inhibitory agent.

즉, 질소이온을 함유하는 개스분위기에서 소둔을 함으로서 강판내에 질소이온이 도입되어 추가적인 AlN 석출물을 형성함으로서 앞서 열간압연과 열연판소둔에 의해서 형성된 AlN 석출물과 같이 정상적인 결정립의 성장을 강력히 억제하여 안정된 2차재결정을 형성하는 것이다.In other words, by annealing in a gas atmosphere containing nitrogen ions, nitrogen ions are introduced into the steel sheet to form additional AlN precipitates. It is to form a re-crystallization.

강판내에 질소이온을 효과적으로 도입하기 위해서는 750~950℃의 온도구간에 열처리하여야 하며, 질소이온을 함유하기 위해서는 암모니아개스를 크랙킹(cracking)하여 사용한다.In order to effectively introduce nitrogen ions into the steel sheet, heat treatment should be performed at a temperature range of 750 ~ 950 ℃, and to contain nitrogen ions, cracked ammonia gas is used.

상기 소둔온도가 750℃미만인 경우에는 도입된 질소이온에 의해서 Si3N4와 같은 질화물이 형성되는데, 이러한 질화물은 온도에 민감하여 쉽게 분해됨으로서 결정립성장억제력을 갖지 못한다.When the annealing temperature is less than 750 ° C, nitrides such as Si 3 N 4 are formed by the introduced nitrogen ions, and the nitrides are sensitive to temperature and easily decomposed, so that they do not have grain growth inhibition.

한편, 소둔온도가 950℃이상인 경우에는 강판내에 질소이온이 도입되어 AlN석출물을 형성해도, 1차재결정립의 크기가 매우 조대해지고 불균일한 미세조직을 형성함으로서 2차재결정이 불안정해진다.On the other hand, when the annealing temperature is 950 ° C or higher, even when nitrogen ions are introduced into the steel sheet to form AlN precipitates, the size of the primary recrystallized grain becomes very coarse and the secondary recrystallization becomes unstable by forming a nonuniform microstructure.

한편, 질소이온을 함유하는 분위기개스로부터 강판에 도입되는 질소이온의 총량은0.0010~0.0300wt%로 설정하는 것이 바람직하다.On the other hand, the total amount of nitrogen ions introduced into the steel sheet from the atmosphere gas containing nitrogen ions is preferably set to 0.0010 to 0.0300 wt%.

상기 질소이온이 0.0010wt%이하로 강판에 도입되면 추가로 석출되는 AlN의 석출량이 매우 적어서 결정립의 성장을 강력히 억제하지 못하게 되며, 0.0300wt%이상으로 강판에 도입되게 되면 추가적으로 많은 AlN석출물들이 생성되어 고스결정립들까지도 성장이 억제되어 2차재결정이 안일어나게 되므로 강판에 도입되는 적정한 질소이온량은 0.0010~0.0300wt%가 바람직하다When the nitrogen ion is introduced into the steel sheet at 0.0010wt% or less, the precipitation amount of the additionally precipitated AlN is very small so that the growth of crystal grains cannot be strongly inhibited. When the nitrogen ion is introduced into the steel sheet at 0.0300wt% or more, additional AlN precipitates are generated. Since even goth crystal grains are inhibited from growth and secondary recrystallization does not occur, an appropriate amount of nitrogen ion introduced into the steel sheet is preferably 0.0010 to 0.0300 wt%.

이와 같이 질소이온을 함유하는 개스분위기에서 소둔된 강판은 소둔분리제인 MgO를 도포하고, 5∼90%의 질소를 함유하는 수소개스 분위기에서 1150∼1250℃의 온도구간까지 승온하고 이어서 100%의 수소개스 분위기에서 20시간 이상 균열하는 최종 고온소둔을 실시한다.The steel sheet annealed in a gas atmosphere containing nitrogen ions is coated with MgO, an annealing separator, and then heated up to a temperature range of 1150 to 1250 ° C. in a hydrophobic atmosphere containing 5 to 90% nitrogen, followed by 100% hydrogen. Final high temperature annealing is performed for 20 hours or more in a gas atmosphere.

상기 고온소둔시 바람직한 승온속도는 10∼20℃/hr정도이다.The temperature increase rate at the time of high temperature annealing is about 10-20 degreeC / hr.

고온소둔 분위기개스에 질소가 첨가되면 강판 속에 AlN석출물들의 분해가 쉽게 일어나지 않아 억제력을 비교적 높은 온도까지 유지할 수 있어 2차재결정온도를 상승시켜서 우수한 자기특성을 얻을 수 있다.When nitrogen is added to the high temperature annealing atmosphere gas, AlN precipitates are not easily decomposed in the steel sheet, so that the suppressive force can be maintained at a relatively high temperature, thereby increasing the secondary recrystallization temperature to obtain excellent magnetic properties.

고온소둔중 질소개스가 5%이하이면 AlN석출물의 분해를 억제하는 효과가 거의 없고, 90%이상의 질소개스가 포함되면 무기질 표면산화층형성이 불안정해져서 전기강판의 표면품질이 크게 떨어진다.If the nitrogen gas is 5% or less during the high temperature annealing, there is almost no effect of suppressing the decomposition of AlN precipitates. If the nitrogen gas is contained more than 90%, the inorganic surface oxide layer formation becomes unstable and the surface quality of the electrical steel sheet is greatly reduced.

더불어 AlN석출물의 분해가 강력히 억제되어 1200℃의 고온에서도 2차재결정이 일어나지 않는 경우도 발생한다.In addition, decomposition of AlN precipitates is strongly suppressed, so that secondary recrystallization does not occur even at a high temperature of 1200 ° C.

상기와 같이 제강단계에서의 탄소함량을 탈탄공정이 필요없는 수준까지 감소시키고냉간압연율 90% 이상이며 0.27mm 이하의 두께로 1회 강냉간압연하고 열간압연과 열연판소둔으로 석출된 AlN과 냉간압연된 강판을 질소이온을 함유하는 개스분위기에서 소둔함으로서 추가적인 AlN 석출물을 형성시켜 고스(Goss)방위 이외의 결정립들의 성장을 강력히 억제함으로써 고자속밀도와 저철손을 갖는 자기특성이 우수한 방향성전기강판을 제조할 수가 있다.As described above, the carbon content in the steelmaking step is reduced to the level where no decarburization process is required, and the cold rolling rate is 90% or more and the thickness of 0.27mm or less is once cold-rolled, and the AlN and cold precipitated by hot rolling and annealing are applied. By annealing the rolled steel sheet in a gas atmosphere containing nitrogen ions, additional AlN precipitates are formed to strongly inhibit the growth of grains other than the Goss orientation, resulting in highly oriented electrical steel sheets with excellent magnetic properties with high magnetic flux density and low iron loss. It can manufacture.

이하, 실시예을 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

제강단계에서 탄소를 0.015wt%이하로 첨가하고 Si:3.12wt%, Mn:0.45wt%, 산가용성 Al: 0.015wt%, N: 0.011wt%, S: 0.005wt%, Cu: 0.47wt%, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 스라브를 제조하였다.In the steelmaking step, carbon is added below 0.015wt%, Si: 3.12wt%, Mn: 0.45wt%, acid soluble Al: 0.015wt%, N: 0.011wt%, S: 0.005wt%, Cu: 0.47wt%, A slab consisting of the balance Fe and other unavoidable impurities was produced.

이 스라브를 1050, 1100, 1200, 1250, 1280℃에서 3.5 시간 재가열한 후 열간압연을하여 3.0mm두께의 열연판을 만들었다.The slab was reheated at 1050, 1100, 1200, 1250, 1280 ° C. for 3.5 hours and hot rolled to make a 3.0 mm thick hot rolled sheet.

열연판을 1100℃의 질소분위기에서 단시간 동안 소둔을 한 후 급냉시키고 산세하였다.The hot rolled sheet was annealed in a nitrogen atmosphere at 1100 ° C. for a short time, then quenched and pickled.

1회 냉간압연법으로, 0.27mm까지 냉간압연을 실시하고 이어서 800℃의 온도에서 질소이온을 함유하는 개스분위기를 사용하여 소둔을 실시하고, MgO를 도포한 후에 1200℃까지 25%N2+75%H2의 개스분위기에서 승온한 후에 100% 수소분위기로 변경하여 20시간 소둔하였다.Cold rolling is performed once by cold rolling to 0.27mm, followed by annealing using a gas atmosphere containing nitrogen ions at a temperature of 800 ° C, and 25% N 2 +75 up to 1200 ° C after MgO is applied. After heating up in a gas atmosphere of% H 2, the mixture was changed to 100% hydrogen atmosphere and annealed for 20 hours.

스라브 가열온도에 따른 열연판에서의 연신립비율과 자기특성의 변화를 하기 표 2에 나타내었다.Changes in the stretch ratio and magnetic properties of the hot rolled sheet according to the slab heating temperature are shown in Table 2 below.

스라브 재가열Reheat slab 열연판 연신립율Hot Rolled Sheet Elongation B10(Tesla)B10 (Tesla) 철손(W17/50)Iron loss (W17 / 50) 1050℃1050 ℃ 10%10% 1.8771.877 1.2521.252 비교재1Comparative Material 1 1100℃1100 ℃ 15%15% 1.9121.912 0.9550.955 발명재1Invention 1 1200℃1200 ℃ 20%20% 1.9321.932 0.9830.983 발명재2Invention 2 1250℃1250 ℃ 40%40% 1.9251.925 0.9750.975 발명재3Invention 3 1300℃1300 ℃ 80%80% 1.8301.830 1.5631.563 비교재2Comparative Material 2

상기 표 2에 나타난 바와 같이, 스라브 가열온도가 1250℃보다 높은 경우(비교재 2)에는 열간압연후의 미세조직에 연신립의 비율이 80%까지 크게 증가하게 되는데 이러한 연신립은 열연판소둔과 90%의 냉간압연에도 재결정 되지않고 존재하여 2차재결정에 악영향을 준다.As shown in Table 2, when the slab heating temperature is higher than 1250 ° C. (Comparative Material 2), the ratio of stretched grains to the microstructure after hot rolling is greatly increased to 80%. Even cold rolling of% does not recrystallize and thus adversely affects secondary recrystallization.

반면, 스라브가열온도가 1050℃인 경우(비교재1)에는 열연판의 연신립의 비율은 낮음에도 불구하고 결정립성장 억제제인 AlN의 고용이 충분히 이루어지지 않아서 불균일한 석출물분포를 초래함으로서 2차재결정일 불안정하게 형성되어 자기특성이 발명재(1-3)보다 다소 열위함을 알 수 있다.On the other hand, when the slab heating temperature is 1050 ° C (Comparative Material 1), although the ratio of elongated grains of the hot rolled sheet is low, the employment of AlN, a grain growth inhibitor, is insufficient, resulting in non-uniform precipitation distribution. It can be seen that the magnetic properties are somewhat inferior to that of the inventive material (1-3) due to unstable formation.

(실시예 2)(Example 2)

C:0.012wt%, Si:3.15wt%, Mn:0.18wt%, 산가용성Al:0.025wt% N:0.010wt%, S:0.004wt%, Cu:0.48wt%, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 스라브를 제조하고 1220℃의 온도에서 4.0시간 재가열한 후 열간압연을 하여 두께가 다른 열연판들을 만들었다.C: 0.012wt%, Si: 3.15wt%, Mn: 0.18wt%, Acid Soluble Al: 0.025wt% N: 0.010wt%, S: 0.004wt%, Cu: 0.48wt%, Remnant Fe and Other Unavoidable Impurities The slab was made and reheated at a temperature of 1220 ° C. for 4.0 hours, followed by hot rolling to make hot rolled plates having different thicknesses.

그 다음, 1050℃의 온도로 열연판을 단시간소둔한 후 급냉하였다.Then, the hot rolled sheet was annealed at a temperature of 1050 ° C. for a short time and then quenched.

소둔된 판은 산세를 실시하고 냉간압연율을 변경하여 0.35~0.18mm로 1회 강냉간압연을 실시하였다.The annealed plate was pickled and cold rolled at 0.35 ~ 0.18mm by changing the cold rolling rate.

이와 같이 냉간압연된 강판은 질소이온을 함유하는 개스분위기를 사용하여 900℃의 온도에서 소둔함으로서 일정량의 질소이온이 강판에 도입되어 새로운 AlN이 추가적으로 석출되도록 하였다.The cold rolled steel sheet was annealed at a temperature of 900 ° C. using a gas atmosphere containing nitrogen ions so that a certain amount of nitrogen ions were introduced into the steel sheet to further precipitate new AlN.

그리고 50%N2를 함유하는 수소개스분위기에서 고온소둔을 실시하고 냉간압연율과 질소이온 첨가량에 따른 자기특성의 변화도 동시에 조사하고, 그 결과를 하기 표 3에 나타내었다.In addition, the high temperature annealing was carried out in a water quenching atmosphere containing 50% N 2 , and the change in magnetic properties according to the cold rolling rate and the amount of nitrogen ions was simultaneously investigated. The results are shown in Table 3 below.

냉간압연율Cold rolling rate 제품두께(mm)Product thickness (mm) 질소이온첨가량(ppm)Nitrogen ion addition amount (ppm) 자속밀도(Tesla)Magnetic flux density (Tesla) 철손(W17/50)Iron loss (W17 / 50) 85%85% 0.350.35 150150 1.8511.851 1.3621.362 비교재3Comparative Material 3 87%87% 0.300.30 100100 1.8951.895 1.2051.205 비교재4Comparative Material 4 90%90% 0.300.30 8080 1.9051.905 1.1071.107 비교재5Comparative Material 5 91%91% 0.270.27 200200 1.9221.922 0.9760.976 발명재4Invention 4 91%91% 0.230.23 150150 1.9411.941 0.9440.944 발명재5Invention 5 91%91% 0.200.20 55 1.8851.885 1.2241.224 비교재6Comparative Material 6 92%92% 0.200.20 130130 1.9381.938 0.9390.939 발명재6Invention 6 93%93% 0.180.18 250250 1.9461.946 0.9210.921 발명재7Invention 7 93%93% 0.180.18 380380 1.7821.782 1.5061.506 비교재7Comparative Material7

상기 표 3에 나타난 바와 같이, 냉간압연율이 90% 미만인 경우에는 이상적인 고스(Goss)결정립 이외의 유사방위를 갖는 고스(Goss)결정립들도 2차재결정함에 따라서 1.90 Tesla이상의 고자속밀도특성을 얻을 수 없었고 90%이상의 냉연율을 확보한 경우에도 제품두께가 0.30mm인 경우에는 두께 감소에 따른 철손개선효과가 미미하여 1.0 W/kg 미만의 저철손이 확보되지 못함을 알 수 있다.As shown in Table 3, when the cold rolling rate is less than 90%, Goss grains having similar orientations other than the ideal Goss grains are also subjected to secondary recrystallization, thereby obtaining high magnetic flux density characteristics of 1.90 Tesla or more. Even if a cold rolling ratio of more than 90% is secured, when the product thickness is 0.30mm, the iron loss improvement effect due to the thickness reduction is insignificant, and thus low iron loss of less than 1.0 W / kg cannot be obtained.

한편, 냉간압연판을 질소이온을 함유하는 개스분위기에서 소둔하여 질소이온 첨가량이 0.0010~0.0300wt%인경우에는 1.90Tesla이상의 자속밀도가 확보되었지만, 질소이온이 0.0010wt%미만으로 첨가된 경우에는 자속밀도가 다소 열위됨을 알 수 있다. 이는 분위기개스중에 질소이온 강판에 도입되어 추가적인 AlN을 석출함으로서 기존이 열간압연과 열연판소둔으로 석출되었던 AlN석출물과 같이 결정립의 성장을 강력히 억제하였기 때문에 보다 이상적인 고스(Goss)결정립이 안정되게 2차재결정하여서 자속밀도가 우수하게 된 것이다.On the other hand, when the cold rolled sheet was annealed in a gas atmosphere containing nitrogen ions and the amount of nitrogen ion added was 0.0010 to 0.0300 wt%, the magnetic flux density of 1.90 Tesla or more was secured, but when the nitrogen ion was added to less than 0.0010 wt%, It can be seen that the density is somewhat inferior. This was introduced into the nitrogen-ion steel sheet in the atmosphere gas and precipitated additional AlN, which strongly inhibited the growth of grains like AlN precipitates that were previously precipitated by hot rolling and hot-rolled sheet annealing, thus making the ideal Goss grain more stable. By recrystallization, the magnetic flux density is excellent.

그러나, 질소이온 첨가량이 0.0300wt%이상으로 첨가되는 경우에는 추가로 석출된 AlN의 석출량이 매우 커서 고스결정립까지도 결정성장을 하지 못하도록 억제함에 따라 2차재결정이 완전히 일어나지 못하여서 자기특성이 급격히 떨어짐을 알 수 있다.However, when the amount of nitrogen ion added is more than 0.0300wt%, the precipitated amount of additional AlN is so large that it inhibits the growth of even goth grains, so that secondary recrystallization does not occur completely. Can be.

상술한 바와 같이, 본 발명은 제강단계에서 탄소의 함량을 크게 낮추어 냉간압연후의 탈탄공정을 생략하므로써, 생산성을 높일 수 있을 뿐만 아니라 냉간압연율이 90%이상이고 최종 두께를 0.27mm이하로 하여 1회 강냉간압연과 질화처리에 의한 결정립억제력을 보강하므로써 철손 및 자속밀도를 보다 향상시킬 수 있는 방향성선기강판의 제조방법을 제공할 수 있는 효과가 있는 것이다.As described above, the present invention not only improves productivity by significantly lowering the carbon content in the steelmaking step and thus eliminating the decarburization process after cold rolling, but also the cold rolling rate of 90% or more and the final thickness of 0.27mm or less. By reinforcing the grain restraint by cold rolling and nitriding, there is an effect that can provide a method for manufacturing a grain-oriented steel sheet which can further improve iron loss and magnetic flux density.

Claims (1)

중량%로 Si:2.0~4.0wt%, 산가용성Al:0.006~0.040wt%, N:0.006~0.012wt%, S: 0.007wt%이하, Cu: 0.5wt%이하, Mn : 0.08~1.0wt%, C: 0.015wt%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강 스라브를 1100~1250℃로 재가열한 후 열간압연을 행하고 이어서 900~1200℃의 온도에서 단시간 열연판 소둔을 실시한 다음, 냉간압연율 90%이상의 1회 강냉간압연법으로 최종제품의 두께를 0.27mm 이하로 냉간압연한 후, 탈탄공정은 생략하고 750~950℃의 온도에서 질소이온을 함유하는 개스분위기를 사용하여 0.0010~0.0300 wt%의 질소이온이 강판에 도입되는 질화처리소둔을 실시하고, MgO를 주성분으로 하는 융착방지제를 도포하여 권취한 다음, 5~90%질소를 함유하는 수소개스분위기에서 1150∼1250℃의 온도구간까지 승온하고 100%의 수소개스분위기에서 총 10시간 이상균열하고 냉각시키는 고온소둔을 행하는 것을 특징으로 하는 저철손 및 고자속밀도를 갖는 방향성 전기강판의 제조방법Si: 2.0 ~ 4.0wt%, Acid Soluble Al: 0.006 ~ 0.040wt%, N: 0.006 ~ 0.012wt%, S: 0.007wt% or less, Cu: 0.5wt% or less, Mn: 0.08 ~ 1.0wt% , C: 0.015wt% or less, steel slab composed of remainder Fe and other unavoidable impurities, reheated to 1100 ~ 1250 ℃ and hot rolled, followed by short time hot roll annealing at a temperature of 900 ~ 1200 ℃, followed by cold rolling After cold rolling of the final product to 0.27mm or less by one-time cold-rolling method of more than 90%, decarburization process is omitted and using a gas atmosphere containing nitrogen ions at a temperature of 750 ~ 950 ℃, 0.0010 ~ 0.0300 wt Nitride annealing in which% nitrogen ions are introduced into the steel sheet is applied, and it is wound up by applying a fusion inhibitor containing MgO as a main component, and then in a water introduction atmosphere containing 5 to 90% nitrogen to a temperature range of 1150 to 1250 ° C. A high temperature annealing is performed in which the temperature is elevated and cracked and cooled for at least 10 hours in a 100% water atmosphere. Method for producing a grain-oriented electrical steel sheet having a low iron loss and high magnetic flux density, characterized in that
KR1020010084569A 2001-12-24 2001-12-24 Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction KR100544723B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010084569A KR100544723B1 (en) 2001-12-24 2001-12-24 Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010084569A KR100544723B1 (en) 2001-12-24 2001-12-24 Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction

Publications (2)

Publication Number Publication Date
KR20030054427A true KR20030054427A (en) 2003-07-02
KR100544723B1 KR100544723B1 (en) 2006-01-24

Family

ID=32213059

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010084569A KR100544723B1 (en) 2001-12-24 2001-12-24 Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction

Country Status (1)

Country Link
KR (1) KR100544723B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921727A (en) * 2011-08-08 2013-02-13 东芝三菱电机产业系统株式会社 An orientation electromagnetic steel plate operating line and induction heating apparatus
EP2980241A4 (en) * 2013-03-29 2016-11-23 Kobe Steel Ltd Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
WO2021125861A3 (en) * 2019-12-20 2021-08-12 주식회사 포스코 Double-oriented electrical steel sheet and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346147A (en) * 1993-06-03 1994-12-20 Nippon Steel Corp Production of grain-oriented silicon steel sheet
KR100285344B1 (en) * 1996-12-09 2001-04-02 이구택 Process for preparing high magnetic flux density directional electric steel sheet by low temperature slab heating way
KR100431608B1 (en) * 1999-12-18 2004-05-17 주식회사 포스코 Manufacturing of high magnetic density grain oriented silicon steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921727A (en) * 2011-08-08 2013-02-13 东芝三菱电机产业系统株式会社 An orientation electromagnetic steel plate operating line and induction heating apparatus
CN102921727B (en) * 2011-08-08 2015-03-18 东芝三菱电机产业系统株式会社 An orientation electromagnetic steel plate operating line and induction heating apparatus
EP2980241A4 (en) * 2013-03-29 2016-11-23 Kobe Steel Ltd Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
US10593451B2 (en) 2013-03-29 2020-03-17 Kobe Steel, Ltd. Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
WO2021125861A3 (en) * 2019-12-20 2021-08-12 주식회사 포스코 Double-oriented electrical steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
KR100544723B1 (en) 2006-01-24

Similar Documents

Publication Publication Date Title
US20210130937A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR101353550B1 (en) Grain-oriented electrical steel sheet and manufacturing method for the same
KR100544723B1 (en) Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction
KR100817168B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR101263842B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR100544537B1 (en) Method for manufacturing low temperature slab heating grain-oriented electrical steel sheets having excellent magnetic properties by using Al,Si,MnN precipitate
KR101538777B1 (en) Oriented electrical steel sheets and method for manufacturing the same
KR100406420B1 (en) A method for manufacturing grain oriented electrical steel sheet with high permeability
KR101263843B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263848B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR102438480B1 (en) Manufacturing method of grain oriented electrical steel sheet
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR100345705B1 (en) A method of manufacturing grain oriented electrical steels having stable magnetic properties
KR100360096B1 (en) The method of manufacturing grain oriented silicon steel by low heating
KR101089301B1 (en) Method for manufacturing the grain-oriented electrical steel sheets having an excellent magnetic property
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR100276294B1 (en) The manufacturing method for oriented electric steel sheet by non decarburized
KR101263847B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101535933B1 (en) Oriented electrical steel sheet and method for manufacturing the same
KR101632870B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
KR100841771B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR101263796B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101459730B1 (en) Oriented electrical steel sheets and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180111

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 15