KR20030053799A - Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press - Google Patents

Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press Download PDF

Info

Publication number
KR20030053799A
KR20030053799A KR1020010083804A KR20010083804A KR20030053799A KR 20030053799 A KR20030053799 A KR 20030053799A KR 1020010083804 A KR1020010083804 A KR 1020010083804A KR 20010083804 A KR20010083804 A KR 20010083804A KR 20030053799 A KR20030053799 A KR 20030053799A
Authority
KR
South Korea
Prior art keywords
less
temperature
steel sheet
rolled steel
hot
Prior art date
Application number
KR1020010083804A
Other languages
Korean (ko)
Other versions
KR100584755B1 (en
Inventor
곽재현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010083804A priority Critical patent/KR100584755B1/en
Publication of KR20030053799A publication Critical patent/KR20030053799A/en
Application granted granted Critical
Publication of KR100584755B1 publication Critical patent/KR100584755B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A method for manufacturing high strength cold rolled steel sheet having bake hardenability of greater than 3 kgf/mm¬2, tensile strength of 30 to 40 kgf/mm¬2 and r value of greater than 2.0 is provided. CONSTITUTION: The method includes the steps of reheating a steel slab comprising 0.01 wt.% or less of C, 0.005 wt.% or less of N, 0.015 wt.% or less of S, Mn 0.3 to 0.8 wt.%, P 0.03 to 0.09 wt.%, sol.Al 0.1 to 0.7 wt.%, 0.15 wt.% or less of Ti, 0.015 wt.% of one or more than two elements selected from the group consisting of Nb, Mo and B, a balance of Fe and incidental impurities; hot rolling the steel slab, wherein finishing delivery temperature (FDT) satisfies below relation: A1*-55deg.C<=FDT<=A1*+35°C(A1* is 130xAl£%|+400xP+860°C); coiling the hot rolled steel sheet in the temperature range of 530 to 700°C, followed by pickling and cold rolling; and continuous annealing the cold rolled steel sheet in the range from recrystallization temperature to Ac3 point.

Description

소부경화성을 갖는 프레스성형성이 우수한 고강도냉연강판의 제조방법{Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press}Method for manufacturing high strength cold rolled steel sheet having excellent press formability with hardening hardenability {Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press}

본 발명은 자동차 차체의 내판, 외판 등의 부품으로 프레스성형하고 도장열처되는 고강도 냉연강판의 제조방법에 관한 것으로, 보다 상세하게는 소부경화능 3kgf/mm2이상, r값이 2.0이상의 프레스 가공성이 우수한 인장강도 30~40kgf/㎟급의 고강도 냉연강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a high strength cold rolled steel sheet which is press-molded and coated with parts such as an inner plate and an outer plate of an automobile body, and more specifically, a press hardenability of 3 kgf / mm 2 or more and an r value of 2.0 or more. It relates to a method for producing a high strength cold rolled steel sheet of excellent tensile strength 30 ~ 40kgf / mm2 class.

인장강도 30~40kgf/mm2수준의 심가공용 고강도강판은 대부분 P또는 Mn을 첨가하고 탄질화물 형성원소로서 티타늄(Ti) 또는 니오비움(Nb)를 첨가하여 왔다[일본 특허공개공보 소57-35662, 평5- 339641~3, 대한민국 특허 1998-53898, 1999-35104]. 그러나, 이들 강은 다량의 Ti를 첨가하므로 FeTiP와 같은 석출물이 형성되어 가공성이 저하하는 문제가 있다.Most of the high strength steel sheets for deep processing with a tensile strength of 30 to 40 kgf / mm 2 have been added with P or Mn and titanium (Ti) or niobium (Nb) as carbonitride forming elements [Japanese Patent Laid-Open No. 57-35662 , Pyung 5- 339641 ~ 3, Korean Patent 1998-53898, 1999-35104. However, since these steels add a large amount of Ti, precipitates such as FeTiP are formed, which causes a problem of deterioration in workability.

이를 해결하기 위해 Nb를 단독으로 첨가하지만, 소량의 Nb첨가로는 NbC의 석출이 원활하지 않으며, 다량 첨가하는 경우 고용 Nb가 가공성을 저하시키는 문제를 안고 있다. 결국 초심가공용 고강도 냉연강판을 제조하기 위해서는 고용P의 함량을 높이는 한편, 고용 질소와 황 및 탄소를 석출물로써 저감시키는 기술이 필요하다. 고용 황은 강도를 향상시키기 위해 첨가하는 Mn이 MnS를 형성하므로 문제가 없다는 것은 알려져 있는 사실이다. 그러나 고용 질소와 탄소를 저감시키기 위해 첨가하는 Ti는 TiN, TiC이외에 FeTiP라는 석출물을 형성하므로 오히려 가공성을 저하시킨다. 만약 질소를 Ti와 함께 다른 원소로 석출시키고, 미량의 Ti에 의해 고용탄소가 TiC로 석출된다면, 고용질소 및 탄소의 저감과 함께 FeTiP의 형성을 억제할수 있을 것이므로 고강도강의 가공성 향상에 효과적임은 물론, Ti첨가량을 줄일수 있으므로 슬라브제조시 Ti산화물의 정출에 의해 야기되는 연주노즐막힘을 억제하는 장점이 있을 것이다.In order to solve this problem, Nb is added alone, but the addition of a small amount of Nb does not facilitate NbC precipitation, and when a large amount is added, solid solution Nb has a problem of degrading workability. As a result, in order to manufacture high-strength cold rolled steel sheet for super-core processing, a technique for increasing the content of solid solution P and reducing solid solution nitrogen, sulfur, and carbon as a precipitate is required. It is known that solid solution sulfur is not a problem because Mn added to improve strength forms MnS. However, Ti added to reduce solid solution nitrogen and carbon forms a precipitate called FeTiP in addition to TiN and TiC, but rather reduces workability. If nitrogen is precipitated with other elements together with Ti and the solid solution carbon is precipitated as TiC by a small amount of Ti, it will be effective in improving the workability of high strength steel because it will be able to suppress the formation of FeTiP with the reduction of solid solution nitrogen and carbon. In addition, since the amount of Ti can be reduced, it will be advantageous to suppress the clogging of the playing nozzle caused by the crystallization of Ti oxide during the manufacture of slabs.

본 발명은 알미늄을 적절히 첨가하면, AlN석출에 의한 고용질소 저감 및 FeTiP의 형성이 억제됨을 발견하고, 이를 응용하여 프레스성형성이 극히 우수하면서 도장열처리후 소부경화성을 갖는 고강도 냉연강판의 제조방법을 제공하는데, 그 목적이 있다.The present invention finds that when aluminum is appropriately added, the reduction of solid solution nitrogen by AlN precipitation and the formation of FeTiP are suppressed. To provide, the purpose is.

상기 목적을 달성하기 위한 본 발명의 고강도 냉연강판의 제조방법은,Method for producing a high strength cold rolled steel sheet of the present invention for achieving the above object,

중량 %로, C:0.01% 이하 N:0.005%이하, S:0.015%이하, Mn:0.3∼0.8%, P:0.03∼0.09%, 산가용Al: 0.1~0.7%, Ti: 0.15%미만, Nb, Mo, B의 그룹에서 선택된 1종 또는 2종이상: 0.015%이하, Ti와 Nb함량의 합:0.005%이상을 만족하고 나머지 Fe와 기타 불가피하게 함유되는 불순물로 조성되는 슬래브를 재가열하여 마무리압연온도(FDT)를 다음의 관계 A1*-55℃≤FDT≤ A1*+35℃(단, A1*은 130xAl[%]+400xP+860℃임)를 만족하는 조건으로 열간압연하고, 530∼700℃의 범위에서 권취한 다음, 산세, 냉간압연하고, 재결정온도~Ac3의 온도범위에서 연속소둔하는 것을 포함하여 구성된다.By weight%, C: 0.01% or less N: 0.005% or less, S: 0.015% or less, Mn: 0.3-0.8%, P: 0.03-0.09%, acid value Al: 0.1-0.7%, Ti: less than 0.15%, One or two or more selected from the group of Nb, Mo, and B: 0.015% or less, the sum of Ti and Nb content: 0.005% or more, and finishing by reheating the slab composed of the remaining Fe and other inevitable impurities The rolling temperature (FDT) is hot rolled under the conditions satisfying the following relationship A1 * -55 ° C≤FDT≤A1 * + 35 ° C (where A1 * is 130xAl [%] + 400xP + 860 ° C), After winding up in the range of 700 degreeC, it washes, cold-rolls, and continuously anneals in the temperature range of recrystallization temperature-Ac3.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발멸은 Al이 P, Mn과 함께 고용강화작용을 하면서 페라이트 확장원소로서 Ar1온도를 높이는 역할을 하고 철원자간의 간격을 넓혀 주어 P를 보다 많이 고용시켜 준다는 새로운 사실을 밝혀내고, 이에 근거하여 강합금설계를 하는 것과 함께 제조조건을 설정하여 본 발명이 완성된 것이다. 이러한 본 발명의 강성분계를 조성범위 한정이유를 먼저 설명한다.This decay reveals a new fact that Al acts to increase the Ar1 temperature as a ferrite expansion element by increasing the solid solution together with P and Mn, and increases the spacing between iron atoms, thereby employing P more. The present invention is completed by setting the manufacturing conditions together with the alloy design. The reason for limiting the composition range of the steel component system of the present invention will be described first.

·탄소(C): 0.01%이하 , Carbon (C): 0.01% or less

탄소는 고용량이 증가하면 (110) 및 (100)집합조직을 강화시키고, 가공성에 유리한 (111)집합조직을 약화시켜 프레스성형성을 저하시킬 뿐만 아니라, TiC석출물의 밀도가 증가하여 가공성이 저하하기 때문에 0.01% 이하로 제한하는 것이 바람직하다.As the carbon content increases, the strength of the (110) and (100) aggregates is strengthened, and the (111) aggregates, which are advantageous for workability, are weakened, thereby reducing the press formability and increasing the density of the TiC precipitates. Therefore, it is desirable to limit it to 0.01% or less.

·질소(N): 0.005%이하 And nitrogen (N): 0.005% or less

질소는 TiN또는 AlN으로 석출하게 된다. 그러나, AlN은 매우 미세하여 가공성의 저하를 초래하므로 가급적 질소의 함량을 낮추는 것이 바람직하므로, 본 발명에서는 질소을 0.005%이하로 한다. 전로-진공 탈가스공정을 거치면서 줄일수 있는 통상의 질소성분 범위가 0.005%이며, Al 첨가효과에 따라 일부 공지기술의 0.003%보다 본 발명의 질소함량의 상한이 높아 강을 쉽게 제조할수 있는 장점이 있다.Nitrogen will precipitate as TiN or AlN. However, since AlN is very fine and causes workability deterioration, it is preferable to lower the content of nitrogen as much as possible, so that the nitrogen is 0.005% or less in the present invention. The conventional nitrogen content range that can be reduced through the converter-vacuum degassing process is 0.005%, and the upper limit of the nitrogen content of the present invention is higher than 0.003% of some known technologies according to the Al addition effect, so that steel can be easily manufactured. There is this.

·황(S): 0.015%이하 , Sulfur (S): 0.015% or less

황은 강의 고온취성을 일으켜 Mn함량이 충분하지 않으면 에지크랙 등 강판의 표면품질을 열화시키는 원소로 알려져 있다. 본 발명에서는 Mn을 충분히 첨가하므로 MnS석출로 말미암아 이를 방지할수 있으나, 고용Mn의 강화작용이 감소되므로 바람직하지 않고, 조대한 MnS석출물이 연신율을 저하시키므로 상한을 0.015%로 하는 것이 바람직하다.Sulfur is known as an element that causes high temperature brittleness of steel and deteriorates the surface quality of steel sheets such as edge cracks when the Mn content is not sufficient. In the present invention, Mn is sufficiently added to prevent this by MnS precipitation, but it is not preferable because the strengthening action of the solid solution Mn is reduced, and the coarse MnS precipitate lowers the elongation, so the upper limit is preferably 0.015%.

·망간(Mn): 0.3~0.8% , Manganese (Mn): 0.3 ~ 0.8%

망간은 앞서 기술한 바와 같이 고용강화 원소이다. 고용Mn의 강화작용을 위해서는 소정 이상의 함량이 요구되며, S의 함량이 0.015%라 할 때 Mn/S비가 20이상이 되어야 S에 의한 강의 고온취성이 억제되므로 하한을 0.3%로 하여야 한다. 종래의 기술에서는 강의 강도확보를 위해 Mn를 다량 첨가하고 있지만, Mn은 오스테나이트-페라이트 변태온도를 상승시키는 작용을 하는 원소이므로 본 발명에서는 상한을 0.8%이하로 하는 것이 바람직하다. 뒤에서 상세히 설명하겠지만, 본 발명에서 가공성을 확보하는 중요한 수단이 Ar1온도 부근에서 열간압연하여 열연결정립을 미세화 하고, 이에 따라 냉연강판의 강도와 가공성을 확보하는 기술을 사용하고 있다. Ar1 온도란 냉각하는 과정에서 강이 오스테나이트에서 완전히 페라이트로 변태되는 온도로서 Mn함량이 증가하면 낮아지고, P나 Al함량이 증가하면 높아진다. 따라서Mn함량이 증가하여 Ar1온도가 낮아지면, 통상의 열간 마무리압연 온도에서 상기의 열연결정립 미세화 효과를 얻을수 없기 때문에 Mn이 강도확보에 효과적인 원소임에도 불구하고 그 상한을 0.8%로 하는 것이 좋다.Manganese is a solid solution element as described above. In order to strengthen the solid solution Mn, a predetermined amount or more is required. When the S content is 0.015%, the Mn / S ratio must be 20 or more, so that the high temperature brittleness of the steel is suppressed, so the lower limit should be 0.3%. In the prior art, a large amount of Mn is added to secure the strength of the steel. However, since Mn is an element that increases the austenite-ferrite transformation temperature, the upper limit is preferably 0.8% or less in the present invention. As will be described in detail later, in the present invention, an important means for securing the workability is hot rolling near the Ar1 temperature to refine the hot rolled grains, thereby using a technique for securing the strength and workability of the cold rolled steel sheet. The Ar1 temperature is a temperature at which steel is completely transformed from austenite to ferrite during cooling, and decreases when the Mn content increases, and increases when the P or Al content increases. Therefore, when the Mn content increases and the Ar1 temperature decreases, the above-mentioned hot-rolled grain refining effect cannot be obtained at a normal hot finish rolling temperature. However, the upper limit should be 0.8% even though Mn is an effective element for securing strength.

·인(P): 0.03~0.09% , The (P): 0.03 ~ 0.09%

인은 고용강화 효과가 가장 큰 원소로서 강화효과가 일어나는 0.03를 하한으로 한다. 그러나 너무 많은 P가 첨가되면, FeTiP의 형성이 용이해지고, 입계편석 P에 의한 취성파괴가 발생하는 한편, Ar1온도를 극단적으로 높여 열연판에 변형조직을 남게하여 가공성이 저하되기 때문에 상한을 0.09%로 하는 것이 바람직하다.Phosphorus is the element with the largest solid solution strengthening effect, and the lower limit is 0.03 where the strengthening effect occurs. However, when too much P is added, the formation of FeTiP is easy, brittle fracture by grain boundary segregation P occurs, while the Ar1 temperature is extremely raised, leaving the strain structure on the hot-rolled sheet, resulting in poor workability. The upper limit is 0.09%. It is preferable to set it as.

·산가용 알루미늄(Al): 0.1~0.7% , Acid soluble aluminum (Al): 0.1 ~ 0.7%

산가용Al은 Al2O3와 같은 산불용 Al화합물을 제한 강중 Al함량을 의미하는데, 이는 AlN과 고용상태의 알미늄 2가지를 포함한다. 알미늄은 종래의 기술과 달리 본 발명에서는 핵심적인 원소로서 본 발명의 연구에서 새로이 밝혀진 사실은 다음의 세가지이다. P및 Mn과 함께 고용강화를 일으키는 작용을 하며, 페라이트역 확장원소 즉 Ar1온도를 높이는 역할을 함과 동시에 철 원자간의 간격을 넓혀주어 그 사이에 P를 보다 많이 고용시키므로 FeTiP의 형성을 억제한다. 종래의 공지기술에서 Al은 단지 탈산제로서 그 상한을 0.1%이내로 하고 있으나, 본 발명에서는 상기의 3가지 효과를 모두 얻기 위하여 Al함량이 0.1%를 초과하여 첨가한다. 그러나 Al함량이 너무 많게 되면, Ar1온도가 극단적으로 높아지므로 통상의 열간마무리압연 온도로 미세한 결정립을 얻을수 없고, 오히려 변형조직이 형성되어 강의 가공성을 저해하므로 상한을 0.7%로 한다.Acid-soluble Al refers to the Al content in the steel that limits acid-insoluble Al compounds such as Al2O3, including AlN and two types of solid aluminum. Aluminum is a key element in the present invention, unlike the prior art, and newly discovered in the study of the present invention are three following. Together with P and Mn, it causes a solid-solution strengthening, and increases the ferrite station expansion element, that is, the temperature of Ar1, and increases the spacing between the iron atoms, thereby suppressing the formation of FeTiP because it increases the amount of P in between. In the prior art, Al is merely a deoxidizer and has an upper limit of 0.1% or less. However, in the present invention, Al is added in excess of 0.1% to obtain all three effects described above. However, when the Al content is too high, the Ar1 temperature becomes extremely high, and thus, fine grains cannot be obtained at a normal hot finishing rolling temperature. Rather, the upper limit is 0.7% because a strained structure is formed and the workability of steel is impaired.

·티타늄(Ti): 0.15%미만 , Titanium (Ti): less than 0.15%

본 발명에서 고용질소를 석출시킬 원소로써 Ti외에 Al이 있으므로 Ti함량의 하한은 정하지 않는데, 단지 FeTiP형성에 따라 가공성이 열화되는 문제가 있으므로 상한을 0.015% 미만으로 하는 것이 바람직하다.In the present invention, the lower limit of the Ti content is not determined because there is Al other than Ti as the element to precipitate solid solution nitrogen. However, the upper limit is preferably less than 0.015% because there is a problem that workability deteriorates due to FeTiP formation.

·Mo, B, Nb에서 선택된 1종 또는 2종이상: 0.015%이하 · Mo, B, 1, or two or more selected from Nb: 0.015% or less

Mo, B, Nb은 각각 탄화물, 질화물 형성하여 가공성을 향상하는데, 이들의 첨가량이 0.015%초과의 경우에는 열연변형조직을 잔류시키크로 0.015%이내로 제한하는 것이 바람직하다. Nb의 경우는 NbC로 석출하여 고용탄소를 줄여 가공성을 향상시키지만, 0.015%이상이 되면 고용 Nb가 증가하여 연신율이 감소 등 가공성을 저하시킨다. 또한, B, Mo은 P에의한 입계취성을 억제하기 위해 첨가하지만, Nb과 마찬가지로 열연변형조직을 잔류시키는 역할을 하므로 0.015%이하로 한다. 본 발명에서는 페라이트 변태가 완료되는 Ar1이하의 온도에서 열간압연하여 재결정시킴으로써 미세한 열연조직을 얻고 이에 따라 냉연강판의 강도와 가공성을 확보하므로 만약 페라이트역의 온도에서 재결정이 용이하지 않거나, 변형조직이 충분히 제거되지 않게 되면 가공성이 매우 열화되는 현상이 있으므로 Nb, Mo, B의 그룹에서 선택된 1종 또는 2종이상을 0.015%이내로 첨가한다.Mo, B, and Nb form carbides and nitrides, respectively, to improve workability. When the added amount is more than 0.015%, it is preferable to limit the heat distortion deformation structure to within 0.015%. In the case of Nb, it is precipitated with NbC to reduce solid solution carbon to improve workability. However, when Nb is more than 0.015%, solid solution Nb is increased to reduce workability by decreasing elongation. In addition, B and Mo are added to suppress grain boundary brittleness due to P, but, like Nb, B and Mo are used to retain the hot-rolled deformed structure, so that the content is 0.015% or less. In the present invention, by hot rolling at a temperature of Ar1 or less at which ferrite transformation is completed, recrystallization is performed to obtain a fine hot-rolled structure, thereby securing the strength and workability of the cold-rolled steel sheet. If not removed, there is a phenomenon that workability is very deteriorated, so one or two or more selected from the group of Nb, Mo, and B are added within 0.015%.

·Ti+ Nb: 0.005%이상 · Ti + Nb: 0.005% or more

Ti나 Nb은 탄화물 형성원소로 이들이 전혀 없으면, 고용 탄소에 의해 가공성이 저하함으로 Ti와 Nb함량의 합이 최소 0.005%이상을 만족하는 것이 바람직하다.If Ti or Nb is a carbide-forming element and none of them is formed, it is preferable that the total content of Ti and Nb is at least 0.005% because the workability is degraded by solid solution carbon.

이상의 성분 범위를 만족하고 잔부 Fe및 기타 불가피하게 함유되는 원소를 포함한 강을 전로 및 연속주조에 의해서 슬라브를 제조한 다음, 열간압연, 권취, 냉간압연, 산세, 연속소둔의 공정을 통해 냉간압연판을 제조하는데, 이때의 제조조건에 대해 설명한다.The slab is produced by converter and continuous casting of steel containing the remainder Fe and other unavoidable elements that satisfy the above component range, and then cold rolled sheet through hot rolling, winding, cold rolling, pickling, and continuous annealing. To prepare, the manufacturing conditions at this time will be described.

·열간압연공정 · Hot rolling

열간마무리압연온도는 종래의 기술이 Ar3이상의 온도에서 실시하는데 반해, 본 발명에서는 열연결정립의 미세화를 위해 페라이트 변태 직상~직하의 온도범위에서 실시하는데, 특징이 있다.The hot finish rolling temperature is characterized in that the conventional technique is carried out at a temperature of Ar3 or more, whereas in the present invention, it is carried out in the temperature range directly above or directly below the ferrite transformation for miniaturization of the hot rolled crystal grains.

본 발명에서 Al은 Ar1온도를 높이는 역할을 하므로, Al의 첨가량에 따른 Ar1온도를 정하여야 한다. 지금까지 Al이 Ar1온도에 영향을 준다는 사실이 보고된 바 없고 또한, Al의 첨가량에 따라 Ar1을 구한 식이 알려져 있지 않기 때문에 연구가 필요하다.In the present invention, Al plays a role of raising the temperature of Ar1, so the Ar1 temperature should be determined according to the amount of Al added. Until now, the fact that Al does not affect the Ar1 temperature has not been reported, and further studies are needed because the equation for obtaining Ar1 according to the amount of Al added is unknown.

이를 위하여 Al 및 P함량에 따른 Ar1변태온도를 조사하고, 0.3~0.8% Mn을 함유한 0.01%이하의 탄소강에서 Al과 P함량에 따라 Ar1변태온도를 조사한 결과, 130xAl[%]+400xP+860℃의 관계가 있음을 밝혀 내었는데, 이를 A1*라 정의한다.To this end, the Ar1 transformation temperature was investigated according to Al and P contents, and the Ar1 transformation temperature was investigated according to Al and P contents in less than 0.01% of carbon steel containing 0.3 ~ 0.8% Mn. As a result, 130xAl [%] + 400xP + 860 It was found that there is a relationship of ℃, which is defined as A1 *.

본 발명의 연구결과에 따르면, 열간마무리압연 온도가 A1*로부터 -55℃미만이 되면 온도가 낮아 열연판에 변형조직이 잔류하여 가공성이 저하되며, 35℃를 초과하면 오스테나이트 역에서 열연이 이루어져 충분이 결정이 성장한 다음 페라이트로 변태하므로 열연결정립이 조대하여져 냉연강판의 가공성 및 강도확보가 곤란하므로 130xAl[%]+400xP +860℃로 정의되는 강의 A1*온도에서 -55~35℃의 범위로 열간 마무리 압연하는 것으로 바람직하다.According to the results of the present invention, when the hot finish rolling temperature is less than -55 ℃ from A1 *, the temperature is low, so that the deformed structure remains on the hot-rolled sheet and the workability is lowered. When the hot finish rolling temperature exceeds 35 ℃, hot rolling is made in the austenite region. Since enough crystals grow and then transform into ferrite, the hot rolled grain becomes coarse, making it difficult to secure the workability and strength of the cold rolled steel sheet. Therefore, the range of -55 ~ 35 ℃ at A1 * temperature of steel defined as 130xAl [%] + 400xP + 860 ℃ It is preferable to carry out hot finishing rolling by the furnace.

·권취공정 · Winding process

상기와 같이 열간압연하여 열연권취하는데, 이때의 권취온도는 530~700℃로 하는 것이 바람직하다. 권취온도가 너무 낮으면 TiC 및 NbC와 같은 탄화물의 형성이 충분치 않아 하한을 530℃로 하며, 너무 높으면 P의 입계편석 및 FeTiP의 형성량이증가하므로 열연권취온도의 상한을 700℃로 하는 것이 바람직하다.Hot rolling as described above, hot-rolled, the winding temperature at this time is preferably set to 530 ~ 700 ℃. If the coiling temperature is too low, it is not sufficient to form carbides such as TiC and NbC, so the lower limit is set to 530 ° C. If the coiling temperature is too high, the amount of grain boundary segregation and FeTiP formation increases, so the upper limit of the hot rolled coiling temperature is preferably 700 ° C. .

·산세, 냉간압연공정 , Pickling, cold rolling

상기 열연코일에 형성된 고온산화 피막을 통상의 산세조건에 의해 완전히 제거하고, 이를 통상의 압연조건에서 냉간압연하며, 냉간압연이 완료되면 압연유를 탈지를 통해 제거한 다음, 연속소둔한다.The hot oxide film formed on the hot rolled coil is completely removed by normal pickling conditions, cold rolled under normal rolling conditions, and when the cold rolling is completed, the rolled oil is removed through degreasing, followed by continuous annealing.

·연속소둔공정 · Continuous Annealing Process

냉간압연판의 연속소둔은 냉간압연에 의해 형성된 변형조직이 완전히 제거되는 재결정온도 이상, 목표하는 강도수준에 따라 Ac3이하의 온도에서 소둔한다.The continuous annealing of the cold rolled sheet is annealed at a temperature above Ac3 depending on the target strength level above the recrystallization temperature at which the deformed tissue formed by cold rolling is completely removed.

연속소둔한 다음에는, 통상의 방법으로 조질압연하여 조도와 평활도를 부여함으로써 프레스성형성이 극히 우수하면서 도장열처리후 소부경화성을 갖는 고강도 냉연강판의 냉연강판을 제조할수 있다. 본 발명에 의해 제조된 냉연강판은 적은량의 합금첨가에 의해 소부경화능 3kgf/mm2이상, r값이 2.0이상의 프레스 가공성이 극히 우수한 인장강도 30~40kgf/㎟수준으로서 강도 및 가공성이 우수하고 소부경화능을 지니므로 자동차 차체의 내판, 외판 등의 심가공 부품에 적용할수 있는 장점이 있다.After continuous annealing, by temper rolling in a conventional manner to impart roughness and smoothness, it is possible to produce a cold rolled steel sheet of a high strength cold rolled steel sheet having extremely excellent press formability and hardening after coating heat treatment. The cold rolled steel sheet produced by the present invention has an excellent tensile strength of 30 to 40 kgf / mm2, which is excellent in strength and formability, and has a small part hardening ability of 3 kgf / mm 2 or more and a r value of 2.0 or more. Since it has a hardenability, there is an advantage that it can be applied to deep processing parts such as inner and outer shells of automobile bodies.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표1의 화학성분을 가지는 발명강 (가~라)과 비교강(마~타)을 진공유도 용해한 다음 잉고트(ingot)로 주조하거나, 전로에 용해하고 연속주조한 다음 1200~1230℃의 온도에서 재가열하고 압연은 1050℃에서 시작하여 압연온도를 870~930, 열연권취온도는 520~720℃로 하였다. 열연판 또는 코일의 두께는 2.8mm에서 3.0mm까지 하였고 산세를 통하여 고온산화막을 제거한 다음 75~80%의 냉간압하율로 압연하여 두께를 0.7~0.8mm가 되도록 하였다. 이를 탈지후 830℃에서 30초간 연속소둔하고 0.8%내외의 조질압연을 하여 냉연강판을 제조하였다.Inventive steels (a ~ d) and comparative steels (ma ~ ta) having the chemical components shown in Table 1 are melted in vacuum and then cast into ingots, or melted in converters and continuously cast, followed by temperatures of 1200 to 1230 ° C. After reheating and rolling at 1050 ℃, the rolling temperature was 870 ~ 930, the hot rolling temperature was 520 ~ 720 ℃. The thickness of the hot rolled sheet or coil was 2.8mm to 3.0mm, and the high temperature oxide film was removed by pickling and then rolled at a cold reduction rate of 75-80% so as to have a thickness of 0.7-0.8mm. After degreasing, continuous annealing was performed at 830 ° C. for 30 seconds, and rough rolling was performed at about 0.8% to prepare a cold rolled steel sheet.

상기 표 1에서 발명강은 본 발명의 조성을 만족하며, 비교강 '마'는 C와 N이 본 발명의 범위를 벗어난 강이고, 비교강 '바'는 Mn, '사'는 Ti와 P, '아'는 S, '차'는 Al, '타'는 Nb+Mo+B함량이 본 발명의 범위를 초과 한 강들이다. 한편 '자'는 Al함량이 미달된 것이며, '카'는 Ti함량이 본 발명의 범위를 초과한 반면 Al은 미달된 것이다.In Table 1, the inventive steel satisfies the composition of the present invention, the comparative steel 'ma' is a steel C and N is outside the scope of the present invention, the comparative steel 'bar' is Mn, 'sa' is Ti and P, ' Ah 'is S,' car 'is Al,' ta 'is Nb + Mo + B contents of steels beyond the scope of the present invention. Meanwhile, 'za' is less than Al, and 'car' is less than Ti while Al is less than the present invention.

상기 표 1의 강들에 대하여 하기 표2와 같은 제조조건을 적용하고 인장강도 및 소성이방성을 평가하였다. 여기에서 소성이방성은 압연방향(r0), 압연방향에 대해 45도방향(r45), 폭방향(r90)에 대해 15%의 인장전후 폭변화를 측정하여 r값을 구한다음 (r0+2r45+r90)/4의 식을 적용하였다.The steels of Table 1 were subjected to the same manufacturing conditions as in Table 2, and evaluated for tensile strength and plastic anisotropy. Here plastic anisotropy in the rolling direction (r 0), 45 degree direction relative to the rolling direction (r 45), obtained the r value by measuring the tension before and after the width variation of 15% with respect to the width direction (r 90) and then (r 0 The formula of + 2r 45 + r 90 ) / 4 was applied.

표 2에 나타난 바와 같이, 본 발명에 따른 제조법 1~5는 r값이 2.0이상이며, 인장강도도 32~38kgf/mm2의 수준으로 가공성도 우수하고, 충분한 강도도 얻을수 있음을 알수 있다. 이들 강은 모두 소부경화능 332~38kgf/mm2이상이 얻어졌다.As shown in Table 2, the production method 1 to 5 according to the present invention has a r value of 2.0 or more, and the tensile strength is 32 to 38kgf / mm 2 It can be seen that excellent workability and sufficient strength can also be obtained. All of these steels had a quench hardening capacity of 332 to 38 kgf / mm 2 or more.

반면 발명강이라 할지라도 제조방법이 충족되지 않으면, 인장강도 및 r값확보가 곤란함을 보이는데, 제조법 6은 열간압연온도가 너무 낮아 r값이 현저히 저하하였다. 또한 열연권취온도를 높게한 제조법 7은 열연결정립 조대화로 강도도 낮고, FeTiP형성에 의해 r감이 감소하여 기준치인 2.0을 만족시키지 못하고 있다.On the other hand, even the invention steel, if the production method is not satisfied, it is difficult to secure the tensile strength and r value, the manufacturing method 6 is a hot rolling temperature is too low, r value is significantly reduced. In addition, manufacturing method 7 having a high hot rolling temperature has low strength due to coarsening of hot rolled grains and decreases r feeling due to FeTiP formation, thereby failing to satisfy the reference value of 2.0.

Mn 및 P함량이 낮은 강종 나를 제조법 8과 같이 높은 온도에서 열간마무리압연 하면, 결정립의 조대화와 저함량의 고용원소로 인하여 r값도 낮고 강도도 낮아 진다. P 및 Al함량이 충분한 강종 다를 제조법 10과 같이 비교적 낮은 온도에서 열간마무리압연하고 이를 본 발명의 범위보다 낮은 온도에서 열연권취하면, 강도는 충분히 확보되나, 탄화물의 충분한 석출이 일어나지 않아 r값이 목표하는 범위를 만족시키지 못하게 된다.When the steel sheet with low Mn and P content is hot-rolled at a high temperature as in Preparation Method 8, the r value is low and the strength is low due to the coarsening of crystal grains and the low content of solid solution. When steel and steel with sufficient P and Al contents are hot-rolled at a relatively low temperature as in Preparation Method 10 and hot-rolled at a temperature lower than the range of the present invention, the strength is sufficiently secured, but sufficient precipitation of carbide does not occur, so the r value is the target. It does not satisfy the range.

제조법 11은 제조법 6과 마찬가지로 매우 낮은 온도에서 열간압연함에 따라 열연판에 변형조직이 심하게 잔류하여 강도는 상당히 높다할 지라도 r값이 극히 낮아져 원하는 프레스가공성을 얻을수 없다.In the manufacturing method 11, like the manufacturing method 6, hot rolling is performed at a very low temperature, so that the deformed structure remains severely on the hot-rolled sheet, and even though the strength is quite high, the r value is extremely low, so that desired press workability cannot be obtained.

제조법 12~19는 비교강에 본 발명의 제조법을 적용해 본 것이다. 본 발명에서 제시한 제조법을 적용하더라도 원하는 r값을 얻기 힘듬을 알수있다.Manufacturing methods 12-19 apply the manufacturing method of this invention to a comparative steel. Even if the production method proposed in the present invention is applied, it is difficult to obtain a desired r value.

한편 강종 '차'는 P함량이 비교적 높고 Al함량이 0.9%로 매우 높다. 이 경우 Ar1온도가 매우 상승하므로 열간압연온도가 매우낮아 r값이 매우 낮게 나타났다. 강종차r값확보를 위해서는 열간압연을 955℃이상으로 하지 않으면 않되며, 이는 통상의 열간압연기에서 확보하기 힘든 온도이다.On the other hand, the steel grade 'car' has a relatively high P content and a very high Al content of 0.9%. In this case, since the temperature of Ar1 is very high, the hot rolling temperature is very low and the value of r is very low. In order to secure the steel grade r value, hot rolling must be made higher than 955 ° C, which is a temperature difficult to be secured in a normal hot rolling mill.

상술한 바와 같이, 본 발명에서는 소부경화능 3kgf/mm2이상, r값이 2.0이상의 프레스 가공성이 우수한 인장강도 30~40kgf/㎟급의 고강도 냉연강판을 제조할 수 있어 프레스 성형되고 도장열처리되는 자동차 차체의 내판, 외판 등의 부품에 유용하게 적용할 수 있다.As described above, the present invention can produce a high strength cold rolled steel sheet having a tensile strength of 30 ~ 40kgf / mm2 excellent in press workability of 3kgf / mm 2 or more, hardening hardening ability of 3kgf / mm 2 or more, press-formed and painted heat treatment The present invention can be usefully applied to parts such as inner and outer panels of a vehicle body.

Claims (1)

중량%로, C:0.01%이하 N:0.005%이하, S:0.015%이하, Mn:0.3∼0.8%, P:0.03∼0.09%, 산가용Al: 0.1~0.7%, Ti: 0.15%미만, Nb, Mo, B의 그룹에서 선택된 1종 또는 2종이상: 0.015%이하, Ti와 Nb함량의 합:0.005%이상을 만족하고 나머지 Fe와 기타 불가피하게 함유되는 불순물로 조성되는 슬래브를 재가열하여 마무리압연온도(FDT)를 다음의 관계 A1*-55℃≤FDT≤ A1*+35℃(단, A1*은 130xAl[%]+400xP+860℃임)를 만족하는 조건으로 열간압연하고, 530∼700℃의 범위에서 권취한 다음, 산세, 냉간압연하고, 재결정온도~Ac3의 온도범위에서 연속소둔하는 것을 포함하여 이루어지는 소부경화성을 갖는 프레스성형성이 우수한 고강도냉연강판의 제조방법.By weight%, C: 0.01% or less, N: 0.005% or less, S: 0.015% or less, Mn: 0.3-0.8%, P: 0.03-0.09%, acid value Al: 0.1-0.7%, Ti: less than 0.15%, One or two or more selected from the group of Nb, Mo, and B: 0.015% or less, the sum of Ti and Nb content: 0.005% or more, and finishing by reheating the slab composed of the remaining Fe and other inevitable impurities The rolling temperature (FDT) is hot rolled under the conditions satisfying the following relationship A1 * -55 ° C≤FDT≤A1 * + 35 ° C (where A1 * is 130xAl [%] + 400xP + 860 ° C), A method for producing a high strength cold rolled steel sheet having excellent press formability, comprising winding in the range of 700 ° C., followed by pickling, cold rolling, and continuous annealing at a temperature range of recrystallization temperature to Ac 3.
KR1020010083804A 2001-12-24 2001-12-24 Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press KR100584755B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010083804A KR100584755B1 (en) 2001-12-24 2001-12-24 Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010083804A KR100584755B1 (en) 2001-12-24 2001-12-24 Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press

Publications (2)

Publication Number Publication Date
KR20030053799A true KR20030053799A (en) 2003-07-02
KR100584755B1 KR100584755B1 (en) 2006-05-30

Family

ID=32212462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010083804A KR100584755B1 (en) 2001-12-24 2001-12-24 Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press

Country Status (1)

Country Link
KR (1) KR100584755B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69014532T2 (en) * 1989-08-09 1995-05-04 Kobe Steel Ltd Process for the production of a steel sheet.
JPH03226544A (en) * 1990-01-31 1991-10-07 Kawasaki Steel Corp Manufacture of baking hardening type steel sheet for working excellent in aging resistance
JPH0681045A (en) * 1992-01-23 1994-03-22 Nippon Steel Corp Production of cold rolled steel sheet excellent in workability and baking hardenability
CZ283315B6 (en) * 1992-12-17 1998-02-18 Sankyo Company Limited Biphenyl derivatives, process of their preparation and pharmaceutical preparation containing thereof
JP3390084B2 (en) * 1994-03-29 2003-03-24 川崎製鉄株式会社 Bake hardenable thin steel sheet excellent in formability and method for producing the same
KR0135001B1 (en) * 1994-12-30 1998-06-15 김종진 Method of manufacturing hot rolled coil
JPH1161332A (en) * 1997-08-22 1999-03-05 Kawasaki Steel Corp Coating/baking hardened type cold rolled steel sheet superior in press formability and aging resistance characteristic

Also Published As

Publication number Publication date
KR100584755B1 (en) 2006-05-30

Similar Documents

Publication Publication Date Title
KR100958019B1 (en) Dual phase steel sheet and method for manufacturing the same
US20090272468A1 (en) Method for Manufacturing Bake-Hardenable High-Strength Cold-Rolled Steel Sheet
KR20110119285A (en) Cold rolled steel sheet and zinc plated steel sheet having high strength and manufacturing method thereof
JP2022550329A (en) Double phase steel with high hole expandability and method for producing the same
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP4205893B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
EP1888799A1 (en) Cold rolled steel sheet having superior formability , process for producing the same
KR20050095537A (en) Cold rolled steel sheet and hot dipped steel sheet with superior strength and bake hardenability and method for manufacturing the steel sheets
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same
KR102098478B1 (en) Hot rolled coated steel sheet having high strength, high formability, excellent bake hardenability and method of manufacturing the same
KR102020390B1 (en) High-strength steel sheet having excellent formability, and method for manufacturing thereof
JP3857875B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
KR100584755B1 (en) Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press
KR100711474B1 (en) Method for manufacturing hot-rolled steel sheet with superior bake hardenability
KR20190079299A (en) High strength cold rolled steel sheet and manufacturing method thereof
KR100711463B1 (en) Method for manufacturing high strength cold rolled steel sheet having low yield strength
WO2006118425A1 (en) Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same
WO2006118424A1 (en) Cold rolled steel sheet having high yield ratio and less anisotropy, process for producing the same
KR19980044921A (en) Manufacturing method of low alloy composite structure high strength cold rolled steel sheet with excellent press formability
KR100530076B1 (en) Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Press Formability and A Method for Manufacturing thereof
KR100544724B1 (en) Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet
KR100530077B1 (en) Deep Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Formability and A Method for Manufacturing Thereof
KR100530075B1 (en) High strength steel sheet having superior formability and method for manufacturing there of
KR20230094158A (en) Cold rolled steel sheet for cans with excellent strength and workability and method of manufacturing thereof
KR20220064621A (en) High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130513

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150521

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160524

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180523

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190523

Year of fee payment: 14