KR20030052321A - A Method of Preparing Iron Hydroxides By Using Slag Solution - Google Patents

A Method of Preparing Iron Hydroxides By Using Slag Solution Download PDF

Info

Publication number
KR20030052321A
KR20030052321A KR1020010082182A KR20010082182A KR20030052321A KR 20030052321 A KR20030052321 A KR 20030052321A KR 1020010082182 A KR1020010082182 A KR 1020010082182A KR 20010082182 A KR20010082182 A KR 20010082182A KR 20030052321 A KR20030052321 A KR 20030052321A
Authority
KR
South Korea
Prior art keywords
slag
iron
chloride
eluate
reacting
Prior art date
Application number
KR1020010082182A
Other languages
Korean (ko)
Inventor
한기현
변태봉
김형석
이학봉
배우현
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020010082182A priority Critical patent/KR20030052321A/en
Publication of KR20030052321A publication Critical patent/KR20030052321A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: Provided is an economical production method of high purity iron hydroxides by reacting slag effluent generated from steelmaking industry with iron chloride. CONSTITUTION: The iron hydroxides such as Fe(OH)2, Fe(OH)3 and FeOOH are produced by reacting slag effluent(pH>=12) as an alkali source with iron compound such as iron chloride, iron nitrate or iron sulfate and preferably iron chloride, wherein the strong alkali effluent removes impurities(Si, Mg) generated from elution of CaO from slag. Fe(OH)2 is formed by reacting ferrous chloride(FeCl2) with slag effluent(>=pH7) in non-oxidizing atmosphere, and Fe(OH)3 and FeOOH are formed by reacting ferrous chloride(FeCl2) with slag effluent(pH2-4) in oxidizing atmosphere.

Description

슬래그 용출액을 이용한 수산화철류 제조방법{A Method of Preparing Iron Hydroxides By Using Slag Solution}A Method of Preparing Iron Hydroxides By Using Slag Solution

본 발명은 슬래그 용출액을 이용하여 수산화철류를 제조하는 방법에 관한 것이며, 보다 상세하게는 고순도의 액상 수산화칼슘인 슬래그 용출액을 이용하여 경제적으로 수산화철류를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing iron hydroxide using the slag eluate, and more particularly to a method for economically manufacturing iron hydroxide using the slag eluate of liquid calcium hydroxide of high purity.

수산화철류로는 Fe(OH)2, Fe(OH)3, FeOOH 등이 있는데 이들 수산화철류는 염화철, 질산철, 황산철등의 철 화합물과 NaOH, KOH, NH4OH 등의 알칼리를 반응시켜 중화하는 방법으로 제조하고 있다.Examples of iron hydroxides include Fe (OH) 2 , Fe (OH) 3 , and FeOOH. These hydroxides are neutralized by reacting iron compounds such as iron chloride, iron nitrate, and iron sulfate with alkalis such as NaOH, KOH, and NH 4 OH. It is manufactured by the method.

이들 수산화철류 제조에 사용하는 알칼리로는 현재 NaOH 및 NH4OH 등이 저렴한 것으로 주로 사용되고 있다. 이보다 저렴한 알칼리로는 소석회 현탁액이 있으나 소석회 현탁액을 사용할 경우에는 반응을 정확히 조절하지 못하면, Ca(OH)2가 남게 되어 제조된 수산화철류의 순도가 저하된다. 또한, NH4OH의 악취를 고려하여 주로NaOH가 사용되고 있다. 즉, 공지된 기술로서는 작업환경등을 고려할 때 NaOH보다 저렴한 알칼리가 없으며, 따라서 수산화철류의 제조에는 많은 비용이 소요된다.As alkalis used for the production of these iron hydroxides, NaOH, NH 4 OH and the like are mainly used at low cost. Inexpensive alkalis include a hydrated lime suspension, but when using the hydrated lime suspension, if the reaction is not accurately controlled, Ca (OH) 2 remains and the purity of the manufactured iron hydroxides is lowered. In addition, NaOH is mainly used in consideration of odor of NH 4 OH. In other words, the known technology does not have an alkali that is cheaper than NaOH in consideration of the working environment and the like, and therefore, the production of iron hydroxides is expensive.

본 발명의 목적은 슬래그 용출액을 이용하여 경제적으로 산화철류를 제조하는 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing iron oxide economically using a slag eluate.

본 발명에 의하면,According to the invention,

pH 12이상의 슬래그 용출액과 염화철을 반응시켜 수산화철을 제조하는 방법이 제공된다.A method for producing iron hydroxide is provided by reacting a slag eluate having a pH of 12 or more with iron chloride.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

제철소에서 발생되는 슬래그에는 CaO가 상당량 포함되어 있으며, CaO을 용출시켜 고알칼리 용액을 제조할 수 있다.The slag generated in the steel mill contains a significant amount of CaO, it is possible to prepare a high alkali solution by eluting CaO.

제철소에서 발생되는 슬래그에는 고로 슬래그, 전로 슬래그, 래들 슬래그, 스테인레스 슬래그, 전기로 산화기 슬래그, 전기로 환원기 슬래그 등의 여러 종류의 슬래그가 있다. 이들 슬래그 중에서 가능한한 CaO가 다량 함유되어 있는 것을 사용하는 것이 용출가능한 CaO 함량이 많음으로 바람직하다. 즉, 동일량의 용출액을 만들기 위해서 필요한 슬래그 양이 적어지게 된다.There are several types of slag generated in steel mills, such as blast furnace slag, converter slag, ladle slag, stainless slag, furnace oxidizer slag and furnace reducer slag. It is preferable to use the one which contains as much CaO as possible among these slag because it has many leachable CaO content. In other words, the amount of slag required to make the same amount of the eluate is reduced.

또한, 가능한한 염기도가 높은 슬래그를 사용하는 것이 좋으나, 염기도가 낮은 고로 슬래그를 이용하여 용출액을 제조하는 것도 무방하다.In addition, although it is preferable to use slag with high basicity as much as possible, it is also possible to manufacture an eluate using blast furnace slag with low basicity.

한편, 슬래그중에 알루미나가 다량 함유되어 있는데, CaO성분 유출시 알루미늄이 같이 용출되어 수산화철 생성시 알루미늄이 수산화알루미늄으로 침전되어 슬러지 발생량이 증대될 수 있음으로 가능한한 알루미나 함량이 낮은 슬래그를 이용하여 CaO를 용출하는 것이 좋다. 전로 슬래그 및 전기로 산화기 슬래그가 비교적 알루미나 함량이 적은 슬래그이다.On the other hand, a large amount of alumina is contained in the slag, and when the CaO component is leaked, aluminum is eluted together, and when aluminum hydroxide is produced, aluminum is precipitated into aluminum hydroxide, thereby increasing the amount of sludge. It is good to elute. Converter slag and furnace oxidizer slag are slag with relatively low alumina content.

슬래그 입도를 특히 제한할 필요는 없으나, 슬래그 입도가 작을수록 짧은 시간내에 슬래그중의 CaO가 용출되며 또한, 같은 양의 슬래그에서 용출되는 용출액의 양도 많아지게 됨으로 슬래그 입도가 44㎛이하로 되도록 분쇄하여 사용하는 것이 용출속도 및 용출량이 증대됨으로 바람직하다. 단, 너무 작은 미립으로 분쇄하는 경우 분쇄비로 인하여 경제성이 떨어진다.It is not necessary to limit the slag particle size in particular, but as the slag particle size decreases, CaO in the slag is eluted within a short time, and the amount of eluate eluted from the same amount of slag increases, so that the slag particle size is pulverized to 44 μm or less. It is preferable to use because the dissolution rate and the dissolution amount are increased. However, when pulverizing into too small fine particles, the economical efficiency is reduced due to the grinding ratio.

슬래그에서 CaO를 용출하는 동안 규소 및 마그네슘이 또한 용출된다. 그러나, 용출액이 pH 12이상이면 불순물로 작용하는 규소 및 마그네슘은 다음 반응식 1 및 2의 반응에 의해 제거됨으로 슬래그 용출시 슬래그 용출액의 pH가 12이상이 되도록한다.Silicon and magnesium are also eluted during the elution of CaO from the slag. However, when the eluate is pH 12 or more, silicon and magnesium, which act as impurities, are removed by the reactions of Schemes 1 and 2 so that the slag eluate has a pH of 12 or more when the slag is eluted.

Si4+---> Si(OH)4(콜로이드상 실리카로 제거됨.) (1)Si 4+ ---> Si (OH) 4 (removed with colloidal silica) (1)

Mg2+---> Mg(OH)2↓ (2)Mg 2+ ---> Mg (OH) 2 ↓ (2)

상기 미분쇄된 슬래그를 증류수에 첨가하여 CaO가 용출되도록 한후, 여과하여 용출액과 슬래그를 분리하고 용출액을 알칼리원으로 사용하여 수산화철류를 제조한다. 상기 슬래그 용출액은 고순도의 액상 수산화칼슘으로 슬래그 용출액의 성분은 하기 표 1에 나타낸 바와 같다.The finely ground slag is added to distilled water to allow CaO to elute, followed by filtration to separate the eluate and the slag and using the eluate as an alkali source to produce iron hydroxides. The slag eluate is liquid calcium hydroxide of high purity, and the components of the slag eluate are shown in Table 1 below.

[표 1] 용출액의 화학성분(ppm)[Table 1] Chemical Composition of Eluent (ppm)

성분ingredient CaCa SiSi FeFe 농도density 711711 3.23.2 0.050.05

상기 슬래그 용출액과 철화합물을 반응시켜 수산화철류를 제조한다.Iron hydroxide is prepared by reacting the slag eluate with an iron compound.

반응은 슬래그 용출액에 철화합물을 첨가하거나 혹은 철화합물에 슬래그 용출액을 첨가하는 어떠한 순서로도 수산화철류를 형성할 수 있다. 수산화철류란 Fe(OH)2, Fe(OH)3및 FeOOH를 포함하는 것이다.The reaction may form iron hydroxides in any order in which the iron compound is added to the slag eluate or the slag eluate is added to the iron compound. Iron hydroxides contain Fe (OH) 2 , Fe (OH) 3 and FeOOH.

철화합물로는 염화철, 질산철, 황산철등이 사용될 수 있으며, 특히, 염화철을 사용하는 것이 바람직하다. 제철소 산세공정에서 발생되는 염화철이 함유되어 있는 폐산을 또한 염화철로 사용할 수도 있다.As the iron compound, iron chloride, iron nitrate, iron sulfate and the like can be used, and in particular, it is preferable to use iron chloride. Waste acid containing iron chloride from the iron pickling process can also be used as iron chloride.

상기 염화철은 염화제일철 및 염화제이철을 모두 포함하는 것으로, Fe(OH)3, FeOOH 제조시에는 염화제이철을 그리고 Fe(OH)2제조시에는 염화제일철을 사용하는 것이 바람직하다. 제이철이온은 제일철이온을 산화시켜 사용할 수 도 있다.The iron chloride includes both ferrous chloride and ferric chloride, and it is preferable to use ferric chloride when preparing Fe (OH) 3 and FeOOH and ferric chloride when preparing Fe (OH) 2 . Ferric ions may be used by oxidizing ferrous ions.

Fe(OH)2는 Fe2+가 Fe3+로 산화되지 않도록 무산화 분위기하에서 염화제일철 용액에 용출액을 투입하면서 pH 7정도까지 상승시킴으로써 형성된다. Fe(OH)2는 pH 7이상에서 형성된다. Fe(OH)2는 또한, 무산화분위기하에서 pH가 높은 슬래그 용출액에 염화제일철을 투입하여 pH를 pH 7까지 감소시키면서 형성할 수 도 있다. 즉, Fe(OH)2제조시에는 용출액을 우선 반응기에 넣은 후 염화제일철 용액을 첨가하는 것이 수산화철 생성에 소요되는 총 반응시간이 단축된다.Fe (OH) 2 is formed by raising the pH to about 7 while adding the eluent to the ferric chloride solution in an oxygen-free atmosphere so that Fe 2+ is not oxidized to Fe 3+ . Fe (OH) 2 is formed above pH 7. Fe (OH) 2 may also be formed while the pH is reduced to pH 7 by introducing ferric chloride into a slag eluate having a high pH under an oxygen-free atmosphere. In other words, in the preparation of Fe (OH) 2 , adding the eluate first to the reactor and then adding the ferrous chloride solution shortens the total reaction time required to produce iron hydroxide.

Fe(OH)3와 FeOOH는 염화제일철 용액에 산소를 취입하면서 용출액의 양을 조절하여 pH 2~4 범위로 조절함으로써 형성된다.Fe (OH) 3 and FeOOH are formed by adjusting the amount of the eluate while blowing oxygen into the ferric chloride solution to adjust the pH in the range of 2-4.

상기 반응에서 염화철의 농도에 따라 수산화철류가 형성되는 pH는 다소 변화될 수 있다.The pH at which iron hydroxides are formed may vary somewhat depending on the concentration of iron chloride in the reaction.

이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

발명예 1Inventive Example 1

반응기에 증류수 1리터 그리고 염화제일철을 1.5몰(mol)이 되도록 장입하고잘 교반하였다. 이 반응기에 염화제일철이 염화제이철로 전환하기에 필요한 양의 염산(1.5 mol)을 넣고 산소를 취입하면서 염화제일철을 염화제이철로 산화시켰다.1 liter of distilled water and ferrous chloride were charged to 1.5 mol (mol) and stirred well. Ferric chloride was oxidized to ferric chloride while the oxygen was blown into the reactor with the amount of hydrochloric acid (1.5 mol) required to convert ferric chloride to ferric chloride.

철 +2가에서 +3가에로의 전환은 ORP meter로 측정하였다. 제이철이된 용액에 슬래그 용출액을 반응 필요량보다 과잉으로 넣어 Fe(OH)3를 침전시켰다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.The conversion from iron +2 to +3 was measured with an ORP meter. Slag eluate was added to the ferricated solution in excess of the required amount to precipitate Fe (OH) 3 . The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

발명예 2Inventive Example 2

반응기에 증류수 1리터 그리고 염화제일철을 1.5몰(mol)이 되도록 장입하여 잘 교반하였다. 이 반응기에 산소를 취입하면서 슬래그 용출액을 서서히 투입하여 pH 6~7이 되게 하였다. pH 6~7에서는 γ-FeOOH가 생성되었다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.1 liter of distilled water and ferrous chloride were charged to 1.5 mol (mol) and stirred well. While the oxygen was blown into the reactor, the slag eluate was slowly added to pH 6-7. γ-FeOOH was produced at pH 6-7. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

발명예 3Inventive Example 3

질소를 충진하여 무산화분위기로 유지한 반응기에 증류수 1리터 그리고 염화제일철 1.5몰(mol)을 장입하고 교반하면서 슬래그 용출액을 서서히 투입하여 반응액의 pH가 7이상이 되게 하였다. pH가 7이상이 되면 Fe(OH)2가 침전하였다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.1 liter of distilled water and 1.5 mol (mol) of ferrous chloride were charged into a reactor filled with nitrogen and kept in an oxygen-free atmosphere, and the slag eluate was slowly added while stirring to bring the pH of the reaction solution to 7 or more. When the pH was 7 or more, Fe (OH) 2 precipitated. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

발명예 4Inventive Example 4

반응기에 pH 12.1의 슬래그 용출액 1리터를 넣고 반응기의 상부를 질소충진시킨 상태에서 염화제일철을 서서히 투입하였다. 염화제일철을 투입하자 Fe(OH)2의 미세한 침전이 생성되었다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 1에 나타내었다.1 liter of a slag eluate having a pH of 12.1 was added to the reactor, and ferrous chloride was slowly added thereto while the top of the reactor was filled with nitrogen. When ferrous chloride was added, a fine precipitate of Fe (OH) 2 was produced. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 1 below.

발명예 5Inventive Example 5

반응기에 pH 12.7의 슬래그 용출액 1리터를 넣고 산소를 취입하면서 염화제일철을 서서히 투입하여 α-FeOOH를 생성시켰다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.1 liter of a slag eluate having a pH of 12.7 was added to the reactor, and ferrous chloride was gradually added while blowing oxygen to generate α-FeOOH. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

비교예 1Comparative Example 1

반응기에 증류수 1리터 그리고 염화제일철을 1.5몰(mol)이 되도록 장입하고 잘 교반하였다. 이 반응기에 염화제일철이 제이철로 전환하기에 필요한 양의 염산을(1.5 mol) 넣고 산소를 취입하면서 산화시켰다.1 liter of distilled water and ferrous chloride were charged to 1.5 mol (mol) and stirred well. In this reactor, the amount of hydrochloric acid (1.5 mol) required to convert ferric chloride to ferric iron was added and oxidized while blowing oxygen.

철 +2가에서 +3가에로의 전환은 ORP meter로 측정하였다. 제이철이된 용액에 NaOH 용액을 반응필요량보다 과잉으로 넣고 Fe(OH)3를 침전시켰다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.The conversion from iron +2 to +3 was measured with an ORP meter. NaOH solution was added to the ferricated solution in excess of the required amount of reaction, and Fe (OH) 3 was precipitated. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

비교예 2Comparative Example 2

반응기에 증류수 1리터 그리고 염화제일철을 1.5몰(mol)이 되도록 장입하고 잘 교반하였다. 이 반응기에 산소를 취입하면서 NaOH 용액을 서서히 투입하여 pH가 6~7이 되도록 하였다. 즉 pH가 6~7이 되면 γ-FeOOH가 생성되었다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.1 liter of distilled water and ferrous chloride were charged to 1.5 mol (mol) and stirred well. NaOH solution was slowly added while blowing oxygen into the reactor so that the pH was 6-7. That is, when the pH was 6-7, γ-FeOOH was produced. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

비교예 3Comparative Example 3

질소를 충진하여 무산화분위기로 유지한 반응기에 증류수 1리터 그리고 염화제일철 1.5몰(mol)을 장입하고 교반하면서 NaOH 용액을 서서히 투입하여 반응액의 pH가 7이상이 되도록 하였다. pH가 7이상이 되면 Fe(OH)2가 침전하였다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.1 liter of distilled water and 1.5 mol (mol) of ferrous chloride were charged into a reactor filled with nitrogen and kept in an oxygen-free atmosphere, and NaOH solution was slowly added while stirring to make the pH of the reaction solution 7 or more. When the pH was 7 or more, Fe (OH) 2 precipitated. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

비교예 4Comparative Example 4

반응기에 pH 12.1의 NaOH 용액 1리터를 넣고 반응기의 상부를 질소 충진시킨 상태에서 염화제일철을 서서히 투입하였다. 염화제일철을 투입하자 Fe(OH)2의 미세한 침전이 생성되었다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.1 liter of a NaOH solution having a pH of 12.1 was added to the reactor, and ferrous chloride was slowly added while the top of the reactor was filled with nitrogen. When ferrous chloride was added, a fine precipitate of Fe (OH) 2 was produced. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

비교예 5Comparative Example 5

반응기에 pH 12.7의 NaOH 용액 1리터를 넣고 산소를 취입하면서 염화제일철을 서서히 투입하여 α-FeOOH를 생성시켰다. 침전된 생성물의 상을 XRD로 분석하여 그 결과를 하기 표 2에 나타내었다.1 liter of a NaOH solution having a pH of 12.7 was added to the reactor, and ferrous chloride was slowly added while blowing oxygen to generate α-FeOOH. The phase of the precipitated product was analyzed by XRD and the results are shown in Table 2 below.

[표 2]TABLE 2

구분division 생성물(XRD 분석)Product (XRD Analysis) 발명예Inventive Example 1One Fe(OH)3 Fe (OH) 3 22 γ-FeOOHγ-FeOOH 33 Fe(OH)2 Fe (OH) 2 44 Fe(OH)2 Fe (OH) 2 55 α-FeOOHα-FeOOH 비교예Comparative example 1One Fe(OH)3 Fe (OH) 3 22 γ-FeOOHγ-FeOOH 33 Fe(OH)2 Fe (OH) 2 44 Fe(OH)2 Fe (OH) 2 55 α-FeOOHα-FeOOH

고순도의 수산화칼슘인 슬래그 용출액을 이용하여 고순도의 수산화철류를 제조할 수 있다. 나아가, 슬래그 용출액은 거의 가격이 없는 초염가로 경제적이다.High purity iron hydroxides can be produced using slag eluate which is high purity calcium hydroxide. Furthermore, slag eluate is economical with very low price.

Claims (6)

pH 12이상의 슬래그 용출액과 염화철을 반응시켜 수산화철류를 제조하는 방법.A method of producing iron hydroxide by reacting a slag eluate having a pH of 12 or more with iron chloride. 제 1항에 있어서, 상기 슬래그는 전로슬래그 또는 전기로 산화기 슬래그임을 특징으로 하는 방법.The method of claim 1 wherein the slag is converter slag or furnace oxidizer slag. 제 1항 또는 2항에 있어서, 상기 수산화철류는 Fe(OH)2, Fe(OH)3및 FeOOH를 포함함을 특징으로 하는 방법.The method of claim 1 or 2, wherein the iron hydroxides comprise Fe (OH) 2 , Fe (OH) 3 and FeOOH. 제 3항에 있어서, 상기 Fe(OH)2는 무산화분위기에서 제일염화철과 슬래그 용출액을 반응시킴으로써 형성됨을 특징으로 하는 방법.4. The method of claim 3, wherein the Fe (OH) 2 is formed by reacting ferrous chloride with a slag eluate in an oxygen free atmosphere. 제 3항에 있어서, 상기 Fe(OH)3는 산화분위기에서 염화철과 슬래그 용출액을 반응시킴으로써 형성됨을 특징으로 하는 방법.4. The method of claim 3, wherein Fe (OH) 3 is formed by reacting iron chloride with a slag eluate in an oxidizing atmosphere. 제 1항에 있어서, 상기 염화철은 염화철 함유 폐산임을 특징으로 하는 방법.The method of claim 1 wherein the iron chloride is iron chloride containing waste acid.
KR1020010082182A 2001-12-21 2001-12-21 A Method of Preparing Iron Hydroxides By Using Slag Solution KR20030052321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010082182A KR20030052321A (en) 2001-12-21 2001-12-21 A Method of Preparing Iron Hydroxides By Using Slag Solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010082182A KR20030052321A (en) 2001-12-21 2001-12-21 A Method of Preparing Iron Hydroxides By Using Slag Solution

Publications (1)

Publication Number Publication Date
KR20030052321A true KR20030052321A (en) 2003-06-27

Family

ID=29577091

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010082182A KR20030052321A (en) 2001-12-21 2001-12-21 A Method of Preparing Iron Hydroxides By Using Slag Solution

Country Status (1)

Country Link
KR (1) KR20030052321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312065B1 (en) * 2005-12-26 2013-09-25 재단법인 포항산업과학연구원 Simultaneous preparation method of environmental catalyst material and potassium chloride from steel waste acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938975A (en) * 1973-08-27 1976-02-17 Nippon Steel Corporation Treatment of blast furnace slag
JPS60118630A (en) * 1983-11-29 1985-06-26 Toyo Soda Mfg Co Ltd Production of alpha-ferric hydroxide oxide
KR920011921A (en) * 1990-12-31 1992-07-25 정명식 Method for preparing γ-FeOOH powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938975A (en) * 1973-08-27 1976-02-17 Nippon Steel Corporation Treatment of blast furnace slag
JPS60118630A (en) * 1983-11-29 1985-06-26 Toyo Soda Mfg Co Ltd Production of alpha-ferric hydroxide oxide
KR920011921A (en) * 1990-12-31 1992-07-25 정명식 Method for preparing γ-FeOOH powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312065B1 (en) * 2005-12-26 2013-09-25 재단법인 포항산업과학연구원 Simultaneous preparation method of environmental catalyst material and potassium chloride from steel waste acid

Similar Documents

Publication Publication Date Title
Min et al. Removal and stabilization of arsenic from anode slime by forming crystal scorodite
CN105695735B (en) The autoreduction of a kind of steel rolling oily sludge and blast furnace dust utilizes technique
US4289746A (en) Process for preparation of micaceous iron oxide
US20120198965A1 (en) Method of manufacturing fe and ni containing material, ferronickel mass using the fe and ni containing material and method for manufacturing the ferronickel mass
KR100808359B1 (en) Method for solidifying sewage sludge
KR20030052321A (en) A Method of Preparing Iron Hydroxides By Using Slag Solution
CN1146982A (en) Process for producing potassium sulfate and its by-product using potassium ore
CN116750786A (en) Method for preparing high-purity titanium gypsum based on sulfuric acid process acidic wastewater
KR20040026383A (en) A Method for Preparing Calcium Carbonate From Steel-Making Slag and Corbon Dioxide
JP2000080401A (en) Iron powder for toxic substance removal treatment
Morgan et al. Fundamental study of a one-step ambient temperature ferrite process for treatment of acid mine drainage waters: rapid communication
CN113215388B (en) Method for converting niobium minerals in niobium rough concentrate into niobium-calcium ore and producing niobium concentrate
CN107162151B (en) Preparation for treating heavy metal elements in wastewater and preparation method thereof
KR102293624B1 (en) Neutralized gypsum composition for cement, method for producing the neutralized gypsum for cement, and cement comprising the neutralized gypsum
KR100467762B1 (en) A preparation method of magnesia having low calcium and boron contents
KR100467763B1 (en) A preparation method of magnesia having low silica and ferric oxide contents
KR101125399B1 (en) Method for preparing calcium based material
KR100502235B1 (en) A preparation method of treatment liquid for decarbonizing sea water having low contents-silica slag solution
KR100415633B1 (en) A preparation method of liquid milk limes using slags
KR100270086B1 (en) A method of producing aqueous magnesium sulphate
JP3240940B2 (en) Treatment method for selenium-containing water
KR100270120B1 (en) Dephosphorous agent for molten iron
CN113832298B (en) Composite calcium ferrite prepared from red mud and stainless steel pickling sludge as well as preparation method and application of composite calcium ferrite
KR950008689B1 (en) Method of fe powder from pickling waste liquid
CN110436598A (en) Application of the ammonium magnesium phosphate/nano-sized magnesium hydroxide in processing heavy metal-containing waste water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
G170 Re-publication after modification of scope of protection [patent]