KR100502235B1 - A preparation method of treatment liquid for decarbonizing sea water having low contents-silica slag solution - Google Patents

A preparation method of treatment liquid for decarbonizing sea water having low contents-silica slag solution Download PDF

Info

Publication number
KR100502235B1
KR100502235B1 KR10-2000-0078773A KR20000078773A KR100502235B1 KR 100502235 B1 KR100502235 B1 KR 100502235B1 KR 20000078773 A KR20000078773 A KR 20000078773A KR 100502235 B1 KR100502235 B1 KR 100502235B1
Authority
KR
South Korea
Prior art keywords
slag
seawater
eluate
present
decarbonation
Prior art date
Application number
KR10-2000-0078773A
Other languages
Korean (ko)
Other versions
KR20020049584A (en
Inventor
한기현
변태봉
김형석
이학봉
배우현
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-2000-0078773A priority Critical patent/KR100502235B1/en
Publication of KR20020049584A publication Critical patent/KR20020049584A/en
Application granted granted Critical
Publication of KR100502235B1 publication Critical patent/KR100502235B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

본 발명은 실리카 함량이 낮은 해수 탈탄산용 처리액 제조방법에 관한 것으로, 그 구성은The present invention relates to a method for producing a treatment solution for desalination of seawater having a low silica content, the composition of which

해수에 탈탄산 공정 및 수산화마그네슘 침전 공정을 거쳐 해수마그네시아를 제조함에 있어서, In manufacturing seawater magnesia through decarbonation process and magnesium hydroxide precipitation process in seawater,

상기 탈탄산 공정은 슬래그를 45㎛이하로 분쇄한 다음 물을 주입하고 pH를 11.5~11.8로 조정후 여과하여 제조한 슬래그 용출액을 사용하여 수행하는 것임을 특징으로 하는 실리카 함량이 낮은 해수 탈탄산용 처리액을 제조하는 방법이 제공된다. The decarbonation process is performed by using a slag eluate prepared by crushing slag to 45 μm or less, injecting water, adjusting the pH to 11.5 to 11.8, and then filtering the slag. There is provided a method of preparing the same.

본 발명에 의하면, 해수탈탄산제로서 종래 사용하고 있는 소석회계 재료보다 실리카 함량이 대단히 적은 탈탄산 재료를 제조해냄으로서 실제 탈탄산 처리시 생성된 탄산칼슘 슬러지내에서 불순물로서 작용하는 실리카 함량을 최소한 낮출 수 있다. According to the present invention, by producing a decarbonated material having a much lower silica content than the conventionally used calcined lime based materials as seawater decarboxylates, at least the silica content acting as an impurity in the calcium carbonate sludge produced during the decarboxylation treatment is reduced. Can be.

Description

실리카 함량이 낮은 해수 탈탄산용 처리액 제조방법{A PREPARATION METHOD OF TREATMENT LIQUID FOR DECARBONIZING SEA WATER HAVING LOW CONTENTS-SILICA SLAG SOLUTION}TECHNICAL FIELD OF THE INVENTION A process for producing a desalination solution for seawater with low silica content {A PREPARATION METHOD OF TREATMENT LIQUID FOR DECARBONIZING SEA WATER HAVING LOW CONTENTS-SILICA SLAG SOLUTION}

본 발명은 실리카 함량이 낮은 해수 탈탄산용 처리액 제조방법에 관한 것으로, 보다 상세하게는 해수 마그네시아 제조용 해수에 제철소 부산물인 슬래그를 이용하여 실리카 함량이 낮은 탈탄산용 슬래그 용출액을 제조하는 방법에 관한 것이다. The present invention relates to a method for preparing a seawater decarbonation treatment liquid having a low silica content, and more particularly, to a method for producing a slag eluate for decarbonation having a low silica content using slag as a by-product of steel mill in seawater for seawater magnesia production. will be.

해수중의 마그네슘이온을 추출하여 만든 산화물을 해수마그네시아라고 하며 주로 내화물 원료로 사용되고 있다. 이 해수마그네시아 제조 공정에는 마그네시아중의 산화칼슘농도를 낮추기 위하여 해수중에 포함되어 있는 중탄산 이온이나, 황산염 이온을 미리 제거하는 단계를 포함한다. 이 단계를 이른바 해수의 탈탄산 공정이라고 하는데, 상기 중탄산 이온 및 황산염 이온을 제거하는데는 현재 소석회유를 사용하고 있다 (Refr. Jour., 28, 302~307(1952),내화물 공학, 기보당(1962) 참조).The oxide produced by extracting magnesium ions from seawater is called seawater magnesia and is mainly used as a refractory material. The seawater magnesia manufacturing process includes a step of removing bicarbonate ions or sulfate ions contained in seawater in advance in order to lower the calcium oxide concentration in the magnesia. This step is called the decarbonation process of seawater, and calcareous oil is currently used to remove the bicarbonate and sulfate ions (Refr. Jour., 28, 302-307 (1952), refractory engineering, Gibo-dang ( 1962).

상기 소석회유는 석회석을 소성후 생성된 생석회를 물과 반응시켜서 제조한 것으로, 이 과정도중 석회석내에 포함되어 있던 상당량의 실리카는 미소성 석회석등을 체분리하는 분리과정에서 분리되지만 미립 실리카는 분리되지 않고 체를 통과하여 소석회유내에 잔류하게 된다. The calcined lime oil is prepared by reacting quicklime produced by calcining limestone with water. During this process, a significant amount of silica contained in limestone is separated in the separation process of sieving microporous limestone, but fine silica is not separated. It passes through the sieve and remains in the slaked lime oil.

결과적으로 잔류 실리카는 해수 탈탄산 공정에서 생성되는 슬러지내에 포함되게 되므로 탈탄산 슬러지의 활용에 장애가 되는 불순물 성분인 실리카의 함량이 높아지게 되는 문제가 발생한다. As a result, since the residual silica is included in the sludge produced in the seawater decarbonation process, a problem arises in that the content of silica, which is an impurity component that obstructs the utilization of the decarbonated sludge, becomes high.

그러므로 실리카 함량이 적은 탈탄산 재료를 개발하거나 혹은 실리카 성분이 존재하더라도 탈탄산 반응시 침전되지 않는 기술 개발이 요구되고 있는 실정이다. Therefore, there is a demand for developing a decarbonated material having a low silica content or developing a technology that does not precipitate during the decarbonated reaction even if a silica component is present.

한편, 국내에서 산출되는 석회석의 대부분은 CaO: 50~53% 및 SiO2: 1.5~5%로 이루어진다. 이같이 SiO2 함량이 높은 석회석을 소성하여 물 속에 넣으면 소석회유가 만들어지는데 이때 대다수의 SiO2는 그대로 소석회유에 들어가게 된다.On the other hand, most of the limestone produced in Korea is composed of CaO: 50 ~ 53% and SiO 2 : 1.5 ~ 5%. When calcined limestone with a high SiO 2 content is added to water, calcined lime oil is made, and most of the SiO 2 enters the lime lime oil as it is.

따라서 해수의 탈탄산 공정에 적용하기 위하여 소석회유를 정제하는 과정에서 미소성 석회석 입자, SiO2등을 제거하기 위하여 체분리 작업을 수회 실시하더라도 SiO2를 상당량 포함하고 있다.Therefore, even in the process of refining calcined lime oil to remove the unbaked limestone particles, SiO 2, etc. in order to be applied to the decarbonation process of seawater, it contains a significant amount of SiO 2 .

즉, 일반적으로 체분리한 소석회유중 입자가 큰 것은 조유라고 하고 입자가 작은 것은 정제유라고 하는데, 이중 해수의 탈탄산 공정에는 조유를 사용하게 된다. 이같은 조유내에는 SiO2를 0.22%, 즉 2200ppm정도를 함유하고 있다.That is, generally, the larger particles in the pulverized limestone oil are called crude oil and the smaller particles are refined oil, but crude oil is used in the decarbonation process of seawater. Such crude oil contains about 0.22% of SiO 2 , that is, about 2200 ppm.

따라서 상기 조유와 해수를 반응시켜 탈탄산 공정을 수행할 경우 조유내 Ca(OH)2가 CaCO3로 침전할 때 조유중에 함께 함유되어 있던 2200ppm 가량의 SiO2 가 함께 침강하여 생성된 CaCO3침전물내에 혼합되게 되는 바, 따라서 CaCO3를 재활용할 경우에 불순물로서 심각한 문제를 유발하게 되는 것이다.Therefore, when the crude oil and the seawater are reacted to perform the decarbonation process, when Ca (OH) 2 in the crude oil is precipitated as CaCO 3 , about 2200 ppm SiO 2 contained in the crude oil is precipitated together in the CaCO 3 precipitate formed. As a result, the recycling of CaCO 3 causes serious problems as impurities.

이에 본 발명의 목적은 제철소에서 배출되는 부산물인 슬래그를 이용하여 SiO2함량이 극히 적은 해수 탈탄산 처리액을 제조하는 방법을 제공하려는데 있다.Accordingly, an object of the present invention is to provide a method for producing a seawater decarbonate treatment liquid having a very low SiO 2 content by using slag which is a by-product discharged from a steel mill.

본 발명에 의하면, According to the invention,

해수에 탈탄산 공정 및 수산화마그네슘 침전 공정을 거쳐 해수마그네시아를 제조함에 있어서, In manufacturing seawater magnesia through decarbonation process and magnesium hydroxide precipitation process in seawater,

상기 탈탄산 공정은 슬래그를 45㎛이하로 분쇄한 다음 물을 주입하고 pH를 11.5~11.8로 조정후 여과하여 제조한 슬래그 용출액을 사용하여 수행하는 것임을 특징으로 하는 실리카 함량이 낮은 해수 탈탄산용 처리액을 제조하는 방법이 제공된다. The decarbonation process is performed by using a slag eluate prepared by crushing slag to 45 μm or less, injecting water, adjusting the pH to 11.5 to 11.8, and then filtering the slag. There is provided a method of preparing the same.

이하, 본 발명에 대하여 상세히 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자들은 제철소에서 발생되는 슬래그의 주성분이 CaO, SiO2, 산화철이고 기타 성분으로 MgO 및 Al2O3 등을 함유하고 있으며, 염기도 또한 1이상이므로, 이들을 물속에 침지시켜 두면 Ca,Al,Si 성분이 용출되어 pH가 높은 용액이 된다는 점에 착안하여 적절한 슬래그를 선택하고 이들을 물속에 침지시킨 다음 용출액의 pH를 Si성분을 효과적으로 제거한 용출액을 해수 탈탄산 처리액으로 사용하면 얻어진 탈탄산 슬러지내의 SiO2 함량이 현행공정에 비해 상당히 감소하는 것을 발견하고 본 발명을 완성하기에 이르렀다.The inventors of the present invention found that the main components of slag generated in steel mills are CaO, SiO 2 , iron oxide, and other components, including MgO and Al 2 O 3 , and the base is also one or more. Paying attention to the fact that the components are eluted to form a solution having a high pH, an appropriate slag is selected, and these are immersed in water. 2 the content was found to be significantly reduced compared to the current process and the present invention was completed.

본 발명에서 사용가능한 슬래그는 제철소에서 부산물로서 배출되는 것들로서, 발생원에 따라 나뉘어지는 고로 슬래그, 전로 슬래그, 용선예비처리 슬래그, 스테인레스 슬래그, 전기로 슬래그(산화기슬래그, 환원기슬래그), 래들슬래그, 2차 정련슬래그등중에서 전로슬래그, 전기로 산화기 슬래그 및 용선예비처리 슬래그 중 탈인 슬래그를 사용한다. Slags usable in the present invention are those discharged as by-products from steel mills, blast furnace slag, converter slag, molten iron preliminary slag, stainless slag, furnace slag (oxidizer slag, reducing machine slag), ladle slag For example, converter slag, furnace oxidizer slag, and dephosphorized slag among molten iron preliminary slag are used.

이는 슬래그내에 Al+3성분이 많이 포함되어 있으면 슬래그 용출액중에 Al+3이온이 용출되게 되어 결과적으로 탈탄산 슬러지에 불순성분으로 작용하게 되므로 본 발명에서는 가능한한 Ca가 많이 용출되는 슬래그를 선정한 것이며, 이같이 Ca+2가 많이 용출되는 슬래그중에서도 염기도가 높고 대량으로 발생되는 전로슬래그, 전기로 산화기 슬래그 및 용선예비처리 슬래그 중 탈인 슬래그를 사용하는 것이 바람직하다.This will be a selection of the slag are eluted Ca as much as possible, if it contains a lot of Al +3 component is presented Al +3 ions are eluted in the leaching solution slag consequently acts so as impurity components in the decarboxylation in the present invention, the sludge in the slag, As such, it is preferable to use a converter slag having a high basicity and a large amount of slag which is highly eluted with Ca +2 , an electrolytic oxidizer slag, and a dephosphorized slag in the molten iron preliminary slag.

예를 들어보면, 전로슬래그의 경우에는 Al2O3 함량이 3%이하인 바, 추후 공정에서 용출시키더라도 Al+3을 용출시키지 않는 것이다.For example, in the case of converter slag, the content of Al 2 O 3 is 3% or less, so that the Al + 3 is not eluted even if eluted in a later process.

상기 슬래그를 45㎛이하로 분쇄한다. 45㎛이상이 되더라도 추후 용출공정은 진행할 수 있으나, 45㎛이하인 경우에 보다 신속하게 용출되고 슬래그 용출액을 제조하기 위하여 슬래그와 물을 반응시킬 때 조립슬래그에 비해서 물의 양이 많아도 원하는 pH범위를 쉽게 만족할 수 있으므로 45㎛이하로 분쇄하는 것이 바람직하다. The slag is pulverized to 45 μm or less. Although the elution process can proceed later even if it is more than 45㎛, when less than 45㎛ is eluted more quickly and when the reaction of slag and water to produce the slag eluate, the amount of water compared to the granulated slag easily meet the desired pH range easily It is preferable to grind to 45 micrometers or less as it may.

이같이 적절한 슬래그를 45㎛이하로 분쇄한 다음 물을 주입하면서 pH범위를 11.5~11.8이 되도록 조절후 여과하여 용출액을 얻는다. 이때 pH범위가 11.5이하이어도 큰 문제는 없지만 용출액중 Si함량이 증가하게 되므로 본 발명의 낮은 실리카 함량 달성이라는 목적에 부합되지 못하며, pH범위가 11.8이상이면 Si함량은 원하는 바대로 감소하지만 용출액을 제조하기 위하여 사용하는 반응물의 양이 줄어들게 되므로 결과적으로 용출액 양이 줄어들게 되어 바람직하지 않다. Thus, the appropriate slag is pulverized to 45㎛ or less and then adjusted to pH range of 11.5 ~ 11.8 while injecting water and filtered to obtain an eluate. At this time, even if the pH range is 11.5 or less, there is no big problem, but the content of Si in the eluate is increased, which does not meet the purpose of achieving the low silica content of the present invention. Since the amount of the reactant used to reduce is reduced as a result the amount of eluate is reduced is undesirable.

이뿐만 아니라 용출액중에 포함된 Si+2도 pH11.5~11.8사이에서는 탈탄산 슬러지중 불순물로서 존재하는 SiO2함량에 큰 영향을 미치지 않으므로 용출액의 pH가 11.5~11.8가 되도록 조정하는 것이 바람직하다.In addition, since Si +2 contained in the eluate does not have a significant effect on the SiO 2 content present as impurities in the decarbonated sludge between pH 11.5 and 11.8, the pH of the eluate is preferably adjusted to 11.5 to 11.8.

즉, pH12이상에서 용출액중의 Si가 더 낮아지기는 하지만 해수 탈탄산 공정을 함께 거쳐야 하므로 pH11.5∼11.8로 조절하면 존재하는 Si가 용해된 상태이므로 굳이 pH 12이상으로 과다하게 높일 필요는 없다. In other words, the Si in the eluate is lowered at pH 12 or higher, but it must go through the seawater decarbonation process, so when the pH is adjusted to 11.5 to 11.8, the present Si is dissolved and does not need to be excessively increased to pH 12 or higher.

따라서 이같이 pH11.5∼11.8로 조정해서 Si함량을 조절해두면 탈탄산 반응시에는 석출하지 않게되어 탈탄산 슬러지중 불순물로 존재하는 SiO2함량에 큰 영향을 미치지 않게 된다.Therefore, if the Si content is adjusted by adjusting the pH to 11.5 to 11.8, it does not precipitate during the decarbonation reaction and thus does not significantly affect the SiO 2 content present as impurities in the decarbonate sludge.

본 발명에서는 분쇄한 슬래그로부터 용출액을 제조시 용출액의 pH를 적절하게 조정함으로써 용출액에 포함되는 Si농도를 낮출 수 있는 잇점을 갖는다. 일단 용출액에 포함된 Si+4함량을 낮추면 추후 해수마그네시아 제조용 해수를 탈탄산시킬 경우에도 탈탄산 반응액중에 용해된 상태로 존재하고 거의 석출되지 않아 결과적으로 탈탄산 슬러지중에 포함되는 SiO2 함량이 낮추는 것이다.The present invention has an advantage of lowering the Si concentration contained in the eluate by appropriately adjusting the pH of the eluate when preparing the eluate from the crushed slag. Once the Si +4 content in the eluate is lowered, even when decarbonated seawater for seawater magnesia production is present in dissolved state in the decarbonation reaction solution and hardly precipitated, consequently, the SiO 2 content in the decarbonated sludge is lowered. will be.

참고로 이같이 제조된 용출액을 사용하여 해수마그네시아 제조용 해수를 탈탄산 반응시킬 때는 해수중에 존재하는 마그네슘 이온의 손실을 줄이기 위해서 pH 9~9.5정도에서 반응시키면 좋다. For reference, when decarbonated seawater for seawater magnesia production using the eluate thus prepared, the reaction may be performed at a pH of 9 to 9.5 to reduce the loss of magnesium ions in the seawater.

이하, 실시예를 통하여 본 발명을 상세히 설명하며, 이는 본 발명을 예시하고자 하는 것으로 본 발명을 이에 한정하려는 것은 아니다. Hereinafter, the present invention will be described in detail through examples, which are intended to illustrate the present invention and are not intended to limit the present invention.

<실시예 1><Example 1>

먼저 전로 슬래그를 45㎛이하로 분쇄한 다음 물을 반응물의 pH가 11.5가 될 때까지 주입한 다음 일반 여과지를 사용하여 여과하여 용출액을 제조하였다. First, the converter slag was pulverized to 45 μm or less, and water was injected until the pH of the reactant was 11.5, followed by filtration using general filter paper to prepare an eluate.

상기와 같이 제조한 용출액을 해수 1ℓ를 넣은 비이커에 pH 9가 되도록 조절하면서 투입하여 탈탄산 반응을 수행하였다. The eluate prepared as described above was added to a beaker containing 1 liter of seawater, adjusted to pH 9 to perform a decarbonation reaction.

이같이 해수를 탈탄산 반응시킨 다음 생성된 슬러지를 분리하고 건조하여 SiO2함량을 일반 광물분석법으로 분석하였으며, 그 결과를 하기표 1에 나타내었다. 한편 비교를 위하여, 실제 조유를 사용하여 탈탄산을 실시하고 있는 공장에서 발생되는 슬러지에서 측정한 SiO2 함량을 하기표 1에 함께 나타내었다.As described above, the dewatered reaction of seawater was carried out, and the produced sludge was separated and dried, and the SiO 2 content was analyzed by a general mineral analysis method. The results are shown in Table 1 below. On the other hand, for comparison, the SiO 2 content measured in the sludge generated in the plant performing decarbonation using the actual crude oil is shown in Table 1 together.

탈탄산 처리재료Decarbonated Material 슬러지중 SiO2함량(중량%)SiO 2 content in weight of sludge 본 발명에 의해 제조한 슬래그 용출액Slag eluate prepared according to the present invention 0.3∼0.50.3 to 0.5 현재 사용중인 조유Current formula 8∼108 to 10

상기표에서 보듯이, 본 발명의 슬래그 용출액을 탈탄산 재료로서 사용하는 경우에 슬러지중에 함유된 SiO2 함량을 훨씬 저감시키는 것을 확인할 수 있었다.As shown in the above table, when the slag eluate of the present invention was used as the decarbonated material, it was confirmed that the SiO 2 content contained in the sludge was further reduced.

<실시예 2><Example 2>

본 실시예는 슬래그의 적정 분쇄 입경을 도출하기 위한 실험이다. This example is an experiment for deriving the appropriate crushed particle diameter of slag.

분쇄입경 및 증류수 투입량을 하기표 2에 기재한대로 변화시키면서 실험한 것을 제외하고는 실시예 1과 동일한 실험을 반복하고 관찰되는 pH값을 하기표 2에 함께 나타내었다. The same experiment as in Example 1 was repeated except that the grinding particle diameter and distilled water input amount were changed as described in Table 2, and the observed pH values were shown together in Table 2 below.

증류수 투입량 슬래그 분쇄입경 Distilled Water Input Slag crushed particle size pH조건pH condition 증류수 500ccDistilled water 500cc 증류수 400ccDistilled water 400cc 증류수300ccDistilled Water 300cc 증류수 200ccDistilled water 200cc 증류수 100ccDistilled water 100cc 증류수 50cc50cc distilled water 증류수 30ccDistilled water 30cc 45㎛이하Less than 45㎛ 11.6811.68 11.6311.63 11.8211.82 11.7811.78 11.811.8 12.1412.14 12.3212.32 0.25∼0.5mm0.25-0.5mm 10.5110.51 1111 11.1211.12 11.311.3 11.3711.37 11.5411.54 11.9111.91 0.5∼1mm0.5-1mm 10.4810.48 10.7610.76 10.8310.83 10.8710.87 10.9810.98 11.3411.34 11.8111.81 1∼2mm1 to 2 mm 10.3610.36 10.5410.54 10.8410.84 10.8610.86 1111 11.1411.14 11.6911.69 2.36∼3.35mm2.36-3.35mm 10.1510.15 10.3310.33 10.5510.55 10.6710.67 10.7210.72 10.9110.91 11.3411.34

상기 표 2에서 알 수 있듯이, 슬래그의 분쇄입경이 45㎛ 이하인 경우 조립 슬래그와 비교하여 증류수의 투입량이 500cc인 경우에도 원하는 pH 범위를 만족할 수 있으므로 한번에 용출액의 제조량을 크게 할 수 있는 잇점이 있다.As can be seen from Table 2, when the crushed particle diameter of the slag is 45㎛ or less, even if the input amount of distilled water compared to the granulated slag can satisfy the desired pH range of 500cc, there is an advantage that the production amount of the eluate can be increased at a time.

삭제delete

<실시예 3><Example 3>

본 실시예는 슬래그로부터 Si이온을 효과적으로 용출해낼 수 있는 반응물의 적정 pH를 도출하기 위한 실험이다. This example is an experiment for deriving a proper pH of a reactant that can effectively elute Si ions from slag.

실시예 1의 비이커내에 pH측정기를 장착한 다음 주입하는 물의 양을 조절하여 반응물의 pH를 하기표 3에 나타낸 값들로 변화시키면서 실시예 1과 동일한 실험을 반복하고 용출액에서 측정한 Si함량을 하기표 3에 함께 나타내었다.  The pH tester was mounted in the beaker of Example 1, and then the amount of water injected was changed to change the pH of the reactants to the values shown in Table 3, and the same experiment as in Example 1 was repeated. 3 is shown together.

용출액 pHEluent pH 11.1811.18 11.2311.23 11.3111.31 11.3611.36 11.4211.42 11.5111.51 11.6411.64 11.8011.80 11.9111.91 Si함량(ppm)Si content (ppm) 1919 2121 2121 2121 1919 1818 1414 88 6.56.5

상기표에서 보듯이, 용출액의 pH가 11.5이상일 경우에 용출액내 Si 이온함량이 낮아지기 시작하는 것을 확인할 수 있었으며, pH가 11.80일 때 Si이온함량이 8ppm까지 저감되는 것을 확인할 수 있었다.   As shown in the above table, when the pH of the eluate was 11.5 or more, it was confirmed that the content of Si ion in the eluate began to decrease, and when the pH was 11.80, it was confirmed that the Si ion content was reduced to 8 ppm.

이에 반해 조유중에는 SiO2농도가 2200ppm 함유되어 있으므로 본 발명의 방법에 의하면 분쇄한 슬래그로부터 용출액을 제조시 그 pH를 적절하게 조절함으로써 용출액중 Si농도를 현저하게 저감시킬 수 있었다.On the contrary, since the concentration of SiO 2 in the crude oil contained 2200 ppm, according to the method of the present invention, the concentration of Si in the eluate could be remarkably reduced by appropriately adjusting the pH of the eluate from the ground slag.

상기한 바에 따르면, 제철소 발생 슬래그중 산화알루미늄 성분이 적은 슬래그를 사용하여 pH를 적절하게 조절함으로써 얻어진 실리카 농도가 낮은 용출액을 해수의 탈탄산 처리액으로 사용함으로써 탈탄산공정후 생성된 슬러지중 SiO2 함량을 현저히 줄일 수 있다.According to the above, SiO 2 in the sludge produced after the decarbonation process by using an eluate having a low silica concentration as a decarbonation treatment solution of seawater obtained by appropriately adjusting the pH by using slag containing less aluminum oxide in the steelworks-generated slag. The content can be significantly reduced.

Claims (2)

해수에 탈탄산 공정 및 수산화마그네슘 침전 공정을 거쳐 해수마그네시아를 제조함에 있어서, In manufacturing seawater magnesia through decarbonation process and magnesium hydroxide precipitation process in seawater, 상기 탈탄산 공정은 슬래그를 45㎛이하로 분쇄한 다음 물을 주입하고 pH를 11.5~11.8로 조정후 여과하여 제조한 슬래그 용출액을 사용하여 수행하는 것임을 특징으로 하는 실리카 함량이 낮은 해수 탈탄산용 처리액 제조방법The decarbonation process is performed by using a slag eluate prepared by crushing slag to 45 μm or less, injecting water, adjusting the pH to 11.5 to 11.8, and then filtering the slag. Manufacturing method 제1항에 있어서, 상기 슬래그로는 주성분이 CaO, SiO2, 산화철로 이루어지고 보조성분으로서 MgO가 포함된 전로슬래그, 전기로 산화기 슬래그 및 탈인슬래그로부터 선택됨을 특징으로 하는 방법The method of claim 1, wherein the slag is selected from a converter slag consisting of CaO, SiO 2 , iron oxide and MgO as an auxiliary component, an electric furnace oxidizer slag and a dephosphorized slag.
KR10-2000-0078773A 2000-12-19 2000-12-19 A preparation method of treatment liquid for decarbonizing sea water having low contents-silica slag solution KR100502235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0078773A KR100502235B1 (en) 2000-12-19 2000-12-19 A preparation method of treatment liquid for decarbonizing sea water having low contents-silica slag solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0078773A KR100502235B1 (en) 2000-12-19 2000-12-19 A preparation method of treatment liquid for decarbonizing sea water having low contents-silica slag solution

Publications (2)

Publication Number Publication Date
KR20020049584A KR20020049584A (en) 2002-06-26
KR100502235B1 true KR100502235B1 (en) 2005-07-20

Family

ID=27683542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0078773A KR100502235B1 (en) 2000-12-19 2000-12-19 A preparation method of treatment liquid for decarbonizing sea water having low contents-silica slag solution

Country Status (1)

Country Link
KR (1) KR100502235B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498067B1 (en) * 2000-12-20 2005-07-01 주식회사 포스코 The decarbonization method of sea water for preparing sea water magnesia
KR100467762B1 (en) * 2000-12-21 2005-01-24 재단법인 포항산업과학연구원 A preparation method of magnesia having low calcium and boron contents
KR100467763B1 (en) * 2000-12-21 2005-01-24 재단법인 포항산업과학연구원 A preparation method of magnesia having low silica and ferric oxide contents
KR100922562B1 (en) * 2002-09-24 2009-10-21 재단법인 포항산업과학연구원 A Method for Preparing CaCO3 With Desulfurization Slag and CO2
KR100922563B1 (en) * 2002-09-24 2009-10-21 재단법인 포항산업과학연구원 A Method for Preparing Calcium Carbonate From Steel-Making Slag and Corbon Dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042232A (en) * 1983-08-15 1985-03-06 Shin Nippon Kagaku Kogyo Co Ltd Manufacture of magnesium oxide and magnesium hydroxide having low boron content
JPS6126511A (en) * 1984-07-13 1986-02-05 Chuo Denki Kogyo Kk High-purity acicular magnesium oxide and its preparation
KR970042335A (en) * 1995-12-26 1997-07-24 김종진 Removal method of silicon dioxide in decarbonated sludge produced during seawater magnesia production
KR970042268A (en) * 1995-12-28 1997-07-24 김종진 Gypsum using decarbonate sludge produced in seawater magnesia
KR20020051970A (en) * 2000-12-21 2002-07-02 신현준 A preparation method of magnesia having low silica and ferric oxide contents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042232A (en) * 1983-08-15 1985-03-06 Shin Nippon Kagaku Kogyo Co Ltd Manufacture of magnesium oxide and magnesium hydroxide having low boron content
JPS6126511A (en) * 1984-07-13 1986-02-05 Chuo Denki Kogyo Kk High-purity acicular magnesium oxide and its preparation
KR970042335A (en) * 1995-12-26 1997-07-24 김종진 Removal method of silicon dioxide in decarbonated sludge produced during seawater magnesia production
KR970042268A (en) * 1995-12-28 1997-07-24 김종진 Gypsum using decarbonate sludge produced in seawater magnesia
KR20020051970A (en) * 2000-12-21 2002-07-02 신현준 A preparation method of magnesia having low silica and ferric oxide contents

Also Published As

Publication number Publication date
KR20020049584A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
KR101375735B1 (en) Method for mineral carbonation of waste cement using ammonium salt
WO2018099558A1 (en) Metallic ore pellets
KR20190134085A (en) Method of recycling chlorine bypass dust generated in cement manufacturing process
KR100502235B1 (en) A preparation method of treatment liquid for decarbonizing sea water having low contents-silica slag solution
KR101569490B1 (en) Neutralizing method for waste sulfuric acid using De-Sulfurized slag
KR101303051B1 (en) Apparatus and Method for Treating Slag
US20100303707A1 (en) Method for production of calcium compounds
KR100467763B1 (en) A preparation method of magnesia having low silica and ferric oxide contents
KR100498067B1 (en) The decarbonization method of sea water for preparing sea water magnesia
KR100467762B1 (en) A preparation method of magnesia having low calcium and boron contents
WO2018099559A1 (en) Metallic ore pellets
KR20040026383A (en) A Method for Preparing Calcium Carbonate From Steel-Making Slag and Corbon Dioxide
KR100566595B1 (en) Steel refinery flux
KR100922562B1 (en) A Method for Preparing CaCO3 With Desulfurization Slag and CO2
US4229423A (en) Method of producing magnesium hydroxide
JPH0483745A (en) Production of alumina cement using electric furnace slag as raw material
KR101050146B1 (en) Manufacturing method of slag preparation for steelmaking
KR101125399B1 (en) Method for preparing calcium based material
KR20000041659A (en) Production process of aqueous magnesium sulfate solution from magnesia-chrome waste fireproof materials
KR100226907B1 (en) Processing method of a high-purity slurry
CA1100284A (en) Method for obtaining aluminium oxide
KR100476812B1 (en) A manufacturing method of synthetic flux for removal silicon in molten steel
CN117802312A (en) Chemical beneficiation method for improving quality and reducing calcium of mixed rare earth concentrate
KR100833025B1 (en) Method for Manufacturing electro-fused Magnesia Chrome Clinker
KR100280264B1 (en) High purity gypsum manufacturing method using decarburized sludge

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140710

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee