KR20030049335A - Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance - Google Patents

Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance Download PDF

Info

Publication number
KR20030049335A
KR20030049335A KR1020010079524A KR20010079524A KR20030049335A KR 20030049335 A KR20030049335 A KR 20030049335A KR 1020010079524 A KR1020010079524 A KR 1020010079524A KR 20010079524 A KR20010079524 A KR 20010079524A KR 20030049335 A KR20030049335 A KR 20030049335A
Authority
KR
South Korea
Prior art keywords
chipping resistance
layer
crater
steel sheet
plating layer
Prior art date
Application number
KR1020010079524A
Other languages
Korean (ko)
Inventor
김종상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010079524A priority Critical patent/KR20030049335A/en
Publication of KR20030049335A publication Critical patent/KR20030049335A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent

Abstract

PURPOSE: A method of manufacturing hot-dip galvannealed steel sheets with good stone chipping resistance is provided, which is characterized in that crater formed inside galvannealed layer plays roles both as crack arrest and as locking that improves binding force between galvannealed layer and matrix. CONSTITUTION: The method is characterized in that the temperature of steel sheet to be fed into galvanizing bath with aluminum concentration of 0.13 to 0.14 wt.% is kept between 460 and 480 deg.C; alloying degree of galvanized layer is controlled within 10.5 to 12.5 wt%Fe; crater portion in galvannealed layer is regulated in the range of 11 to 20 %.

Description

내치핑성이 향상된 합금화 용융아연 도금강판의 제조방법{Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance}Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance

본 발명은 합금화 용융아연 도금강판의 제조방법에 관한 것으로, 특히 도금층내의 크레이터 분율을 조절하여 내치핑성(Stone chipping resistance)이 향상된 합금화 용융아연 도금강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an alloyed hot-dip galvanized steel sheet, and more particularly, to a method for manufacturing an alloyed hot-dip galvanized steel sheet having improved chip chipping resistance by adjusting the crater fraction in the plating layer.

최근 합금화 용융아연 도금강판(Galvannealed steel: GA)은 내식성, 도장성 및 용접성이 우수하면서 경제성이 있어 최근 일본, 미국을 중심으로 자동차 외판용도로 사용이 확대되고 있다. 그러나 GA강판을 자동차 외판으로 사용하기 위해서는 자동차 주행 중에 날아오는 돌멩이, 자갈 등에 의해 도막 또는 도금층이 탈락되지 않도록 내치핑성이 매우 우수하여야 한다. 이러한 특성은 합금화 용융아연 도금강판의 아연과 철의 합금화 도금층에 의해 나타난다.Recently, galvanized galvanized steel (GA) has excellent corrosion resistance, paintability, and weldability, and is economical, and is recently being used for automotive exteriors mainly in Japan and the United States. However, in order to use the GA steel sheet as an automobile shell, the chipping resistance or the plating layer must be very excellent so that the coating film or the plating layer does not fall off due to the flying stones or gravel. This property is exhibited by an alloyed plating layer of zinc and iron in an alloyed hot dip galvanized steel sheet.

이러한 합금화 도금층은 연속용융도금 공정중에서 용융아연욕조를 통과한 후아연 도금된 강판을 표층의 아연도금층이 완전히 굳기 전에 직상부에 설치된 합금화 열처리로에서 도금층을 가열한 후 공기냉각대에서 급속 냉각시켜 제조하게 된다. 또 합금화 열처리반응은 용융상태의 아연과 소지의 철성분이 열확산 반응으로 합금층을 생성시키게 되고 상온으로 냉각됨에 따라 그 반응은 중지하게 된다.The alloyed plating layer is manufactured by passing the hot dip galvanizing bath in the continuous hot dip plating process and heating the plated layer in an alloy heat treatment furnace installed directly above the zinc plated steel sheet before the surface of the zinc plated layer is completely hardened. Done. In the alloying heat treatment reaction, the zinc in the molten state and the iron component of the base heat-diffuse reaction to form an alloy layer and the reaction is stopped as it is cooled to room temperature.

다음은 합금화 용융아연 도금층에 존재하는 각 상과 그 특성을 살펴보면 먼저 소지철과의 계면에 존재하는 케피탈 감마(Γ)상과 케피탈 감마원(Γ1)상은 각각 합금층중 철성분의 함량이 24∼31wt% 및 18.5∼23.5wt%이고, 금속학적 격자 구조는 체심 입방정계와 면심 입방정계이다. 이중 케피탈 감마상이 가장 취약한 상으로서, 가공시 합금층의 파우더링(Powdering)을 발생시키는 주요인이다. 다음으로 그 상층에 존재하는 델타상(δ)은 철성분이 8.5∼13wt%이고 육방 정계로 격자 구조가 되어 있어 케피탈 감마층에 비해 가공성이 우수하며 또한 마찰계수가 낮다. 제일 상층에 존재하는 제타(ζ)상은 철성분이 6.7∼7.2wt%이고, 격자 구조가 단사정계로 이루어져 있어 합금상중 도금밀착성은 가장 좋으나 마찰계수가 높아 가공시 합금층의 플래킹(Flaking)현상을 유발하게 된다.Next, each phase present in the alloyed hot-dip galvanized layer and its characteristics are as follows. First, the keptal gamma (Γ) phase and the capital gamma source (Γ1) phase present at the interface with the base iron are 24 to 24, respectively. 31 wt% and 18.5-23.5 wt%, and the metallic lattice structure is a body centered cubic system and a face centered cubic system. Among them, the capital Gamma phase is the weakest phase and is the main cause of powdering of the alloy layer during processing. Next, the delta phase (δ) present in the upper layer has an iron component of 8.5 to 13 wt% and has a hexagonal lattice structure, which is superior in workability and low coefficient of friction as compared to the capacitive gamma layer. The zeta (ζ) phase present in the uppermost layer has iron content of 6.7 ~ 7.2wt% and the lattice structure is monoclinic system, which has the best plating adhesion among alloy phases, but has a high coefficient of friction. Will cause.

따라서 가공성 측면에서 감마상과 제타상이 매우 얇고 델타상으로만 형성된 합금상을 갖는 것이 유리하다. 이러한 합금상들은 열 확산에 의해 도금층중의 아연과 소지의 철성분이 합금화 반응을 일으켜 생성되는 것으로 합금화처리 온도, 합금화 처리시간 및 용융아연 도금욕중의 성분에 따라 합금상들의 분포가 달라지게 된다.Therefore, in view of workability, it is advantageous to have an alloy phase in which the gamma phase and the zeta phase are very thin and formed only in the delta phase. These alloy phases are produced by thermal diffusion of zinc in the plating layer and an iron component of the base material. The distribution of the alloy phases varies depending on the alloying temperature, the alloying time, and the components in the hot dip galvanizing bath. .

여기에서 중상도 도장처리한 GA재의 내치핑성 열화원인을 살펴보면 크게 소재 요인과 도장요인으로 구분할 수 있다. 소재 요인으로는 합금화도, 도금부착량, 합금상 조직, 소지철/도금층 계면의 밀착력, 도금층내 크레이터(crater), 감마상의 두께 및 강성분 등이 있으며, 도장 요인으로는 방청유 탈지성, 도료의 종류 및 두께 등이 있다. 그러나 본 발명에서는 도장요인은 일정하게 고정시키고 도금층 요인을 중점적으로 조사하였다.Here, looking at the causes of chipping resistance degradation of the GA material coated with a medium-definition coating can be largely divided into material factors and coating factors. Material factors include alloying degree, coating weight, alloy phase structure, adhesion between base iron / plating layer interface, crater in plating layer, thickness of gamma phase and steel components, etc. Coating factors include antirust oil degreasing and paint type. And thickness. However, in the present invention, the coating factors are fixed and the plating layer factors are investigated.

합금화 용융아연 도금강판에서 관찰되는 중요한 특성중의 하나는 도금층의 크레이터 형성이다. 크레이터는 소지철의 결정립계를 따라 시작된 격렬한 아연-철간의 불균일 합금화(Outburst)반응에 의해 생성된다. 이들 불균일 합금상은 인접지역의 액상아연을 모세관현상 및 표면장력 효과에 의해 흡입하여 보다 빠르게 성장하게 되고, 아연이 고갈된 곳에 분화구 형태의 크레이터를 형성하게 된다. 크레이터는 대부분의 합금화 용융아연 도금강판에서 관찰되는 고유의 물성으로 크레이터 분율에 있어 매우 큰 차이를 나타내고 있으며, 특히 도금욕내 알루미늄 함량이 높은 연속식 용융아연 도금강판에서 잘 나타난다.One of the important properties observed in alloyed hot-dip galvanized steel sheet is the crater formation of the plated layer. Craters are produced by a violent zinc-iron outburst reaction starting along the grain boundaries of ferrous iron. These heterogeneous alloy phases grow faster by inhaling liquid zinc in adjacent regions by capillarity and surface tension effects, and form craters in the form of craters where zinc is depleted. The craters exhibit very large differences in crater fractions due to the inherent properties observed in most alloyed hot-dip galvanized steel sheets, especially in continuous hot-dip galvanized steel sheets with high aluminum content in the plating bath.

그러나 도금층내 크레이터가 내치핑성에 미치는 영향에 대한 연구는 매우 미약하며 연구자에 따라 상반된 결과를 발표하고 있다.However, the study of the effect of craters on the chipping resistance in the plating layer is very weak, and the researchers have published conflicting results.

종래의 합금화 용융아연 도금강판의 내치핑성을 향상시키기 위한 방법으로 일본 신일본제철(NSC)에서는 합금화 용융아연 도금층 상부에 얇게 철을 전기도금한 플레쉬(Flash) 합금화 용융아연 도금강판을 생산하여 왔다. 또한 일본 가와사키제철(KSC)에서는 철-인 합금도금을 플레쉬 도금한 합금화 용융아연 도금강판을 개발하였다(GALVATECH '95). 그러나 자동차사의 원가절감 요구에 따라 최근 미국 LTV사에서 소량 생산하고 있는 인산염처리 합금화 용융아연 도금강판 및 일본 일본강관(NKK)의 니켈계 무기윤활 피복강판 등이 개발되었다(GALVATECH '98).In order to improve the chipping resistance of conventional alloyed hot-dip galvanized steel sheet, Nippon Nippon Steel (NSC) has produced flash-alloyed hot-dip galvanized steel sheet which is thinly electroplated with iron on the alloyed hot-dip galvanized layer. . In addition, Kawasaki Steel (KSC) has developed an alloyed hot dip galvanized steel sheet that is flash-plated with iron-phosphorus alloy plating (GALVATECH '95). However, in response to demand for cost reduction by automobile companies, recently developed phosphate-alloyed hot-dip galvanized steel sheets produced by LTV in the United States and nickel-based inorganic lubricated coated steel sheets of NKK (Japan KAL) were developed (GALVATECH '98).

전자는 합금화 용융도금 강판위에 인산염 피막(Zn3_xMx(PO4)2·4H2O)를 0.5∼1g/m2도포시켜 프레스 가공시 성형하중 감소로 프레스 다이의 수명연장 및 마찰계수 감소로 내치핑성은 향상되나, 파우더링성이 열화되고 자동차사의 전착도장시 전처리공정에서 인산염피막이 잘 탈지가 되지 않아 도장밀착성이 열화되는 문제점이 있다.The former is a phosphate coating (Zn 3_x M x (PO 4 ) 2 · 4H 2 O) a 0.5~1g / m 2 is applied to extended life and reduced coefficient of friction of the press die to reduce the molding force during press forming on alloyed hot-dip coated steel strip Although chipping resistance is improved, there is a problem in that powdering resistance is deteriorated and coating adhesion is deteriorated because the phosphate coating is not degreased well in the pretreatment process during the electrodeposition coating of automobiles.

후자는 합금화 용융도금 강판 위에 니켈계 윤활피막을 100∼200mg/m2도포시킨 것으로 마찰계수를 감소시켜 가공성 및 내치핑성이 개선되고 인산염처리성, 도장성, 내식성은 일반 합금화 용융아연 도금강판과 동등한 성능을 갖는 것으로 보고되고 있다. 그러나 별도의 윤활피막을 도포할 수 있는 설비신설이 필요하고 제조원가가 상승하므로 자동차사에서 거의 채택하고 있지 않고 있다. 이밖에도 네덜란드 후고벤스(Hoogovens)에서는 강성분에 0.05%Si를 첨가시켜 도금층과 소지철의 전단강도를 증가시켜 내치핑성을 향상시킨 것으로 보고되고 있으나(GALVATECH '98), Si첨가에 따른 합금화반응이 크게 억제되는 문제점이 있다.The latter is 100 ~ 200mg / m 2 nickel coated lubricating coating on alloyed hot-dip galvanized steel sheet, which reduces the coefficient of friction and improves workability and chipping resistance. Phosphate treatment, paintability and corrosion resistance It is reported to have equivalent performance. However, it is rarely adopted by automobile companies due to the necessity of new facility to apply a separate lubricating film and an increase in manufacturing cost. In addition, Hoogensens, the Netherlands, reported that the addition of 0.05% Si to the steel component increased the shear strength of the plated layer and the ferrous iron, thereby improving the chipping resistance (GALVATECH '98). There is a problem that is greatly suppressed.

따라서 본 발명자는 상술한 별도의 플레쉬도금, 인산염처리, 윤활피복 등의 후처리 및 강성분의 변경없이 내치핑성이 우수한 합금화 용융아연 도금강판을 제조할 수 있는 방법을 개발하고자 수차례의 반복 실험 및 각종 품질평가를 통해 합금화 용융아연 도금층내 존재하는 크레이터 분율 및 합금화도에 따라 내치핑성이 크게 변화되는 것을 밝혀내었다. 즉 본 발명은 합금화 용융아연 도금층내의 크레이터 분율을 적절히 조절하여 내치핑성이 향상된 합금화 용융아연 도금강판의 제조방법을 제공하고자 한다.Accordingly, the present inventors have repeatedly conducted several experiments to develop a method for producing an alloyed hot-dip galvanized steel sheet having excellent chipping resistance without post-treatment such as the above-described separate flash plating, phosphate treatment, lubricating coating, and change of steel components. And various quality evaluations revealed that the chipping resistance is greatly changed according to the crater fraction and the degree of alloying present in the alloyed hot dip galvanized layer. That is, the present invention is to provide a method for manufacturing an alloyed hot-dip galvanized steel sheet with improved chipping resistance by appropriately adjusting the crater fraction in the alloyed hot-dip galvanized layer.

상기의 목적을 달성하기 위한 본 발명은 합금화 용융아연 도금층내의 크레이터 분율을 조절하여 내치핑성이 우수한 합금화 용융아연 도금강판의 제조방법에 있어서,In the present invention for achieving the above object in the method of manufacturing an alloyed hot-dip galvanized steel sheet excellent in chipping resistance by adjusting the crater fraction in the alloyed hot-dip galvanizing layer,

도금욕의 Al농도가 0.13∼0.14wt%인 용융아연 도금욕에 인입되는 강판온도를 460∼480℃로 유지하고, 도금층의 합금화도를 10.5∼12.5wt%Fe로 조절하는 것을 특징으로 하는 내치핑성이 향상된 합금화 용융아연 도금강판의 제조방법을 제공한다.The chipping resistance characterized by maintaining the temperature of the steel sheet introduced into the hot dip galvanizing bath having an Al concentration of 0.13 to 0.14 wt% at the plating bath and adjusting the alloying degree of the plating layer to 10.5 to 12.5 wt% Fe. It provides a method for producing alloyed hot-dip galvanized steel sheet with improved properties.

또한 상기 합금화 용융아연 도금층내의 크레이터 분율이 11∼20%로 조절되도록 합금화 처리하는 것을 특징으로 한다.In addition, the alloying treatment is characterized in that the crater fraction in the alloyed hot-dip galvanizing layer is adjusted to 11 to 20%.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

먼저 본 발명자는 GA강판의 내치핑성 열화원인을 규명하기 위하여 중상도처리한 합금화 용융아연 도금강판을 대상으로 저온(-20℃)에서 내치핑성 시험시 심한 도막 손상부를 수십 차례 확대 관찰한 결과, 도금층/소지철 계면에서 약 1mm크기로도금층이 탈락된 것으로 나타났다. 따라서 내치핑성을 향상시키기 위해서는 도금층과 소지철사이의 밀착성이 매우 중요함을 알 수 있었다. 또한 내치핑성이 불량한 GA도금층의 표면을 주사전자현미경(SEM)으로 관찰한 결과에 의하면, 도금층 표면에 제타상이 일부 잔류하고 있으며, 도금층내 철함량이 10.5wt%미만이고 크레이터 분율도 10%이하로 낮게 나타났다. 따라서 GA도금층의 내치핑성은 GA도금층의 합금화도 및 크레이터 분율과 밀접한 상관성이 있음을 알 수 있었다.First, the present inventors have observed the damage of the doped coating film several times during the chipping resistance test at low temperature (-20 ° C) of the alloyed hot-dip galvanized steel sheet subjected to medium-phase treatment to identify the cause of chipping resistance degradation of the GA steel sheet It was found that the plating layer was dropped to about 1 mm at the plating layer / ferrous iron interface. Therefore, in order to improve the chipping resistance, it was found that the adhesion between the plating layer and the base steel is very important. In addition, according to the results of observation of the surface of the GA plating layer having poor chipping resistance with a scanning electron microscope (SEM), some zeta phase remained on the surface of the plating layer, the iron content in the plating layer was less than 10.5wt%, and the crater fraction was less than 10%. Appeared as low. Therefore, the chipping resistance of the GA plating layer was found to be closely correlated with the alloying degree and the crater fraction of the GA plating layer.

도금층내 크레이터 형성 원인을 조사한 결과 강판이 도금욕에서 합금화로에 들어가기 전에 Fe2Al5합금층이 형성된다. 이들 초기 합금층들은 완전한 합금층을 형성하기 위한 철-아연 변태를 지연하기 때문에 확산억제층으로 불리고 있다. 이들 확산억제층은 합금화처리시 불안정하게 되어 완전한 철-아연 합금층을 형성하게 된다. 이때 매우 반응성이 높은 표면에서는 합금화반응이 다소 균일하고 빠르게 진행되므로, 크레이터가 거의 없는 합금층을 형성하게 된다.As a result of investigating the cause of crater formation in the plating layer, the Fe 2 Al 5 alloy layer is formed before the steel sheet enters the alloying furnace in the plating bath. These initial alloy layers are called diffusion suppression layers because they delay the iron-zinc transformation to form a complete alloy layer. These diffusion inhibitory layers become unstable during the alloying process to form a complete iron-zinc alloy layer. At this time, since the alloying reaction proceeds somewhat uniformly and rapidly on the highly reactive surface, an alloy layer having almost no craters is formed.

반면 표면반응성이 적당하거나 불균일하면 이들 합금화반응은 아웃버스트(outburst)형태로 불균일하게 일어난다. 따라서 인접한 잔류아연을 모세관현상 또는 표면장력효과에 의해 흡입하여 보다 빠르게 성장하게 되고, 이때 아연이 고갈된 곳은 크레이터를 형성하게 된다.On the other hand, if the surface reactivity is moderate or nonuniform, these alloying reactions occur unevenly in the form of outburst. Therefore, the adjacent residual zinc is sucked up by capillary action or surface tension effect and grows faster. At this time, the zinc is depleted to form craters.

또한 분명한 사실은 아웃버스트는 하부의 철을 소비하면서 성장하므로, 소지철 단면조직을 관찰한 결과에 의하면 평균 전체 도금층의 15%이상에 해당하는 계면의 침식(depression)을 나타내었다. 이러한 기구는 합금층을 화학적 방법에 의해제거한 후 표면을 관찰한 결과 더욱 뚜렷이 볼 수 있었다. 화학적 제거 후에 주사전자 현미경으로 관찰된 침식(depressed) 부분은 명확히 초기 아웃버스트에 해당하며, 크레이터 발생부에 위치함을 알 수 있었다.Obviously, the outburst grows while consuming the iron at the bottom, and the result of observing the base iron cross-sectional structure shows that the interface has decayed at least 15% of the average plating layer. Such a device was more clearly seen when the surface of the alloy layer was removed by chemical method. The depressed part observed under the scanning electron microscope after the chemical removal clearly corresponds to the initial outburst, it can be seen that located in the crater generating part.

또한 고배율로 관찰한 결과에 의하면 하강부에서 페라이트(ferrite) 결정립계가 항상 관찰되는 것으로부터, 아웃버스트는 극저탄소강의 페라이트 결정립계를 따라 나타난다는 이론과 잘 부합됨을 알아냈다.In addition, the results of the high magnification show that the ferrite grain boundary is always observed in the lower portion, and it is found that the outburst coincides well with the theory that the outburst follows the ferrite grain boundary of the ultra low carbon steel.

본 발명에서 도금층내의 크레이터 분율을 11∼20%로 한정한 이유에 대해 설명한다. 도금층내 크레이터 분율은 전착도장을 실시한 도금층 단면조직을 광학현미경으로 관찰하고, 소지철 계면까지 도금층이 패인 부분의 길이를 측정하여 전체 관찰부의 길이인 1cm로 나누어 백분율로 측정하였다. 이 방법은 시간이 많이 걸리는 단점이 있으나, 크레이터 유무를 정확히 판별할 수 있고 재현성도 우수하여 판정기준으로 사용하였다.In the present invention, the reason for limiting the crater fraction in the plating layer to 11 to 20% will be described. The crater fraction in the plated layer was observed by the optical microscope of the plated layer structure subjected to the electrodeposition coating, measured the length of the portion of the plated layer to the base iron interface, divided by 1cm, the length of the entire observation portion was measured as a percentage. This method takes a lot of time, but it was used as a criterion because it can accurately determine the presence or absence of craters and has excellent reproducibility.

크레이터 분율이 11%미만은 주로 도금층 표면까지 충분히 합금화되지 않은 미합금화 상태로서, 제타상이 주성분이며 프레스 가공시 마찰계수가 증가되고, 소지철과 도금층 계면에서 플레이킹 형태로 도금층이 탈락되는 문제점이 발생하였다. 본 발명자의 실험결과에 의하면 내치핑성은 압축응력에 의한 도금층 탈락현상인 파우더링성과는 상관성이 적은 반면, 전단응력에 의해 도금층 두께 이상으로 탈락되는 플레킹성과 매우 밀접한 상관성이 있는 것을 확인하였다.A crater fraction of less than 11% is mainly an unalloyed state that is not sufficiently alloyed to the surface of the plating layer.The zeta phase is the main component, the friction coefficient increases during press work, and the plating layer falls off in the form of flaking at the interface between the base iron and the plating layer. It was. According to the experimental results of the present inventors, the chipping resistance has a low correlation with the powdering, which is the plating layer dropping phenomenon due to the compressive stress, but it has a very close correlation with the flaking dropped over the thickness of the plating layer by the shear stress.

크레이터 분율이 20%를 초과한 경우는 아웃버스트 반응이 과도하게 진행되어 취약한 감마상이 두껍게 발달하여 파우더링이 심하게 발생하고, 도장후 내식성도저하되는 문제점이 나타났다.When the crater fraction exceeded 20%, the outburst reaction was excessively progressed, so that the vulnerable gamma image developed thickly, powdering occurred severely, and the corrosion resistance after coating was also reduced.

그러나 본 발명의 크레이터 분율이 11∼20%로 조절되면, 내치핑성 평가시 균열전파에 대한 장애물(Crack arrest)로 작용함과 동시에 표면요철에 의한 도장층과의 결합력을 증가(Locking 효과)시켜 내치핑성이 향상되는 것으로 관찰되었다.However, when the crater fraction of the present invention is adjusted to 11-20%, it acts as a crack arrest for chipping resistance evaluation and increases the bonding force with the coating layer due to surface irregularities (locking effect). It was observed that the chipping resistance was improved.

다음은 크레이터 형성과 관련된 조업인자를 한정한 이유에 대해 설명한다.The following explains the reason for limiting the operation factors related to crater formation.

먼저 도금욕에 인입되는 강판온도를 460∼480℃로 한정한 이유는 강판온도가 증가함에 따라 철-아연간의 아웃버스트 반응이 증가하기 때문이다. 즉 강판온도가 480℃를 초과하면 도금욕에 침적시 초기 형성되는 합금상이 대부분 아웃버스트 조직으로 나타나서 크레이터 발생율이 20%을 초과하는 것으로 나타났다. 또한 취약한 감마상의 형성을 촉진하여 파우더링성이 열화되는 문제점이 발생하였다. 반면 460℃ 미만에서 초기 합금상은 모두 주상정인 제타상으로 형성되어 아웃버스트 반응이 크게 억제되기 때문에 크레이터 발생율이 10%미만으로 나타났다.First, the steel sheet temperature introduced into the plating bath is limited to 460 to 480 ° C because the outburst reaction between iron and zinc increases as the steel sheet temperature increases. In other words, when the steel plate temperature exceeds 480 ℃, the alloy phase initially formed during the deposition in the plating bath is mostly outburst structure appeared to exceed the crater generation rate 20%. In addition, the problem of deterioration of the powdering property by promoting the formation of a weak gamma phase. On the other hand, below 460 ° C, all of the initial alloy phases were formed as zeta phases, which are columnar crystals, and the outburst reaction was greatly suppressed.

도금욕내 알루미늄 농도를 0.13∼0.140%로 한정한 이유는 도금욕내 Al농도가 0.13%미만인 경우, 철-알루미늄계의 초기 확산억제층이 소지철 표면을 피복하지 못함으로 인해, 확산억제층이 없거나 얇은 부위에서 우선적으로 합금층이 성장하여 크레이터 발생량이 높은 것으로 나타났다. 또한 취약한 감마상의 형성을 촉진하여 파우더링량이 크게 증가하였다.The reason for limiting the aluminum concentration in the plating bath to 0.13 to 0.140% is that when the Al concentration in the plating bath is less than 0.13%, the initial diffusion suppression layer of iron-aluminum does not cover the surface of the base iron, so that the diffusion suppression layer does not exist or is thin. The alloy layer grows preferentially at the site, indicating that the amount of crater generation is high. In addition, the amount of powdering was greatly increased by promoting formation of a weak gamma phase.

반면 알루미늄 농도가 0.14%를 초과하면 초기 확산억제층이 두껍게 형성되어 철-아연간의 합금화반응이 매우 억제되기 때문에 제타상으로 이루어진 합금층을 형성하고 크레이터 형성이 10%미만으로 억제되었다.On the other hand, when the aluminum concentration exceeds 0.14%, the initial diffusion suppression layer is formed thick, and the alloying reaction between iron and zinc is very suppressed, thus forming an alloy layer made of zeta phase and the crater formation is suppressed to less than 10%.

도금층의 합금화도를 10.5∼12.5wt%Fe로 한정한 이유는 합금화도가 10.5wt%Fe 미만에서는 도금층 표면에 주상정의 제타상이 잔존하여 마찰계수가 증가되어 플레킹성이 열화될 뿐만 아니라 내치핑성도 현저히 저하되는 것으로 나타났다. 반면 합금화도가 12.5wt%Fe를 초과하면 제타상은 소멸되나, 취약한 감마상의 두께가 증가하여 파우더링량이 증가하는 문제점이 발생하였다.The reason for limiting the alloying degree of the plating layer to 10.5 to 12.5wt% Fe is that when the alloying degree is less than 10.5wt% Fe, the zeta phase of the columnar phase remains on the surface of the plating layer, so that the friction coefficient is increased and the flaking property is not only deteriorated but also the chipping resistance is remarkably increased. It was shown to degrade. On the other hand, when the alloying degree exceeds 12.5wt% Fe, the zeta phase disappears, but the thickness of the vulnerable gamma phase increases, resulting in an increase in powdering amount.

파우더링량은 합금상중의 감마상 두께에 밀접한 관계가 있다. 특히 감마상 두께를 0.6㎛이하로 관리하는 것이 내파우더링성 측면에서 필요하며, 합금상가 10.5wt% 미만에서는 주로 제타상으로 이루어진 합금상으로 플레이킹 발생이 증가하며, 12.5wt%를 초과시에는 감마상 두께가 0.6㎛를 초과하여 파우더링량이 증가한다.The amount of powdering is closely related to the thickness of the gamma phase in the alloy phase. In particular, it is necessary to manage the thickness of the gamma phase to be 0.6 µm or less in terms of powder resistance, and when the alloy phase is less than 10.5 wt%, flaking occurs to an alloy phase mainly composed of zeta phase. The amount of powdering increases because the thickness exceeds 0.6 µm.

이하 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

<실시예 1><Example 1>

표 1은 본 발명에 의한 크레이터 분율에 따른 내치핑성, 플레킹성, 파우더링성 평가결과를 나타낸 것으로 두께 0.8mm인 냉간압연 강판을 사용하여 도금부착량을 단면기준으로 50g/m2으로 하고, 합금화 조건을 달리 하여 합금화도는 약 11wt%로 동일하나 도금층내 크레이터 분율을 변화시킨 강판을 대상으로 파우더링성, 내치핑성, 내플레킹성을 평가하여 나타내었다. 이때 파우더링성은 컵성형시험기(Cupping tester)을 이용하여 도금층의 탈락량을 측정하여 정량 평가하였다.Table 1 shows the results of chipping resistance, flaking resistance and powdering evaluation according to the crater fraction according to the present invention. The coating deposition amount was 50 g / m 2 based on the cross section using a cold rolled steel sheet having a thickness of 0.8 mm. The alloying degree was different from about 11wt%, but powdering, chipping resistance, and flaking resistance were evaluated for steel sheets with varying crater fractions in the plating layer. At this time, powdering property was quantitatively evaluated by measuring the amount of dropping of the plating layer using a cup forming tester.

강판의 내치핑성을 평가하기 위해서 먼저 자동차 도장라인에서 GA강판 위에약 10㎛두께로 전착도장을 실시하였다. 전착도장이 끝난 시편은 각각 30㎛두께로 중도 및 상도를 실시하였다. 내치핑성 시험방법은 일본 수가(SUGA)사의 치핑시험기(Gravel tester)를 사용하였으며, -20℃의 저온에서 3시간 이상 유지후, 공기압력 2 Kg/cm2에서 90°각도로 시편에 충돌시켰다. 이때 사용한 돌멩이는 일본 자동차 시험규정에 따라 JIS A5001에 규정된 직경 약 5mm의 크기이며 50±1g을 시편에 충돌시켰다.In order to evaluate the chipping resistance of the steel sheet, electrodeposition coating was first performed on a GA steel sheet in an automobile coating line with a thickness of about 10 μm. After the electrodeposition coating, the specimens were subjected to intermediate and top coat thicknesses of 30 µm, respectively. The chipping resistance test method used a SUGA chipping tester, and was held at a low temperature of -20 ° C for at least 3 hours, and then hit the specimen at an angle of 90 ° at an air pressure of 2 Kg / cm 2 . . The pebbles used at this time were about 5 mm in diameter prescribed in JIS A5001 according to Japanese automobile test regulations and crashed 50 ± 1 g onto the specimen.

치핑시험이 끝난 시편은 접착성 셀로판 테이프를 사용하여 부풀은 도막이 완전히 떨어질 때까지 박리를 실시한 후 정량 평가하였다. 이때 테이프로 잘 떨어지지 않는 부위는 날카로운 칼을 사용하여 완전히 제거하였다. 정량적인 평가방법은 시편 중앙의 50mmX50mm 부에서 0.5mm이상의 박리 부의 면적을 광학현미경(Image analyzer)으로 측정하여 평가 면적당 박리면적(mm2/cm2)을 계산하였다.After the chipping test, the specimens were quantitatively evaluated by peeling using an adhesive cellophane tape until the swollen coating film completely dropped. At this time, the area that is hard to fall off with the tape was completely removed using a sharp knife. In the quantitative evaluation method, the peeling area (mm 2 / cm 2 ) per evaluation area was calculated by measuring the area of the peeling part of 0.5mm or more in the 50mmX50mm part in the center of the specimen by an optical microscope.

이 때 0.45 mm2/cm2미만이면 내치핑성이 우수한 것으로 나타내었다.0.45 mm2/ cm2Less than The chipping resistance was shown to be excellent.

플레킹성은 자체 제작한 유-채널(U-channel)형태의 플레킹 시험기를 사용하였다. 시험 시편(50x240mm)은 66mm높이의 유-채널을 만들기 위해 80mm/초의 속도로 비드(bead)를 거쳐 인발된다. 소재의 파단을 일으키지 않고 시편두께에 따라 가공도를 주기 위해 비드의 곡률을 0.5mm로, 하중을 0.5ton으로 고정하였다. 시험시편은 육안 검사를 통해 내부 시험기준을 정하여 1등급(매우 우수)에서 5등급(매우 불량)으로 등급을 정하였다. 1∼ 3등급까지의 도금층은 합격한 것으로 판정하였다The flaking property used a self-made U-channel flaking tester. Test specimens (50x240mm) are drawn through beads at a speed of 80mm / sec to make a 66mm high channel. In order to give workability according to the thickness of the specimen without breaking the material, the curvature of the bead was fixed at 0.5 mm and the load at 0.5 ton. Test specimens were graded from the 1st grade (very good) to the 5th grade (very poor) by determining the internal test standard through visual inspection. It was judged that the plating layer of grades 1-3 was passed.

크레이터분율(%)Crater fraction (%) 내치핑성박리면적(mm2/cm2)Chipping resistance peeling area (mm 2 / cm 2 ) 플레킹성(등급)Flicking (Grade) 파우더링량(mg)Powdering amount (mg) 비고Remarks 33 1.351.35 55 1515 비교예 1Comparative Example 1 66 0.850.85 44 1010 비교예 2Comparative Example 2 1212 0.350.35 22 88 본 발명예 1Inventive Example 1 1818 0.250.25 1One 55 본 발명예 2Inventive Example 2 2525 0.180.18 1One 3535 비교예 3Comparative Example 3

표 1에서 보듯이 크레이터 분율이 본 발명의 조건인 11∼20%을 만족하는 발명예(1,2)는 치핑 균열전파에 대한 장애물(Crack arrest)로 작용함과 동시에 표면요철에 의한 도장층과의 결합력을 증가(Locking 효과)시켜 박리면적이 0.25 ∼ 0.35mm2/cm2로 기준치 0.45 mm2/cm2미만으로 내치핑성이 우수한 것으로 관찰되었다.As shown in Table 1, the invention examples (1, 2) in which the crater fraction satisfies 11 to 20% of the conditions of the present invention act as a crack arrest against chipping crack propagation, Peeling area is increased by 0.25 ~ 0.35mm2/ cm2Low standard value 0.45 mm2/ cm2Under Excellent chipping resistance was observed.

그러나 크레이터 분율이 10% 미만인 비교예(1,2)의 경우 파우더링량은 양호하나, 내치핑성 및 플레킹성이 크게 열화되었다. 반면 크레이터 분율이 20%를 초과한 비교예(3)의 경우 내치핑성, 플레킹성은 양호하나, 취약한 감마상의 두께가 1㎛이상으로 증가하여 파우더링량이 크게 증가하였다.However, the amount of powdering was good in Comparative Examples (1, 2) having a crater fraction of less than 10%, but chipping resistance and flaking resistance were greatly deteriorated. On the other hand, in the comparative example (3) having a crater fraction of more than 20%, the chipping resistance and flaking resistance were good, but the thickness of the vulnerable gamma phase was increased to 1 µm or more, thereby greatly increasing the amount of powdering.

<실시예 2><Example 2>

두께 0.8mm인 냉간압연 강판을 사용하여 도금부착량을 단면기준으로 50g/m2으로 하고, 도금욕에 침적되는 강판입욕온도, 도금욕내 알루미늄 농도, 합금화도를 달리 하여 도금층내 크레이터 분율 및 내치핑성 및 파우더링량을 측정한 결과를 표 2에 나타내었다.Thickness of 0.8mm in the coating weight by using a cold-rolled steel sheet with a 50g / m 2 based on the cross-section, the coated steel strip is immersed in a bath temperature bath, and the plating yoknae aluminum concentration, otherwise the alloy plating layer be within a fraction of craters and chipping resistance And the results of measuring the amount of powdering are shown in Table 2.

합금화 변수Alloying parameters 크레이터분율(%)Crater fraction (%) 내치핑성(mm2/cm2)Chipping Resistance (mm 2 / cm 2 ) 파우더링량(mg)Powdering amount (mg) 비고Remarks 강판입욕온도(℃)Steel plate bathing temperature (℃) Al농도(wt%)Al concentration (wt%) 합금화도(wt%Fe)Alloying degree (wt% Fe) 470470 0.1350.135 11.511.5 1616 0.250.25 66 발명예 1Inventive Example 1 440440 0.1350.135 11.311.3 55 1.351.35 1515 비교예 1Comparative Example 1 490490 0.1350.135 11.811.8 3030 0.180.18 4545 비교예 2Comparative Example 2 470470 0.1210.121 11.811.8 2525 0.200.20 3737 비교예 3Comparative Example 3 470470 0.1500.150 11.411.4 22 0.910.91 1111 비교예 4Comparative Example 4 470470 0.1350.135 9.59.5 00 1.471.47 33 비교예 5Comparative Example 5 470470 0.1350.135 13.513.5 3535 1.081.08 7575 비교예 6Comparative Example 6

상기 표 2에서 알 수 있듯이 본 발명의 조건을 만족하도록 합금화 변수를 조절한 발명예(1)은 적정한 크레이터 분율을 충족하여 내치핑성 및 내파우더링성이 매우 우수하였다.As can be seen in Table 2, Inventive Example (1), in which the alloying parameters were adjusted to satisfy the conditions of the present invention, satisfies the appropriate crater fraction and was very excellent in chipping resistance and powdering resistance.

그러나 강판입욕온도(도금욕에 인입되는 강판온도)가 460℃ 미만인 비교예(1)은 크레이터 분율이 감소하여 내치핑성이 열화되었으며, 강판입욕온도가 480℃를 초과한 비교예(2)의 경우 내치핑성은 양호하나 취약한 감마상의 형성을 촉진하여 파우더링성이 열화되는 문제점이 발생하였다.However, in Comparative Example (1) having a steel plate bathing temperature (steel plate temperature introduced into the plating bath) of less than 460 ° C, the crater fraction was decreased and chipping resistance was deteriorated, and the steel sheet bathing temperature of Comparative Example (2) exceeded 480 ° C. In this case, the chipping resistance was good, but the powdering property was deteriorated due to the formation of a weak gamma phase.

비교예(3)과 같이 도금욕내 알루미늄 농도가 0.13wt% 미만일 때 불균일 합금화반응이 촉진되어 크레이터 분율 증가에 따른 내치핑성은 양호하였으나, 감마상 두께가 크게 증가하여 내파우더링성이 저하되었다.As in Comparative Example (3), when the aluminum concentration in the plating bath was less than 0.13 wt%, the heterogeneous alloying reaction was promoted and the chipping resistance was good due to the increase of the crater fraction, but the gamma phase thickness was greatly increased and the powdering resistance was lowered.

또 비교예(4)처럼 도금욕내 알루미늄 농도가 0.14wt%를 초과시에는 크레이터 발생율이 매우 적어 내치핑성이 열화되었다.In addition, when the aluminum concentration in the plating bath exceeds 0.14 wt% as in Comparative Example (4), the generation rate of craters is very small and chipping resistance is degraded.

또한 합금화 시간을 달리하여 합금화도가 9.5wt%Fe 미만인 비교예(5)의 경우도 표면에 제타상이 존재하고 크레이터 분율이 제로로서 내치핑성이 크게 저하되었다.In addition, in Comparative Example (5) having an alloying degree of less than 9.5 wt% Fe with different alloying times, zeta phase was present on the surface, and the crater fraction was zero, and chipping resistance was greatly reduced.

또 비교예(6)처럼 합금화도가 12.5wt%Fe를 초과시에는 과도한 합금화에 따른 감마상 두께가 증가하여 파우더링량이 증가하고, 도금층과 소지철 계면에서 도금층이 탈락되어 내치핑성도 열화되는 것으로 나타났다.In addition, when the alloying degree exceeded 12.5wt% Fe as in Comparative Example (6), the gamma phase thickness was increased due to excessive alloying, so that the amount of powdering was increased, and the plating layer was dropped at the interface between the plating layer and the base iron, thereby deteriorating the chipping resistance. .

상술한 바와 같이 본 발명은 별도의 후처리 또는 강성분의 변경 없이 도금층내 크레이터 분율을 적절히 조절할 경우 합금화 용융아연 도금강판의 내치핑성을 크게 향상시켜 자동차 외판용으로 사용할 수 있어 산업상 이용효과가 매우 크다.As described above, the present invention can greatly improve the chipping resistance of the alloyed hot-dip galvanized steel sheet when the crater fraction in the plated layer is properly adjusted without any post-treatment or change of steel components, so that the present invention can be used for automobile exterior plates. very big.

Claims (2)

합금화 용융아연 도금층내의 크레이터 분율을 조절하여 내치핑성이 우수한 합금화 용융아연 도금강판의 제조방법에 있어서,In the manufacturing method of alloyed hot-dip galvanized steel sheet excellent in chipping resistance by adjusting the crater fraction in the alloyed hot-dip galvanized layer, 도금욕의 Al농도가 0.13∼0.14wt%인 용융아연 도금욕에 인입되는 강판온도를 460∼480℃로 유지하고, 도금층의 합금화도를 10.5∼12.5wt%Fe로 조절하는 것을 특징으로 하는 내치핑성이 향상된 합금화 용융아연 도금강판의 제조방법.The chipping resistance characterized by maintaining the temperature of the steel sheet introduced into the molten zinc plating bath in which the Al concentration of the plating bath is 0.13 to 0.14 wt% and adjusting the alloying degree of the plating layer to 10.5 to 12.5 wt% Fe. Method for producing alloyed hot-dip galvanized steel sheet with improved properties. 제1항에 있어서,The method of claim 1, 상기 도금층내의 크레이터 분율이 11∼20%로 조절되도록 합금화 처리하는 것을 특징으로 하는 내치핑성이 향상된 합금화 용융아연 도금강판의 제조방법.A method of producing an alloyed hot-dip galvanized steel sheet with improved chipping resistance, characterized in that the alloying treatment so that the crater fraction in the plating layer is adjusted to 11 to 20%.
KR1020010079524A 2001-12-14 2001-12-14 Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance KR20030049335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010079524A KR20030049335A (en) 2001-12-14 2001-12-14 Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010079524A KR20030049335A (en) 2001-12-14 2001-12-14 Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance

Publications (1)

Publication Number Publication Date
KR20030049335A true KR20030049335A (en) 2003-06-25

Family

ID=29575147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010079524A KR20030049335A (en) 2001-12-14 2001-12-14 Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance

Country Status (1)

Country Link
KR (1) KR20030049335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105670505A (en) * 2014-12-05 2016-06-15 Posco公司 Plating steel sheet and steel sheet coated with composite resin and manufacturing method for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211745A (en) * 1988-06-29 1990-01-16 Kawasaki Steel Corp Manufacture of steel plate coated with fused alloyed zinc by galuanization excellent in spot weldability
JPH0413855A (en) * 1990-04-27 1992-01-17 Nisshin Steel Co Ltd Galvannealed steel sheet excellent in workability and its production
KR20000008649A (en) * 1998-07-15 2000-02-07 이구택 Process for preparing quasi-alloyed, fused zinc plated steel sheet
KR20000045508A (en) * 1998-12-30 2000-07-15 이구택 Method for producing plated steel sheet of alloyed molten zinc with excellent powdering resistance
KR20010056280A (en) * 1999-12-14 2001-07-04 이구택 Galvannealing method for decreasing crater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211745A (en) * 1988-06-29 1990-01-16 Kawasaki Steel Corp Manufacture of steel plate coated with fused alloyed zinc by galuanization excellent in spot weldability
JPH0413855A (en) * 1990-04-27 1992-01-17 Nisshin Steel Co Ltd Galvannealed steel sheet excellent in workability and its production
KR20000008649A (en) * 1998-07-15 2000-02-07 이구택 Process for preparing quasi-alloyed, fused zinc plated steel sheet
KR20000045508A (en) * 1998-12-30 2000-07-15 이구택 Method for producing plated steel sheet of alloyed molten zinc with excellent powdering resistance
KR20010056280A (en) * 1999-12-14 2001-07-04 이구택 Galvannealing method for decreasing crater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105670505A (en) * 2014-12-05 2016-06-15 Posco公司 Plating steel sheet and steel sheet coated with composite resin and manufacturing method for the same
KR101630974B1 (en) * 2014-12-05 2016-06-16 주식회사 포스코 Plating Steel Sheet and Steel Sheet Coated With Composite Resin and Manufacturing Method for the same
CN105670505B (en) * 2014-12-05 2018-04-06 Posco公司 The manufacture method of coated steel sheet, the steel plate for being coated with combination resin and the steel plate

Similar Documents

Publication Publication Date Title
US10287647B2 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
US5827618A (en) Rust-proofing steel sheet for fuel tanks and production method thereof
EP0870847B1 (en) Rust preventive carbon steel sheet for fuel tank having good welding gastightness and anticorrosion after forming
KR20040007718A (en) High-strength alloyed aluminum-system palted steel sheet and high-strength automotive part excellent in heat resistance and after-painting corrosion resistance
KR102383618B1 (en) Method for manufacturing hot-dip galvanized steel sheet
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
KR101414886B1 (en) Alloyed hot-dip galvanized steel sheet having excellent formability and post-adhesion detachment resistance, and manufacturing method therefor
JP3600804B2 (en) Hot-dip galvanized steel sheet with excellent formability
KR20170044678A (en) Surface-finished steel sheet and method for the production thereof
KR100267624B1 (en) Galvannealed steel sheet and manufacturing method thereof
KR20030049335A (en) Manufacturing method of hot-dip galvannealed steel sheets with good stone chipping resistance
JP3163986B2 (en) Galvannealed steel sheet
JP4452126B2 (en) Steel plate for galvannealed alloy
KR20010056280A (en) Galvannealing method for decreasing crater
KR100910451B1 (en) Hot?dip galvannealed steel sheet having superior flaking resistance and method for manufacturing thereof
JP3185530B2 (en) Surface-treated steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
KR101091442B1 (en) Hot-dip galvannealed steel sheet having excellent galvanized adhesion properity and method for manufacturing thereof
JPH0681099A (en) Galvannealed steel sheet
JP2006089767A (en) Steel sheet to be hot-dip galvannealed and hot-dip galvannealed steel sheet
JP6597947B1 (en) Molten Sn-Zn alloy-plated steel sheet and method for producing the same
JP2976845B2 (en) Galvannealed steel sheet
JP3052835B2 (en) Galvannealed steel sheet
JP3275686B2 (en) Galvannealed steel sheet with excellent press formability
JPH02122056A (en) Alloying hot dip galvanized steel sheet
JPH08269735A (en) Rust preventive steel sheet for fuel tank

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application