KR20030047462A - Method for preparing electrode for battery - Google Patents

Method for preparing electrode for battery Download PDF

Info

Publication number
KR20030047462A
KR20030047462A KR1020010077958A KR20010077958A KR20030047462A KR 20030047462 A KR20030047462 A KR 20030047462A KR 1020010077958 A KR1020010077958 A KR 1020010077958A KR 20010077958 A KR20010077958 A KR 20010077958A KR 20030047462 A KR20030047462 A KR 20030047462A
Authority
KR
South Korea
Prior art keywords
electrode
battery
drying
solvent
slurry
Prior art date
Application number
KR1020010077958A
Other languages
Korean (ko)
Other versions
KR100440486B1 (en
Inventor
박영선
안순호
이기영
이서재
구자훈
노석명
연진희
구창완
용헌항
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR10-2001-0077958A priority Critical patent/KR100440486B1/en
Publication of KR20030047462A publication Critical patent/KR20030047462A/en
Application granted granted Critical
Publication of KR100440486B1 publication Critical patent/KR100440486B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A method for preparing an electrode for a battery and a battery containing the electrode prepared by the method are provided, to improve the adhesive strength of an electrode and to reduce the amount of moisture and remaining solvent remarkably, thereby enhancing the properties of a battery. CONSTITUTION: The method comprises the steps of coating an electrode slurry comprising an active material, an electrode binder and an organic solvent onto a metal foil; and drying the coated one by irradiating a near infrared ray to the coated metal foil. Preferably the near infrared ray has a wavelength of 0.76-2.5 micrometers.

Description

전지용 전극의 제조 방법{METHOD FOR PREPARING ELECTRODE FOR BATTERY}Method for producing a battery electrode {METHOD FOR PREPARING ELECTRODE FOR BATTERY}

본 발명은 전지용 전극의 제조방법에 관한 것으로, 특히 접착력이 우수한 전극을 제조할 수 있으며, 전극의 수분과 잔류 용매를 획기적으로 감소시켜서 전지 특성을 향상시킬 수 있는 전지용 전극의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a battery electrode, and more particularly, to an electrode having excellent adhesion, and to a method for manufacturing a battery electrode that can improve battery characteristics by dramatically reducing the moisture and residual solvent of the electrode.

일반적인 전지용 전극 코팅 공정에는 카본 또는 옥사이드계의 활물질에 바인더, 물 또는 NMP(N-메틸 피로리디논), 아세톤, DMA(디메틸아세타마이드), DMF(미메틸포름알데히드) 등과 같은 유기 용매 등을 혼합한 슬러리(slurry)를 사용하게 된다. 슬러리는 다이 갭(Die gap) 또는 롤 코팅(Roll Coating)을 할 때 콤마 및 코팅 롤 사이의 갭(Gap)을 통하여 흘러나오면서 적당한 양이나 두께로 박판의 금속 포일 위에 도포된다. 도포된 슬러리에는 전술한 바와 같이 용매 또는 중간물(Medium)이 포함되어 있는데, 이러한 용매는 건조(Drying) 공정을 거치면서 증발하게 된다.Typical electrode coating processes for batteries include a binder, water, or an organic solvent such as NMP (N-methyl pyrrolidinone), acetone, DMA (dimethylacetamide), DMF (mimethylformaldehyde), or the like in a carbon or oxide active material. The mixed slurry is used. The slurry is applied onto the thin metal foil in an appropriate amount or thickness as it flows through the gap between the comma and the coating roll during die gap or roll coating. The applied slurry contains a solvent or a medium as described above, the solvent is evaporated during the drying (Drying) process.

용매가 증발하여 남게 되는 고체 형태의 전극에는, 용매나 중간물(medium)에 포함되어 있다가 건조(Drying) 후 남게 된 잔류 수분이나 잔류 용매가 존재하게 된다. 일반적으로 잔류 수분이나 잔류 용매가 전극 내에 많이 있게 되면 전극에 두가지 큰 문제점을 야기시킨다.In the electrode in the solid form in which the solvent is evaporated and left, residual moisture or residual solvent, which is contained in a solvent or an intermediate and remains after drying, remains. In general, a large amount of residual moisture or residual solvent in the electrode causes two major problems in the electrode.

첫째로, 전극과 포일(Foil)의 접착력 저하다. 용매가 증발하게 되면서 용매에 남아있는 바인더 성분은 고체 형태로 고화되면서 파우더와 금속 포일(Foil)의 사이에 위치하면서 접착력이 발생하는데, 잔류 용매가 많아질수록 접착력은 감소하게 된다. 접착력의 감소는 전지를 조립 후 전지 성능이 감소하는 주요인 중의 하나이다.First, the adhesion between the electrode and the foil is reduced. As the solvent evaporates, the binder component remaining in the solvent solidifies in a solid form and is positioned between the powder and the metal foil, and adhesion is generated as the residual solvent increases. The decrease in adhesion is one of the main reasons for the decrease in cell performance after assembling the cell.

둘째로, 전극에 남아 있는 잔류수분은 전극을 조립하면서 투입하게 되는 전해액과 반응하여 불산을 만들게 된다. 불산이 많을수록 불필요한 전극 표면 반응을 야기시켜 전지 성능을 감소시킨다.Second, the residual moisture remaining in the electrode reacts with the electrolyte that is added while assembling the electrode to produce hydrofluoric acid. More hydrofluoric acid leads to unwanted electrode surface reactions, reducing cell performance.

상기 문제로 인하여 슬러리(Slurry)의 건조(Drying) 공정은 매우 중요하게 여겨진다.Due to this problem, the drying process of the slurry is considered very important.

일반적인 전지 전극의 건조(Drying) 방법은 다음의 방법을 주로 사용한다.As a general method of drying the battery electrode, the following method is mainly used.

적당한 속도의 열풍을 적당한 풍량으로 코팅 전극의 상, 하에서 불게 하는 것이다. 열풍을 투입하였을 때, 용매의 휘발점을 감소시키는 효과와 투입되는 열로 인하여 포일 위에 도포된 슬러리(Slurry) 내의 용매는 증발하게 된다.Hot air at an appropriate speed is blown up and down the coating electrode at an appropriate air volume. When hot air is introduced, the solvent in the slurry applied on the foil is evaporated due to the effect of reducing the volatilization point of the solvent and the heat applied.

그런데 열풍에 의해 건조되는 건조 방식은 건조로 내의 가열된 가이드롤에 의한 열의 전도와 가열된 공기에 의한 대류에 의한 것이므로, 열풍과 닿게 되는 스럴리(Slurry)의 표면에서부터 건조는 진행된다. 슬러리(Slurry) 내부의 용매는 열이 내부로 유입되어야 기화되면서 증발하게 된다. 그러나 실제적으로는 표면에서의 용매의 기화가 먼저 발생되면서 표면의 슬러리(Slurry) 점도는 고형분이 증가함에 따라 증가하게 되며, 결과적으로 고형화가 완료되게 되면 내부의 용매분자가 표면으로 빠져 나오기가 어렵게 되어 접착력 및 잔류 수분이 많아지게 된다.However, since the drying method dried by hot air is caused by conduction of heat by heated guide rolls in the drying furnace and convection by heated air, drying proceeds from the surface of the slurry which is in contact with the hot air. The solvent inside the slurry evaporates as heat is introduced into the inside of the slurry. In practice, however, solvent evaporation on the surface occurs first, and the slurry viscosity on the surface increases as the solid content increases. As a result, when the solidification is completed, the internal solvent molecules are difficult to escape to the surface. Adhesion and residual moisture are increased.

이러한 문제 때문에, 일반적인 건조(Drying) 공정은 크게 두 지역으로 나누어실시된다. 슬러리(Slurry)가 도포된 금속 포일은 약 100 내지 120 ℃ 정도로 유지되는 건조로로 인도된다. 이곳에서는 표면에서의 급격한 용매 증발을 억제하면서 가급적 내부의 용매 분자가 기화되어 표면으로 흘러나올 수 있도록 한다. 다음은 130~160도 정도로 유지되는 건조로로 통과된다. 온도가 증가된 이유는 고속 열풍을 분사하여 내부까지 열이 전파되게 함으로써 전극 내부의 잔류 용매를 증발시키기 위함이다. 사용하는 슬러리(Slurry)의 고형분 함량과 전체 휘발량 등에 따라서 건조 공정은 어려워지게 되는 단점이 있다. 또한 급히 빠져 나오게 되는 내부 용매 분자로 인해, 전극 표면의 핀홀, 분화구 형상의 결점(Deffect)이 발생하는 등의 문제가 발생하게 된다.Because of this problem, the general drying process is largely divided into two regions. The slurry-coated metal foil is led to a drying furnace maintained at about 100 to 120 ° C. This suppresses the rapid evaporation of solvent on the surface, allowing the internal solvent molecules to vaporize and flow out to the surface. Next, it is passed to a drying furnace which is maintained at 130 to 160 degrees. The reason why the temperature is increased is to evaporate the residual solvent inside the electrode by injecting high-speed hot air to allow heat to propagate to the inside. There is a disadvantage that the drying process becomes difficult depending on the solids content and the total volatilization amount of the slurry used. In addition, due to the internal solvent molecules that are quickly released, problems such as pinholes on the surface of the electrode and a crater shape defect (Deffect) are generated.

본 발명은 상기 종래기술의 문제점을 고려하여, 접착력이 우수한 전극을 제조할 수 있는 전지용 전극의 제조방법을 제공하는 것을 목적으로 한다.In view of the problems of the prior art, it is an object of the present invention to provide a method for manufacturing a battery electrode that can produce an electrode with excellent adhesion.

본 발명의 다른 목적은 전극의 수분과 잔류 용매를 획기적으로 감소시켜서 전지 특성을 향상시킬 수 있는 전지용 전극의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a battery electrode that can improve battery characteristics by dramatically reducing the moisture and residual solvent of the electrode.

본 발명의 또 다른 목적은 슬러리 코팅에 의해 전극을 제조하는 전지용 전극의 제조방법에 있어서, 건조시간을 줄일 수 있는 전지용 전극의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for manufacturing a battery electrode, in which the drying time can be reduced in the method for manufacturing a battery electrode for producing an electrode by slurry coating.

본 발명은 상기 목적을 달성하기 위하여, 활물질, 전극 바인더, 및 유기용매를 포함하는 전극 슬러리를 금속 포일에 코팅한 후 건조하는 단계를 포함하는 전지용 전극의 제조방법에 있어서,In the present invention, in order to achieve the above object, in the method for manufacturing a battery electrode comprising the step of coating an electrode slurry containing an active material, an electrode binder, and an organic solvent on a metal foil and then drying,

상기 건조는 전극 슬러리가 코팅된 금속 포일에 근적외선을 조사하여 실시되는 전지용 전극의 제조방법을 제공한다.The drying provides a method for manufacturing a battery electrode which is carried out by irradiating near infrared rays on a metal foil coated with an electrode slurry.

이하에서 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 슬러리 코팅에 의해 전극을 제조하는 전지용 전극의 제조방법에서, 새로운 건조 방법을 적용하여, 전극 접착력을 향상시키고, 건조 후 수분과 용제의 잔류량을 크게 감소시켜 궁극적으로 전지의 성능을 향상시킨 것이다. 즉, 전도나 복사를 이용하여 긴 건조(Drying) 시간을 요하는 종래의 방법과는 달리, 높은 열에너지를 가진 빛을 이용하여 슬러리(Slurry) 내부 깊숙이 빛을 침투시키는 방법이다. 이렇게 할 경우, 높은 열에너지를 가진 빛은 내부의 용매 분자와 직접적으로 충돌하여 순간적으로 용매 분자를 기화시키게 된다. 따라서 표면과 내부에서 동시에 증발이 이루어져, 바인더와 금속 포일(Foil)의 접착력을 증가시키는 효과를 가져온다.The present invention is a method of manufacturing a battery electrode for producing an electrode by slurry coating, by applying a new drying method, to improve the adhesion of the electrode, and significantly reduce the residual amount of water and solvent after drying to ultimately improve the performance of the battery will be. That is, unlike the conventional method requiring a long drying time using conduction or radiation, the light penetrates deep into the slurry using light having high thermal energy. In this case, light with high thermal energy collides directly with the solvent molecules inside to vaporize the solvent molecules in an instant. Therefore, the evaporation is simultaneously performed on the surface and the inside, thereby increasing the adhesion between the binder and the metal foil.

이러한 빛 에너지는 파장의 길이가 30 ㎛ 이하, 보다 바람직하게는 0.76 내지 2.5 ㎛의 근적외선(Near Infrared)을 사용하는 경우 발생하게 된다. 이 파장 범위에서 도달할 수 있는 흑체의 최대 온도는 3811 K이다. 본 발명은 이렇게 흑체에서 발생한 근적외선을 건조(Drying) 대상 물질의 종류 및 휘발총량 등에 따라서일정한 양의 가시 광선과 함께 용매에 조사할 때 용매분자는 순간적으로 기화하게 되는 것을 이용한 것이다.This light energy is generated when using a near infrared (Near Infrared) of the wavelength of 30 ㎛ or less, more preferably 0.76 to 2.5 ㎛. The maximum temperature of the blackbody that can be reached in this wavelength range is 3811 K. In the present invention, when the near-infrared rays generated in the black body are irradiated with the solvent with a certain amount of visible light according to the kind of dry material and the total amount of volatilization, the solvent molecules are instantaneously vaporized.

본 발명의 제조방법은 전지용 전극을 제조할 때, 특히 용매로서 유기용매, 예를 들면 NMP (N-Methyl-Pyrrolidinone) 또는 물이 포함된 전지 전극용 슬러리(Slurry)를 코팅하는 공정에서 건조(Drying) 효과를 획기적으로 향상된다.The manufacturing method of the present invention is drying in the process of coating a battery electrode slurry containing an organic solvent, for example, N-Methyl-Pyrrolidinone (NMP) or water, as a solvent, when preparing a battery electrode. ) The effect is greatly improved.

본 발명에 적용된 전지는The battery applied to the present invention

a) 리튬을 흡입 방출 가능한 흑연과 같은 카본 음극;a) a carbon negative electrode such as graphite capable of inhaling and discharging lithium;

b) 리튬의 흡입 방출이 가능한 리튬과 망간, 코발트 등의 전이금속 복합산화물을 포함하는 양극;b) a positive electrode comprising a transition metal composite oxide such as lithium, manganese and cobalt capable of inhaling and discharging lithium;

c) 양극과 음극의 활물질간에 결착력을 제공하는 PVDF(폴리비닐리덴플루오라이드), NBR(아크릴로니트릴부타디엔 고무), SBR(스티렌부타디엔 고무)과 같은 바인더;c) binders such as PVDF (polyvinylidene fluoride), NBR (acrylonitrilebutadiene rubber), SBR (styrenebutadiene rubber) which provide a binding force between the active material of the positive electrode and the negative electrode;

d) 도전성을 향상시킬 목적의 아세틸렌블랙, 흑연과 같은 도전재; 및d) conductive materials such as acetylene black and graphite for the purpose of improving conductivity; And

e) NMP, 아세톤, DMA, DMF와 같은 유기 및 물과 같은 무기 용매e) organic solvents such as NMP, acetone, DMA, DMF and inorganic solvents such as water

의 리튬이온 이차전지의 전극 구성 요소를 포함한다.The electrode component of the lithium ion secondary battery.

이 리튬이온 이차전지의 전해액은 LiClO4, LiPF6등과 같은 리튬 염을 용해한 비수소성(aprotic)을 지닌 유기용매를 사용한다.The electrolyte of the lithium ion secondary battery uses an organic solvent having an aprotic in which lithium salts such as LiClO 4 and LiPF 6 are dissolved.

상기 리튬을 흡입 방출할 수 있는 음극에 사용되는 활물질은 흑연, 탄소섬유(carbon fiber), 및 활성카본으로 이루어진 군으로부터 선택되는 카본계재료이다. 이때, 음극은 상기 음극활성 물질 외에 결착제, 바람직하게는 PVDF, SBR를 포함한다.The active material used for the negative electrode capable of inhaling and discharging lithium is a carbon-based material selected from the group consisting of graphite, carbon fiber, and activated carbon. At this time, the negative electrode includes a binder, preferably PVDF, SBR in addition to the negative electrode active material.

상기 양극의 활물질은 하기 화학식 1로 표시되는 리튬 전이금속 복합산화물이 사용될 수 있다.As the active material of the positive electrode, a lithium transition metal composite oxide represented by Chemical Formula 1 may be used.

[화학식 1][Formula 1]

LixMO2 Li x MO 2

상기 화학식 1에서, M은 Ni, Co, 또는 Mn 이고, x는 0.05≤ x ≤1.10 이다.In Chemical Formula 1, M is Ni, Co, or Mn, and x is 0.05 ≦ x ≦ 1.10.

이하의 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들만으로 한정하는 것이 아니다.The present invention will be described in more detail with reference to the following examples. However, an Example is for illustrating this invention and is not limited only to these.

[실시예]EXAMPLE

실시예 1Example 1

(음극의 제조)(Manufacture of Cathode)

탄소 분말과 결합제 및 증점제로 SBR과 CMC를 95:4:1의 중량비로 혼합한 후, 물에 분산시켜 음극 혼합물 슬러리를 제조하였다. 이 음극 혼합물 슬러리를 음극 집전체로 두께가 10 ㎛인 Cu 포일(foil)의 단면에 콤마 갭을 200 ㎛으로 하여 균일하게 도포시켜 근적외선이 발생하는 모듈(Module) 안으로 투입하였다. 모듈(Module)의 길이는 15 cm 이며, 도포 속도(Coating speed)는 3 m/min 이었다. 근적외선의 함량은 20 %을 이용하였으며 이때 적외선 센서로 측정한 전극의 표면 온도는 60 ℃이었다.SBR and CMC were mixed with a carbon powder, a binder, and a thickener in a weight ratio of 95: 4: 1, and then dispersed in water to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was uniformly coated with a comma gap of 200 μm on a cross section of a Cu foil having a thickness of 10 μm using a negative electrode current collector, and then injected into a module generating near infrared rays. The length of the module was 15 cm and the coating speed was 3 m / min. The content of near infrared ray was 20%, and the surface temperature of the electrode measured by the infrared sensor was 60 ° C.

건조된 전극을 샘플링하여 메트로옴 칼피셔 수분측정기로 수분을 측정하였다. 수분측정조건은 전극 샘플(sample)을 칼피셔측정기의 15O ℃로 설정된 오븐에 투입하였고 측정 시간은 2 시간으로 하였다.The dried electrode was sampled to measure moisture with a Metroohm Karl Fischer moisture meter. In the moisture measurement conditions, an electrode sample was placed in an oven set to 150 ° C on a Karl Fischer measuring instrument, and the measurement time was 2 hours.

접착력은 ASTM D4541의 방법으로 제작한 접착력 측정기를 사용하여 측정하였다. 전극을 25 ㎠의 면적으로 자르고 이를 ASTM D4541의 방법으로 접착력을 측정한 결과를 하기 표 1에 기재하였다.Adhesion was measured using an adhesion tester manufactured by the method of ASTM D4541. The electrode was cut into an area of 25 cm 2, and the result of measuring adhesion by the method of ASTM D4541 is shown in Table 1 below.

(양극의 제조)(Manufacture of Anode)

리튬 코발트 복합산화물 92 중량%, 도전재로 카본 4 중량%, 및 결합제로 PVDF 4 중량%를 용제인 NMP에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20 ㎛인 양극 집전체의 Al 박막에 도포하였다. 근적외선을 20 %, 가시광선을 80 %로 설정하여 NMP를 건조시켰다.A positive electrode mixture slurry was prepared by adding 92 wt% of lithium cobalt composite oxide, 4 wt% of carbon as a conductive material, and 4 wt% of PVDF as a binder to NMP as a solvent. The positive electrode mixture slurry was applied to an Al thin film of a positive electrode current collector having a thickness of 20 μm. NMP was dried by setting the near infrared ray to 20% and the visible ray to 80%.

상기 음극과 같이 잔류 수분 및 접착력을 측정하였다.Residual moisture and adhesion were measured as with the negative electrode.

잔류 NMP는 200 ℃ 까지 온도를 상승시키면서 NMP양을 측정하였다.Residual NMP measured the amount of NMP, raising the temperature to 200 degreeC.

이후 롤 프레스로 압축 성형하여 띠 모양의 양극을 제조하였다.Thereafter, compression molding was performed using a roll press to prepare a strip-shaped anode.

(전지의 제조)(Production of battery)

분리막으로는 다공성 폴리에틸렌 필름을 사용하였으며, 여기에 상기 띠 모양의 음극과 상기 띠 모양의 양극을 적층하고 여러 번 감아 돌려서 젤리 롤(Jelly roll)을 제작하였다. 이를 외경 18 mm, 높이 65 mm인 전지 캔 속에 적절하게 내장되도록 길이와 폭을 조절하였다. 제작된 젤리 롤(Jelly Roll)을 전지 캔에 수납하고 전극소자의 상하 양면에 절연판을 배치하였다. 그리고, 집전체로부터 니켈로된 음극 리드를 도출하고 전지 캔에 용접하였으며 양극 집전체로부터 알루미늄으로 된 양극 리드를 도출하여 전지 덮개에 장착된 알루미늄 압력개방밸브에 용접하여 전지를 제조하였다. 이 전지에 함침되는 전해액을 주입하였다. 이 전해액의 용매는 EC와 EMC가 1:2의 부피비로 혼합된 용매와 전해질로 LiPF6액을 사용하였다.Porous polyethylene film was used as a separator, and the strip-shaped cathode and the strip-shaped anode were laminated and wound several times to prepare a jelly roll. The length and width were adjusted so that it was properly embedded in a battery can having an outer diameter of 18 mm and a height of 65 mm. The manufactured jelly roll was accommodated in a battery can, and the insulating plate was arrange | positioned on the upper and lower surfaces of the electrode element. Then, a negative electrode lead made of nickel was drawn from the current collector and welded to the battery can, and a positive electrode lead made of aluminum was drawn from the positive electrode current collector, and welded to an aluminum pressure release valve mounted on the battery cover to manufacture a battery. The electrolyte solution impregnated into this battery was injected. LiPF 6 solution was used as a solvent and electrolyte in which EC and EMC were mixed in a volume ratio of 1: 2.

이렇게 제조된 전지는 정전류 0.4 mA/㎠으로 4.2 V 까지 충전되었다. 전해액 2차 전지의 표준 용량은 1000 mAh 이고, 4.2 V에서 3V까지 정전류로 1 C(1000 mA/h)의 속도로 충방전 사이클을 시행하였다.The battery thus prepared was charged to 4.2 V at a constant current of 0.4 mA / cm 2. The standard capacity of the electrolyte secondary battery was 1000 mAh, and a charge and discharge cycle was conducted at a rate of 1 C (1000 mA / h) with constant current from 4.2 V to 3 V.

실시예 2Example 2

음극, 및 양극 전극을 제조할 때 근적외선 함유량이 30 % 이고, 표면온도가 70 ℃인 조건으로 건조한 것을 제외하고는 상시 실시예 1과 같은 방법으로 전지를 제조하였다.A battery was manufactured in the same manner as in Example 1, except that the near-infrared content was 30% and the surface temperature was 70 ° C. when the negative electrode and the positive electrode were manufactured.

실시예 3Example 3

음극, 및 양극 전극을 제조할 때 근적외선 함유량이 60 % 이고, 표면온도가 80 ℃인 조건으로 건조한 것을 제외하고는 상시 실시예 1과 같은 방법으로 전지를 제조하였다.A battery was manufactured in the same manner as in Example 1, except that the near-infrared content was 60% and the surface temperature was 80 ° C. when the negative electrode and the positive electrode were manufactured.

비교예 1Comparative Example 1

(음극의 제조)(Manufacture of Cathode)

상기 실시예 1과 같은 방법으로 음극을 제조하되, 건조 방법을 열풍으로 하였다. 건조로의 온도는 구간별로 3 m 길이의 1차 건조구간에서 40 ℃, 3 m의 2차건조구간을 70 ℃로 설정하고, 풍속을 구간별로 1차 건조 10m/min, 2차 건조구간을 20 m/min의 속도로 설정하였다.A negative electrode was manufactured in the same manner as in Example 1, but the drying method was hot air. The temperature of the drying furnace is set at 40 ℃ in the first drying section of 3 m length for each section, and 70 ℃ for the second drying section at 3 m, and the wind speed is 10 m / min for the first drying section and 20 m for the second drying section. The speed was set at / min.

이때 건조된 전극을 샘플링하여 메트로옴 칼피셔수분측정기로 수분을 측정하였다. 수분측정조건은 전극 샘플(sample)을 칼피셔측정기의 25O ℃로 설정된 오븐에 투입하였고 측정 시간은 2 시간으로 하였다.At this time, the dried electrode was sampled to measure moisture with a Metro Ohm Karl Fischer moisture meter. In the moisture measurement conditions, an electrode sample was placed in an oven set at 250 ° C. on a Karl Fischer measuring instrument, and the measurement time was 2 hours.

접착력은 ASTM D4541의 방법으로 제작한 접착력 측정기를 사용하여 측정하였다. 전극을 25 ㎠의 면적으로 자르고 이를 ASTM D4541의 방법으로 접착력을 측정한 결과를 하기 표 1에 기재하였다.Adhesion was measured using an adhesion tester manufactured by the method of ASTM D4541. The electrode was cut into an area of 25 cm 2, and the result of measuring adhesion by the method of ASTM D4541 is shown in Table 1 below.

(양극의 제조)(Manufacture of Anode)

상기 실시예 1과 같은 방법으로 양극을 제조하되 건조는 상기 음극의 건조조건으로 설정하여 실시하였다.A positive electrode was prepared in the same manner as in Example 1, but drying was performed by setting the drying conditions of the negative electrode.

물성의 측정도 상기 음극과 같이 잔류 수분, 잔류 NMP 및 접착력을 측정하였다.Measurement of physical properties also measured the residual moisture, residual NMP and adhesion as in the negative electrode.

(전지의 제조)(Production of battery)

상기에서 제조된 음극과 양극을 사용하여 상기 실시예 1과 같은 방법으로 전지를 제조하였다.The battery was manufactured in the same manner as in Example 1, using the negative electrode and the positive electrode prepared above.

비교예 2Comparative Example 2

상기 비교예 1과 동일하게 실시하되, 음극과 양극의 건조조건은 1차 건조구간에서 50 ℃, 3 m의 2차 건조구간을 80 ℃로 설정하였다.In the same manner as in Comparative Example 1, the drying conditions of the negative electrode and the positive electrode was set to 50 ℃ in the primary drying section, the secondary drying section of 3 m to 80 ℃.

비교예 3Comparative Example 3

상기 비교예 1과 동일하게 실시하되, 음극과 양극의 건조조건은 1차 건조구간에서 70 ℃, 3 m의 2차 건조구간을 100 ℃로 설정하였다.In the same manner as in Comparative Example 1, the drying conditions of the negative electrode and the positive electrode was set to a secondary drying section of 70 ℃, 3 m in the primary drying section to 100 ℃.

비교예 4Comparative Example 4

상기 비교예 1과 동일하게 실시하되, 음극과 양극의 건조조건은 1차 건조구간에서 90 ℃, 3 m의 2차 건조구간을 120 ℃로 설정하였다.In the same manner as in Comparative Example 1, but the drying conditions of the negative electrode and the positive electrode was set to a secondary drying section of 90 ℃, 3 m in the first drying section to 120 ℃.

비교예 5Comparative Example 5

상기 비교예 1과 동일하게 실시하되, 음극과 양극의 건조조건은 1차 건조구간에서 110 ℃, 3 m의 2차 건조구간을 140 ℃로 설정하였다.In the same manner as in Comparative Example 1, but the drying conditions of the negative electrode and the positive electrode was set to 110 ℃, the secondary drying section of 3 m in the primary drying section to 140 ℃.

하기 표 1은 사용하는 근적외선의 함량에 따른 전극 수분 및 잔류 용매의 변화량과 전극 접착력을 종래의 열풍 건조 방법을 사용하는 비교예와 비교하였다.Table 1 below compares the electrode moisture and the amount of change in electrode moisture and residual solvent according to the content of near-infrared rays used with the comparative example using a conventional hot air drying method.

구 분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 건조조건Drying condition 근적외선NIR 20 %NIR 20% 근적외선NIR 30 %Near Infrared NIR 30% 근적외선NIR 60 %Near Infrared NIR 60% 열풍40/70℃Hot air 40/70 ℃ 열풍50/80℃Hot air 50/80 ℃ 열풍70/100℃Hot air 70/100 ℃ 열풍90/120℃Hot air 90/120 ℃ 열풍110/140℃Hot air 110/140 ℃ 음극잔류수분(ppm)Cathode Residual Water (ppm) 405405 207207 105105 15371537 15101510 13051305 12101210 12651265 양극잔류NMP(ppm)Anode Residual NMP (ppm) 6060 5252 4040 250250 227227 170170 130130 9090 접착력(g)Adhesive strength (g) 800800 860860 900900 5050 150150 380380 350350 400400

본 발명의 전극 제조방법은 슬러리 건조를 근적외선을 사용하여 건조하므로, 전극의 접착력이 우수하게 되며, 전극의 수분과 잔류 용매가 획기적으로 감소시킬 수 있어서 이를 적용한 전지는 전지 특성이 크게 향상된다.In the electrode manufacturing method of the present invention, the slurry is dried using near-infrared rays, so that the adhesion of the electrode is excellent, and the moisture and residual solvent of the electrode can be drastically reduced, so that the battery characteristics of the battery are greatly improved.

Claims (4)

활물질, 전극 바인더, 및 유기용매를 포함하는 전극 슬러리를 금속 포일에 코팅한 후 건조하는 단계를 포함하는 전지용 전극의 제조방법에 있어서,In the method of manufacturing a battery electrode comprising the step of coating an electrode slurry containing an active material, an electrode binder, and an organic solvent on a metal foil and then drying, 상기 건조는 전극 슬러리가 코팅된 금속 포일에 근적외선을 조사하여 실시되는 전지용 전극의 제조방법.The drying is a method of manufacturing a battery electrode that is carried out by irradiating near infrared rays on a metal foil coated with an electrode slurry. 제 1 항에 있어서,The method of claim 1, 상기 근적외선은 파장이 최대 30 ㎛인 전지용 전극의 제조방법.The near infrared ray has a wavelength of up to 30 ㎛ method for producing a battery electrode. 제 1 항에 있어서,The method of claim 1, 상기 근적외선은 파장이 0.76 ~ 2.5 ㎛인 전지용 전극의 제조방법.The near-infrared ray has a wavelength of 0.76 to 2.5 μm. 제 1 항 기재의 제조방법으로 제조되는 전극을 포함하는 전지.A battery comprising an electrode produced by the method of claim 1.
KR10-2001-0077958A 2001-12-10 2001-12-10 Method for preparing electrode for battery KR100440486B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0077958A KR100440486B1 (en) 2001-12-10 2001-12-10 Method for preparing electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0077958A KR100440486B1 (en) 2001-12-10 2001-12-10 Method for preparing electrode for battery

Publications (2)

Publication Number Publication Date
KR20030047462A true KR20030047462A (en) 2003-06-18
KR100440486B1 KR100440486B1 (en) 2004-07-14

Family

ID=29574080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0077958A KR100440486B1 (en) 2001-12-10 2001-12-10 Method for preparing electrode for battery

Country Status (1)

Country Link
KR (1) KR100440486B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093880A1 (en) * 2014-09-29 2016-03-31 Lg Chem, Ltd. Method for manufacturing electrode and electrode manufactured by the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472463A (en) * 1987-09-14 1989-03-17 Toshiba Battery Drying method for positive electrode black for cell
JPH0773873A (en) * 1993-09-06 1995-03-17 Toshiba Battery Co Ltd Manufacture of paste type negative electrode for nickel hydrogen secondary battery
JP2001176502A (en) * 1999-10-06 2001-06-29 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for battery
JP2001222992A (en) * 2000-02-09 2001-08-17 Nisshinbo Ind Inc Electrode structure, and method of manufacturing battery and electric double-layered capacitor
KR20020055869A (en) * 2000-12-29 2002-07-10 한동훈 Method and apparatus for manufacturing an electrode plate for a secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093880A1 (en) * 2014-09-29 2016-03-31 Lg Chem, Ltd. Method for manufacturing electrode and electrode manufactured by the same

Also Published As

Publication number Publication date
KR100440486B1 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
CN110197887B (en) Battery diaphragm and lithium ion battery
KR101215416B1 (en) Cathode materials for lithium batteries
CN106887556B (en) Organic-inorganic composite modified diaphragm and preparation method and application thereof
KR101275049B1 (en) Positive electrode for a lithium battery and lithium battery employing the same
US8388922B2 (en) Negative electrode material for lithium battery, and lithium battery
JP5221660B2 (en) Battery negative electrode and lithium ion battery using the same
CN106953051B (en) Ceramic diaphragm for in-situ generation of composite binder and preparation method and application thereof
CN106803561B (en) Functionalized modified diaphragm and preparation method and application thereof
CN110416487B (en) Lithiated polyacrylonitrile sulfide, process for producing the same, positive electrode sheet and lithium-sulfur secondary battery
JP5128063B2 (en) Composite graphite and lithium secondary battery using the same
CN111653712B (en) Electrochemical device isolating membrane and preparation method thereof
WO2018110263A1 (en) Composite graphite particles, method for producing same, and use thereof
JP2014192136A (en) Method for manufacturing positive electrode for nonaqueous electrolyte secondary battery use, and nonaqueous electrolyte secondary battery
CN116093252B (en) Negative electrode sheet, electrochemical device and electronic device comprising same
CN113224465A (en) Ceramic diaphragm with multilayer composite structure and battery thereof
CN110148696A (en) A kind of diaphragm and chargeable lithium battery that can prevent Li dendrite
US20230235103A1 (en) Sulfur-modified polyacrylonitrile, electrode active material containing same, electrode for secondary battery containing said electrode active material, method of manufacturing said electrode, and non-aqueous electrolyte secondary battery using said electrode
CN110431691A (en) Secondary cell multi-layered electrode comprising the adhesive with high-crystallinity
KR100440486B1 (en) Method for preparing electrode for battery
CN113540693A (en) Lithium battery separator
JP2011238476A (en) Laminate, nonaqueous electrolyte secondary battery and laminate manufacturing method
KR20160024324A (en) Carbon-silicon composite structure and preparing method of the same
JP2019012709A (en) Manufacturing method of negative electrode of nonaqueous secondary battery, and manufacturing method of nonaqueous secondary battery
JP7431040B2 (en) Silicon material, electrode for power storage device, method for manufacturing power storage device and silicon material
US20230261193A1 (en) Sulfur-modified polyacrylonitrile, electrode active material containing same, electrode for secondary battery containing said electrode active material, method of manufacturing said electrode, and non-aqueous electrolyte secondary battery using said electrode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 16