KR20030042326A - Louver structure of heat exchanger - Google Patents

Louver structure of heat exchanger Download PDF

Info

Publication number
KR20030042326A
KR20030042326A KR1020010073060A KR20010073060A KR20030042326A KR 20030042326 A KR20030042326 A KR 20030042326A KR 1020010073060 A KR1020010073060 A KR 1020010073060A KR 20010073060 A KR20010073060 A KR 20010073060A KR 20030042326 A KR20030042326 A KR 20030042326A
Authority
KR
South Korea
Prior art keywords
heat exchanger
louver
louvers
heat transfer
row
Prior art date
Application number
KR1020010073060A
Other languages
Korean (ko)
Other versions
KR100469243B1 (en
Inventor
이욱용
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR10-2001-0073060A priority Critical patent/KR100469243B1/en
Publication of KR20030042326A publication Critical patent/KR20030042326A/en
Application granted granted Critical
Publication of KR100469243B1 publication Critical patent/KR100469243B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers

Abstract

PURPOSE: A louver structure of a heat exchanger is provided to achieve improved heat transfer performance and reduce air pressure losses and costs by permitting the louver of heat exchanger to have an optimum design. CONSTITUTION: A heat exchanger comprises a fine diameter heat transfer tube for passage of the first working fluid; a plurality of cooling fins stacked outside of the heat transfer tube; and louvers(30) arranged at the cooling fins in such a manner that the louvers form six columns in total. Each of the louvers is bent by 20 to 24 degrees toward the top or bottom of the cooling fin. Each of the louvers in the first, third, fourth and sixth columns has a width-wise direction end which is bent toward the top or bottom of the cooling fin, and each of the louvers in the second and fifth columns has length-wise direction both ends fixed to the cooling fin and width-wise direction both ends which are cut processed.

Description

열교환기의 루버구조{Louver structure of heat exchanger}Louver structure of heat exchanger

본 발명은 열교환기에 관한 것으로서, 더 상세하게는 세경형 전열관을 갖는 열교환기의 루버구조에 관한 것이다.The present invention relates to a heat exchanger, and more particularly to a louver structure of a heat exchanger having a narrow heat exchanger tube.

일반적으로, 열교환기는, 도 1a에 도시된 바와 같이, 소정 온도의 냉매가 흐르는 전열관(1)과, 상기 전열관 외부에 수직으로 적층된 다수개의 냉각핀(2)과, 상기 냉각핀상에 형성되어 공기와의 열교환면적을 증대시키는 역할을 수행하는루버(3)로 이루어진다.In general, as shown in FIG. 1A, a heat exchanger includes a heat transfer tube 1 through which a refrigerant having a predetermined temperature flows, a plurality of cooling fins 2 stacked vertically on the outside of the heat transfer tube, and air formed on the cooling fins. It consists of a louver (3) which serves to increase the heat exchange area with the.

이에 따라, 외부공기가 열교환기측으로 유동하면, 도 1b에 도시된 바와 같이, 열교환기측으로 유동한 공기는 냉각핀(2)에 형성된 루버(3)를 따라 유영하면서 열교환되게 된다. 특히, 상기 루버(3)는 공기와의 접촉면적을 증대시키는 역할을 수행하므로 열전달율을 향상시키게 된다.Accordingly, when the outside air flows to the heat exchanger side, as shown in FIG. 1B, the air flowed to the heat exchanger side is heat exchanged while swimming along the louver 3 formed on the cooling fin 2. In particular, the louver 3 serves to increase the contact area with air, thereby improving the heat transfer rate.

이러한 형태의 열교환기는, 전면풍속, 압력손실, 전열량, 물빠짐성 등을 고려하여 설계되어야 한다. 즉, 설계시 성능인자인 루버개수, 루버각도, 루버폭 등을 고려하여 설계되어야 한다.This type of heat exchanger should be designed in consideration of the front wind speed, pressure loss, heat transfer amount, water drainage and the like. That is, the design should be designed in consideration of the number of louvers, louver angle, louver width, and so on.

하지만, 종래기술에서는 9.52mm, 7mm 등의 직경을 갖는 전열관(1)을 사용하므로서, 각 냉각핀(2)의 폭이 이에 맞게 설정되어 있으며, 또한 상기 각 냉각핀(2)에 형성된 각 루버(3)의 배치 및 그 형상 역시 이에 맞게 설정되어 있음에 따라, 전열관의 직경을 축소시켜 보다 소형의 열교환기를 제조할 경우, 루버개수, 루버각도, 루버폭 등을 최적화하여야 하는 문제가 발생하게 된다.However, in the prior art, by using the heat transfer tube 1 having a diameter of 9.52 mm, 7 mm, etc., the width of each cooling fin 2 is set accordingly, and each louver formed on each cooling fin 2 ( Since the arrangement and shape of 3) are also set accordingly, when a smaller heat exchanger is manufactured by reducing the diameter of the heat exchanger tube, a problem arises in that the number of louvers, the louver angle, the louver width, and the like are optimized.

즉, 첫째, 종래의 루버구조를 유지하면서 전열관(1)의 직경을 축소시키기 위해서는, 루버폭이 줄어들어야 하는데, 이는 루버폭을 1mm 이하까지 낮추어야 하는 제조상 어려움이 발생된다.That is, first, in order to reduce the diameter of the heat exchanger tube 1 while maintaining the conventional louver structure, the louver width should be reduced, which causes manufacturing difficulties in reducing the louver width to 1 mm or less.

둘째, 전열관(1)의 직경을 축소시키는 경우 냉각핀(2)의 효율저하를 방지하기 위하여 냉각핀의 폭도 이에 따라 줄어들어야 하는데, 이는 열교환기의 전체면적이 줄어들어 열교환성능이 감소되는 문제가 발생된다.Second, when the diameter of the heat pipe 1 is reduced, the width of the cooling fin should be reduced accordingly in order to prevent the efficiency of the cooling fin 2 from decreasing. This causes a problem that the heat exchange performance is reduced due to the decrease in the total area of the heat exchanger. do.

셋째, 열교환기의 전체면적이 감소되는 것을 막기 위해서는 단위 전열관 길이당 냉각핀수(FPI, Fin Per Inch)를 증가시켜야 하는데, 이때 기존 열교환기와 동일한 루버개수 및 루버각도를 사용하면 압력손실이 크게 증가하여 전열관(1)을 세경화시키는 장점(냉매 봉입량 감소, 재료비 절감)이 상쇄되게 된다.Third, in order to prevent the total area of the heat exchanger from decreasing, the number of cooling fins (FPI, Fin Per Inch) per unit heat pipe length should be increased. At this time, if the same louver number and louver angle as the existing heat exchanger are used, the pressure loss is greatly increased. The advantages of miniaturizing the heat transfer pipe 1 (refrigerant encapsulation amount, material cost reduction) are offset.

본 발명은 종래기술에 대한 문제점을 해결하기 위한 것으로서, 세경형 전열관을 갖는 열교환기의 루버를 최적 설계하여, 열전달 성능을 향상시킴과 함께 공기측 압력손실 및 열교환기의 비용을 저감시키는데 그 목적이 있다.The present invention is to solve the problems of the prior art, the optimum design of the louver of the heat exchanger having a thin heat exchanger tube, to improve the heat transfer performance and to reduce the air pressure loss and the cost of the heat exchanger. have.

도 1a는 종래기술에 따른 열교환기의 루버구조를 나타낸 정면도.Figure 1a is a front view showing the louver structure of the heat exchanger according to the prior art.

도 1b는 도 1a의 루버상에서 공기의 흐름을 나타낸 Ⅰ-Ⅰ단면도.FIG. 1B is a cross-sectional view taken along line II of FIG. 1A showing air flow on the louver; FIG.

도 2는 본 발명에 따른 열교환기의 루버구조를 나타낸 정면도.Figure 2 is a front view showing the louver structure of the heat exchanger according to the present invention.

도 3은 도 2의 Ⅱ-Ⅱ단면도.3 is a II-II cross-sectional view of FIG.

도 4는 본 발명에 따른 것으로서, 루버인자별 성능향상비를 나타낸 그래프.Figure 4, according to the present invention, a graph showing the performance improvement ratio for each louver factor.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

10: 전열관 20: 냉각핀10: heat pipe 20: cooling fin

30: 루버30: louver

상기 목적을 달성하기 위해서, 본 발명은, 전열관 외부에 다수개의 냉각핀이 수직으로 적층되어, 전열관내의 제1 작동유체와 전열관 외부의 제2 작동유체 사이에 열전달을 일으키는 열교환기에 있어서; 상기 냉각핀에, 전체 6열을 이루며, 냉각핀의 상방 또는 하방으로 20-24도 꺽임 가동된 루버가 포함되어 이루어진 열교환기를 제공한다.In order to achieve the above object, the present invention is a heat exchanger in which a plurality of cooling fins are vertically stacked outside the heat transfer pipe, causing heat transfer between the first working fluid in the heat transfer pipe and the second working fluid outside the heat transfer pipe; In the cooling fins, a heat exchanger is formed in a total of six rows and includes a louver that is bent by 20 to 24 degrees upward or downward of the cooling fins.

여기서, 상기 루버 중, 제1,3,4,6열는 폭방향 한쪽 끝이 상기 냉각핀의 상방 또는 하방으로 꺽임 가공되고, 제2열 및 제5열은 길이 방향 양단이 상기 냉각핀에 고정됨과 함께 폭 방향 양끝은 절단 가공됨이 바람직하다.Here, the first, third, fourth, and sixth rows of the louvers are bent at one end in the width direction upward or downward of the cooling fins, and the second and fifth rows are fixed at both ends of the longitudinal direction to the cooling fins. Both ends in the width direction are preferably cut.

그리고, 상기 전열관의 직경은, 세경화를 만족하기 위해 4.5∼5.5mm임이 바람직하다.In addition, the diameter of the heat transfer tube is preferably 4.5 to 5.5 mm in order to satisfy the thinning.

그리고, 상기 루버 중 제1열과 제6열의 선단 길이는 0.5mm로 설계됨이 바람직하다. 그 이유는, 루버슬릿(루버와 루버 사이의 틈)을 정확하게 형성시킬 수 있고, 양산시 프레스의 내구성을 향상시키기 위함이다.The tip length of the first row and the sixth row of the louvers is preferably designed to be 0.5 mm. The reason is that the louver slit (gap between the louver and the louver) can be formed accurately and to improve the durability of the press during mass production.

이하, 첨부도면을 참조하여, 본 발명이 바람직한 실시예를 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the present invention will be described.

도 2는 본 발명에 따른 열교환기의 루버구조를 나타낸 정면도이고, 도 3은 도 2의 Ⅱ-Ⅱ단면도이며, 도 4는 본 발명에 따른 것으로서, 루버인자별 성능향상비를 나타낸 그래프이다.2 is a front view showing the louver structure of the heat exchanger according to the present invention, Figure 3 is a II-II cross-sectional view of Figure 2, Figure 4 is a graph showing the performance improvement ratio according to the louver factor according to the present invention.

도면 설명에 앞서, 열교환기의 일반 구성은 종래기술에 언급된 바 있으므로, 그 설명을 생략한다.Prior to the description of the drawings, since the general configuration of the heat exchanger has been mentioned in the prior art, the description thereof is omitted.

본 발명에 따른 세경형 전열관을 갖는 열교환기는, 도 2와 도 3에 도시된 바와 같이, 소정 온도의 제1 작동유체가 흐르는 세경형 전열관(10)과, 상기 전열관 외부에 수직으로 적층된 다수개의 냉각핀(20)과, 상기 냉각핀에 형성되되 전체 6열을 이루며 냉각핀의 상방 또는 하방으로 20-24도 꺽임 가동되어 제2 작동유체와의 열교환면적을 증대시키는 역할을 수행하는 루버(30)가 포함되어 이루어진다.The heat exchanger having a thin heat exchanger tube according to the present invention, as shown in Figures 2 and 3, the narrow heat transfer tube 10 through which the first working fluid of a predetermined temperature flows, and a plurality of vertically stacked outside the heat transfer tube Cooling fins 20 and louvers 30 formed on the cooling fins to form a total of six rows and bent 20-24 degrees upward or downward of the cooling fins to increase the heat exchange area with the second working fluid. ) Is included.

여기서, 상기 루버(30) 중, 제1,3,4,6열은 폭방향 한쪽 끝이 상기 냉각핀(20)의 상방 또는 하방으로 꺽임 가공되고, 제2열 및 제5열은 길이 방향 양단이 상기 냉각핀에 고정됨과 함께 폭 방향 양끝은 절단 가공됨이 바람직하다.Here, the first, third, fourth, and sixth rows of the louvers 30 are bent at one end of the width direction upward or downward of the cooling fin 20, and the second and fifth rows are both ends in the longitudinal direction. It is preferable that both ends of the width direction are fixed while being fixed to the cooling fins.

그리고, 상기 전열관(10)의 직경은, 세경화를 만족하기 위해 4.5∼5.5mm임이 바람직하다.In addition, the diameter of the heat transfer tube 10 is preferably 4.5 to 5.5mm in order to satisfy the thinning.

그리고, 상기 루버(30) 중 제1,3,4,6열의 폭(도 3의 A참조)은 서로 동일하고, 제2,5열의 폭(도 3의 B참조) 또한 서로 동일하며, 특히, 제2열(또는 제5열)의폭((B)은, 제1열의 폭(A)의 두배가 됨이 바람직하고, 상기 루버 중 제1열과 제6열의 선단 길이(Lt)는 0.5mm로 설계됨이 바람직하며, 상기 루버 중 제3열과 제4열 사이의 길이는 0.9∼1.1mm로 설계됨이 바람직하다. 그 이유는, 루버슬릿(루버와 루버 사이의 틈)을 정확하게 형성시킬 수 있고, 양산시 프레스의 내구성을 향상시킬 수 있기 때문이다.In addition, the widths of the first, third, fourth, and sixth rows of the louver 30 (see A of FIG. 3) are the same, and the widths of the second and fifth columns (see B of FIG. 3) are also identical to each other. The width B of the second row (or the fifth row) is preferably twice the width A of the first row, and the tip length Lt of the first row and the sixth row of the louvers is 0.5 mm. It is preferable that the length between the third row and the fourth row of the louvers is preferably designed to be 0.9 to 1.1 mm because the louver slit (gap between the louver and the louver) can be formed accurately, This is because the durability can be improved.

이하, 루버인자별 성능향상비를 나타낸 그래프인 도 4를 참조하여, 본 발명에 따른 세경형 전열관을 갖는 열교환기를 구체적으로 살펴본다.Hereinafter, a heat exchanger having a thin heat exchanger tube according to the present invention will be described in detail with reference to FIG. 4, which is a graph showing a performance improvement ratio for each louver factor.

먼저, 도 4에 나타난 그래프는, 양 전열관(10)의 중심선(c)에 대해 대칭을 이루고 있는 제1,2,3열의 루버(30)와 제4,5,6열의 루버 중 어느 한측을 기준 삼아 실험한 것이다. 그리고, 상기 루버인자 중 루버슬릿(루버와 루버 사이의 틈)수와 루버각도(도 3의 α참조)를 조정하면서 실험한 성능향상비를 나타낸 것이다.First, the graph shown in FIG. 4 refers to either side of the louvers 30 in the first, second, and third rows and the louvers in the fourth, fifth, and sixth rows that are symmetrical with respect to the center line c of both heat pipes 10. It was an experiment. And, it shows the performance improvement ratio experimented while adjusting the number of louver slit (gap between the louver and louver) and louver angle (see α in Fig. 3) of the louver factors.

이러한 실험결과, 동일 루버각도(α) 20도에서 루버슬릿수가 2개일 때와 3개일 때를 살펴보면, 3개일 때는 0.925정도의 성능향상비를 얻을 수 있는 반면, 2개일 때에는 1.05정도의 성능향상비를 얻을 수 있게 된다. 그리고, 동일 루버각도(α) 24도에서 루버슬릿수가 2개일 때와 3개일 때를 살펴보면, 3개일 때는 0.86정도의 성능향상비를 얻을 수 있는 반면, 2개일 때에는 1.03정도의 성능향상비를 얻을 수 있게 된다.As a result of these experiments, when the number of louver slit is two and three at the same louver angle (α) 20 degrees, the performance improvement ratio of 0.925 can be obtained in three cases, while the performance improvement ratio of 1.05 in two cases. Will be obtained. Also, when the number of louver slits is two and three at the same louver angle (α) 24 degrees, the performance improvement ratio of about 0.86 can be obtained in the three louvers, while the performance improvement ratio of about 1.03 is obtained in the two louvers. It becomes possible.

즉, 이러한 실험결과는, 루버슬릿수가 많을수록 열적성능이 우수하다는 일반적인 사상을 초월한 것으로서, 세경형 전열관을 갖는 열교환기에 있어서는 최적의 루버슬릿수가 2개이고, 최적의 루버각도(α)가 20∼24도임을 단적으로 보여주고 있다.In other words, the experimental results exceeded the general idea that the higher the number of louver slits, the better the thermal performance. In the heat exchanger having a narrow heat pipe, the optimum number of louver slits is 2 and the optimal louver angle α is 20 to 24 degrees. It is showing only.

구체적으로, 이러한 결과가 나타난 이유를 고찰해보면 다음과 같다.Specifically, the reason for this result is as follows.

루버슬릿(루버와 루버 사이의 틈)수가 두 개 보다 많게 되면 상대적으로 루버(30)에 의한 압력손실이 증가되어 열적성능이 저하되고, 루버각도(α)가 20도 보다 작게 되면 전열면적이 줄어들고 24도 보다 크게 되면 유동저항인 공기측 압력손실이 증가되어 열적성능이 저하됨을 고찰할 수 있다.If the number of louver slits (gap between the louver and louver) is more than two, the pressure loss due to the louver 30 increases relatively, and the thermal performance decreases. When the louver angle α is smaller than 20 degrees, the heat transfer area decreases. If it is larger than 24 degrees, it can be considered that the thermal performance is deteriorated due to an increase in the air side pressure loss, which is a flow resistance.

따라서, 본 발명은, 중심선(C)에 대해 한측의 루버슬릿수가 두 개이고, 그 루버각도(α)가 20∼24도일 때가 가장 바람직한 세경형 전열관(10)을 갖는 열교환기를 얻을 수 있음을 알 수 있다. 또한 루버슬릿수가 줄어듦에 따라 비용을 저감시킬 수 있다.Therefore, it can be seen that the present invention can obtain a heat exchanger having a narrow diameter heat pipe 10 that is most preferable when the number of louver slits on one side with respect to the center line C is two and the louver angle α is 20 to 24 degrees. have. In addition, the cost can be reduced as the number of louver slits is reduced.

결국, 본 발명은 세경형 전열관을 갖는 열교환기의 루버를 최적 설계하여, 열전달 성능을 향상시킴과 함께 공기측 압력손실 및 열교환기의 비용을 저감시킬 수 있게 된다.As a result, the present invention can optimally design the louver of the heat exchanger having a thin heat exchanger tube, thereby improving heat transfer performance and reducing the air pressure loss and the cost of the heat exchanger.

이제까지 본 발명에 대하여 그 바람직한 실시예를 중심으로 살펴보았으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적 기술 범위 내에서 상기 본 발명의 상세한 설명과 다른 형태의 실시예들을 구현할 수 있을 것이다. 여기서 본 발명의 본질적 기술 범위는 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been described with reference to the preferred embodiments, and those skilled in the art to which the present invention pertains to the detailed description of the present invention and other forms of embodiments within the essential technical scope of the present invention. Could be implemented. Here, the essential technical scope of the present invention is shown in the claims, and all differences within the equivalent range will be construed as being included in the present invention.

이상에서와 같이, 본 발명은 세경형 전열관을 갖는 열교환기의 루버를 최적 설계한 것으로서, 열전달 성능을 향상시킴과 함께 공기측 압력손실 및 열교환기의 비용을 저감시킬 수 있는 이점이 있다.As described above, the present invention is an optimal design of the louver of the heat exchanger having a thin heat exchanger tube, there is an advantage that can improve the heat transfer performance and reduce the air pressure loss and the cost of the heat exchanger.

Claims (6)

전열관 외부에 다수개의 냉각핀이 수직으로 적층되어, 전열관내의 제1 작동유체와 전열관 외부의 제2 작동유체 사이에 열전달을 일으키는 열교환기에 있어서,In a heat exchanger in which a plurality of cooling fins are vertically stacked outside the heat transfer pipe, causing heat transfer between the first working fluid in the heat transfer pipe and the second working fluid outside the heat transfer pipe, 상기 냉각핀에, 전체 6열을 이루며, 냉각핀의 상방 또는 하방으로 20-24도 꺽임 가동된 루버가 포함되어 이루어짐을 특징으로 하는 열교환기.The heat exchanger, characterized in that the cooling fin comprises a total of six rows, the louver is bent 20-24 degrees upward or downward of the cooling fin. 제 1 항에 있어서,The method of claim 1, 상기 루버 중, 제1,3,4,6열은 폭방향 한쪽 끝이 상기 냉각핀의 상방 또는 하방으로 꺽임 가공되고, 제2열 및 제5열은 길이 방향 양단이 상기 냉각핀에 고정됨과 함께 폭 방향 양끝이 절단 가공됨을 특징으로 하는 열교환기.The first, third, fourth, and sixth rows of the louvers are bent at one end in the width direction above or below the cooling fin, and the second row and the fifth row are both ends of the longitudinal direction fixed to the cooling fin. A heat exchanger characterized by cutting at both ends in the width direction. 제 1 항에 있어서,The method of claim 1, 상기 전열관의 직경은 4.5∼5.5mm임을 특징으로 하는 열교환기.Heat exchanger, characterized in that the diameter of the heat pipe is 4.5 ~ 5.5mm. 제 1 항에 있어서,The method of claim 1, 상기 루버 중 제1열과 제6열의 선단 길이는 0.5mm로 설계됨을 특징으로 하는 열교환기.Heat exchanger, characterized in that the tip length of the first row and the sixth row of the louvers is designed to 0.5mm. 제 1 항에 있어서,The method of claim 1, 상기 루버 중 제2열 또는 제5열의 폭은 제1,3,4,6열의 어느 하나의 폭의 두배가 됨을 특징으로 하는 열교환기.And the width of the second row or the fifth row of the louvers is twice the width of any one of the first, third, fourth, and sixth rows. 제 1 항에 있어서,The method of claim 1, 상기 루버 중 제3열과 제4열 사이의 길이는 0.9∼1.1mm로 설계됨을 특징으로 하는 열교환기.Heat exchanger, characterized in that the length between the third row and fourth row of the louver is designed to 0.9 ~ 1.1mm.
KR10-2001-0073060A 2001-11-22 2001-11-22 Louver structure of heat exchanger KR100469243B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0073060A KR100469243B1 (en) 2001-11-22 2001-11-22 Louver structure of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0073060A KR100469243B1 (en) 2001-11-22 2001-11-22 Louver structure of heat exchanger

Publications (2)

Publication Number Publication Date
KR20030042326A true KR20030042326A (en) 2003-05-28
KR100469243B1 KR100469243B1 (en) 2005-02-02

Family

ID=29570891

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0073060A KR100469243B1 (en) 2001-11-22 2001-11-22 Louver structure of heat exchanger

Country Status (1)

Country Link
KR (1) KR100469243B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592238B2 (en) 2017-11-23 2023-02-28 Watergen Ltd. Plate heat exchanger with overlapping fins and tubes heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158932A (en) * 1984-01-30 1985-08-20 Hitachi Ltd Manufacture of flat tube heat exchanger
KR100210072B1 (en) * 1996-07-09 1999-07-15 윤종용 Heat exchanger of air conditioner
KR100225627B1 (en) * 1996-12-30 1999-10-15 윤종용 Heat exchanger for air conditioner
KR19990047285A (en) * 1997-12-03 1999-07-05 구자홍 Fin-Tube Heat Exchanger
KR20030020563A (en) * 2001-09-01 2003-03-10 한라공조주식회사 Louver fin for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592238B2 (en) 2017-11-23 2023-02-28 Watergen Ltd. Plate heat exchanger with overlapping fins and tubes heat exchanger

Also Published As

Publication number Publication date
KR100469243B1 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
KR100347894B1 (en) Heat exchanger
CN101029807A (en) Heat exchanger
KR100503407B1 (en) Fin Tube Heat Exchanger
KR20050027407A (en) Heat exchanger
KR101520484B1 (en) Heat exchanger
KR100740180B1 (en) Finned heat exchanger and method of manufacturing the same
US7413002B2 (en) Corrugated fin and heat exchanger using the same
US5611395A (en) Fin for heat exchanger
KR100469243B1 (en) Louver structure of heat exchanger
US4141411A (en) Tubular heat exchanger
JP2003161588A (en) Heat exchanger and air conditioner having the same
US20150000880A1 (en) Heat exchanger with varied louver angles
KR100347892B1 (en) Heat exchanger
KR100347893B1 (en) Heat exchanger
KR20010064688A (en) pin-tube type heat exchanger
KR100213778B1 (en) Heat exchanger
KR100512113B1 (en) Small bore tube heat exchanger
CN212721035U (en) High-efficient many return strokes printed circuit board formula heat exchanger core
KR100484656B1 (en) Heat exchanger
KR100347891B1 (en) Heat exchanger
KR100382495B1 (en) a fin-tube type evaporator
KR20100099774A (en) Evaporator
CN107328272B (en) High-efficiency plate-fin water cooler
JP2005188769A (en) Heat exchanger
JPH07260382A (en) Heat exchanger

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111220

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee