KR20030038892A - Biodegradable interpolymer of gamma-poly(glutamic acid) and chitosan and manufactured film using the same - Google Patents

Biodegradable interpolymer of gamma-poly(glutamic acid) and chitosan and manufactured film using the same Download PDF

Info

Publication number
KR20030038892A
KR20030038892A KR1020010069079A KR20010069079A KR20030038892A KR 20030038892 A KR20030038892 A KR 20030038892A KR 1020010069079 A KR1020010069079 A KR 1020010069079A KR 20010069079 A KR20010069079 A KR 20010069079A KR 20030038892 A KR20030038892 A KR 20030038892A
Authority
KR
South Korea
Prior art keywords
chitosan
copolymer
film
pga
water
Prior art date
Application number
KR1020010069079A
Other languages
Korean (ko)
Other versions
KR100466480B1 (en
Inventor
고영환
Original Assignee
대한민국 (소관: 제주대학교)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 (소관: 제주대학교) filed Critical 대한민국 (소관: 제주대학교)
Priority to KR10-2001-0069079A priority Critical patent/KR100466480B1/en
Publication of KR20030038892A publication Critical patent/KR20030038892A/en
Application granted granted Critical
Publication of KR100466480B1 publication Critical patent/KR100466480B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE: A biodegradable copolymer of γ-polyglutamic acid and chitosan and a film prepared by using the copolymer are provided, to improve biodegradability, tensile strength and elongation and to reduce the solubility to water. CONSTITUTION: The biodegradable copolymer is a copolymer of γ-polyglutamic acid and chitosan, wherein the copolymer is preferably represented by the formula 1. The degree of deacetylation of the chitosan is 80-100 %, and the viscosity of the chitosan is 100-150 cps. Preferably the γ-polyglutamic acid and chitosan is separated from Bacillus licheniformis. The film prepared by using the copolymer has a tensile strength of 50-100 MPa, an elongation of 10-20 %, a solubility to water of 1.0-10.0 %, and a moisture absorption ratio of 1.0-20.0 %.

Description

감마폴리글루탐산과 키토산의 생분해성 공중합체 및 이를 이용하여 제조된 필름{Biodegradable interpolymer of gamma-poly(glutamic acid) and chitosan and manufactured film using the same}Biodegradable copolymer of gammapolyglutamic acid and chitosan and film prepared using the same {Biodegradable interpolymer of gamma-poly (glutamic acid) and chitosan and manufactured film using the same}

본 발명은 생분해성 공중합체 및 이를 이용하여 제조된 필름에 관한 것으로서, 보다 상세하게는 물리적 특성이 우수하며 생분해가 가능한 고분자 물질로 이루어진 공중합체 및 이를 이용하여 제조된 필름에 관한 것이다.The present invention relates to a biodegradable copolymer and a film prepared using the same, and more particularly, to a copolymer made of a polymer material having excellent physical properties and capable of biodegradation, and a film produced using the same.

과학 기술이 진보함에 따라, 각종 합성 고분자 물질들이 개발되어 왔다. 이러한 합성 고분자 물질은 가공의 용이성, 화학 구조적 차이에 의한 다양한 물성, 저렴한 가격 등으로 인해 간단한 가정용 생활도구, 포장용 필름, 농업용 필름 등으로부터 자동차, 항공기용 복합재료, 인공심장과 같은 의료용 첨단소재 등의 다양한 원료로 사용되고 있다. 그러나, 이러한 합성 고분자 물질들은 사용 후 토양 등의 자연상태에 폐기시 대부분이 분해되지 않아, 심각한 환경오염 문제를 야기하고 있다.As science and technology progress, various synthetic polymer materials have been developed. The synthetic polymer material is a simple household tool, packaging film, agricultural film, etc., due to the ease of processing, various physical properties due to chemical structural differences, and low price, such as automobile, aircraft composite materials, medical advanced materials such as artificial heart, etc. It is used in various raw materials. However, most of these synthetic polymer materials are not decomposed when disposed in a natural state such as soil after use, causing serious environmental pollution problems.

이와 같이, 합성 고분자 물질에 의한 환경오염이 심각하게 되자 산업계에는 보다 쉽게 분해될 수 있는 고분자 물질에 대한 요구가 높아지게 되었고, 기존 합성 고분자 물질에 셀룰로즈나 전분과 같은 천연의 생분해성 고분자를 소량 혼합함으로써, 미생물적인 방법에 의하여 쉽게 분해되도록 하는 시도가 있었다.As such, as the environmental pollution caused by the synthetic polymer material becomes serious, there is an increasing demand for polymer material that can be easily decomposed in the industry, and by mixing a small amount of natural biodegradable polymer such as cellulose or starch into the existing synthetic polymer material Attempts have been made to facilitate degradation by microbial methods.

그러나, 전분과 혼화하여 만들어진 생분해성 고분자 물질은 물리적 특성이 현저히 저하될 뿐만 아니라, 생태계에서 완전히 분해되지 않고 미세한 조각으로 붕괴되어 여전히 생태계에 존재하게 되는 문제점이 있었다.However, the biodegradable polymer material made by mixing with starch not only has a significant decrease in physical properties, but also has a problem in that it does not completely decompose in the ecosystem but collapses into fine pieces and still exists in the ecosystem.

따라서, 최근에는 천연 다당류, 키틴과 같은 천연 고분자나 PHA(poly-hydroxyalkanoate)계, 다당류계와 같은 미생물로부터 생산되는 고분자를 선호하고 있는 추세이다.Therefore, in recent years, natural polysaccharides, natural polymers such as chitin, or polymers produced from microorganisms such as PHA (poly-hydroxyalkanoate) based polysaccharides have been a trend.

한편, 기존 합성 고분자 물질인 폴리에틸렌과 특성이 거의 유사하고 대량 생산이 가능한 PLA(poly lactic acid)와 같은 생화학 고분자 물질이 개발되었다. 생화학 고분자 물질이란 발효기술에 의하여 저가로 제조된 아미노산, 당 등의 원료로부터 합성된 것으로서, 기능의 조절이 용이하여 이상적인 생분해성 고분자로 평가되고 있다. 이러한 고분자 물질은 환경 친화적이어서 다른 생분해성 고분자 물질에 비해 생분해도가 높다는 특징을 갖고 있으나, 가격이 기존 고분자 물질에 비해 4배 이상 고가라는 문제점이 있다.On the other hand, biochemical polymer materials such as PLA (poly lactic acid), which have similar characteristics to the existing synthetic polymer polyethylene and are capable of mass production, have been developed. Biochemical polymers are synthesized from raw materials such as amino acids, sugars and the like produced at low cost by fermentation technology, and have been evaluated as ideal biodegradable polymers due to easy control of functions. The polymer material is environmentally friendly and has a feature of high biodegradability compared to other biodegradable polymer materials, but has a problem that the price is four times more expensive than the existing polymer materials.

또한, 대한민국 특허출원 제 1994-19856호에는 천연 물질인 키토산과 셀룰로즈를 혼합하여 중합체를 제조한 후, 생분해가 가능한 필름을 제조한 예가 개시된 바 있으며, 대한민국 특허출원 제 1994-26030호에는 키토산과 전분을 혼합한 중합체로 제조된 복합체 필름이 개시된 바 있다.In addition, Korean Patent Application No. 1994-19856 discloses an example in which a polymer is prepared by mixing chitosan and cellulose, which are natural substances, and then a biodegradable film is prepared. Korean Patent Application No. 1994-26030 discloses chitosan and starch. Composite films made of polymers have been disclosed.

그러나, 이러한 키토산으로 제조된 필름은 생분해가 가능하고 저가이기는 하나 아직까지는 물리적 성질이 기존 합성 고분자 제품에 미치지 못하며, 또한, 키토산에 첨가되는 전분의 경우 낮은 신장률 때문에 상업적으로 적용하기가 어렵다는 문제점이 있다.However, these chitosan-based films are biodegradable and inexpensive, but their physical properties are not as good as those of conventional synthetic polymer products. In addition, starch added to chitosan is difficult to apply commercially due to low elongation. .

본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명이 이루고자 하는 기술적 과제는 물리적 특성이 우수함과 동시에 상업적으로도 적용이 용이하고 생분해가 가능한 고분자 물질로 이루어진 공중합체 및 이를 이용하여 제조된 필름을 제공하는 것이다.The present invention has been made to solve the above problems, the technical problem to be achieved by the present invention is a copolymer made of a polymer material having excellent physical properties and easy to apply commercially and biodegradable and produced using the same To provide a film.

상기와 같은 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는, 감마폴리글루탐산과 키토산의 공중합체를 제공한다.In order to achieve the above object, the present invention provides a copolymer of gamma polyglutamic acid and chitosan, represented by the following formula (1).

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

감마폴리글루탐산(γ-poly(glutamic acid) ; 이후 "γ-PGA"라 함)은 미생물 배양액으로부터 분리되는 분자량이 약 100만 달톤(dalton)에 이르는 생물고분자로서 수용성이고, 음이온을 가지고 있으며, 식용이 가능하다는 특징을 갖고 있다. 이러한 γ-PGA는 천연의 폴리아미드(polyamide)이지만 대부분의 단백질과 다른 특이한 구조를 갖고 있다. 즉, 단백질은 일반적으로 α-카르복실기(carboxylic group)와 α-아미노기(amino group) 간에 펩티드 결합을 하고 있으나, γ-PGA는 반복단위체인 글루탐산(glutamate)이 α-아미노기와 γ-카르복실기 간에 공유결합으로 펩타이드 결합을 이루고 있다. 이러한 γ-PGA는 의료, 식품 등의 산업분야에 유용하게 사용될 가능성이 높은 물질로 알려져 있다(Kinget al.,J. Polymer Sci. Part A: Polymer chemistry, 36: 1995-1999, 1998).Gamma polyglutamic acid (γ-poly (glutamic acid; hereafter referred to as "γ-PGA") is a biopolymer having a molecular weight of about 1 million daltons isolated from microbial culture, which is water-soluble, has anions, and is edible. This has the feature of being possible. Although γ-PGA is a natural polyamide, it has a unique structure different from most proteins. That is, proteins generally have a peptide bond between the α-carboxylic group and the α-amino group, but γ-PGA is a covalent bond between the α-amino group and the γ-carboxyl group by glutamic acid, a repeating unit. As a peptide bond. Such γ-PGA is known to be highly useful in industrial fields such as medicine and food (King et al ., J. Polymer Sci. Part A: Polymer chemistry , 36: 1995-1999, 1998).

한편, 키틴(chitin)은 N-아세틸-D-글루코사민(N-acetyl-D-glucosamine)이 β-(1→4)결합으로 중합된 사슬형 고분자(poly-β-(1.4)-N-acetyl-D-glucosamine)로서, 갑각류와 곤충의 외피, 곰팡이, 효모, 버섯과 같은 진균류의 세포벽에 함유되어 있는 천연의 고분자이다. 그러나, 키틴은 분자내(intramolecular)와분자간(intermolecular)에 수소결합으로 이루어진 결정구조를 이루고 있어서 대부분의 용매에 용해되기 어렵다. 이러한 키틴을 탈아세틸화(deacetylation)시키면, 키토산(chitosan)이 얻어지는데, 키토산은 D-글루코사민(D-glucosamine)이 β-(1→4) 결합으로 중합된 사슬형 고분자 다당류(β-(1,4)-2-amino-2-deoxy-β-D-glucan)로, 물에 대한 용해도가 비교적 높다. 키토산은 산성 하의 물에서 C-2 위치의 아민기가 프로톤화(protonation)되면서 용해된다.On the other hand, chitin is a chain polymer in which N-acetyl-D-glucosamine is polymerized by β- (1 → 4) linkage (poly-β- (1.4) -N-acetyl D-glucosamine) is a natural polymer contained in the cell walls of fungi such as shells, fungi, yeasts, and mushrooms. However, chitin has a crystal structure composed of hydrogen bonds between intermolecular and intermolecular, and is difficult to dissolve in most solvents. Deacetylation of such chitin yields chitosan, which is a chain polymer polysaccharide (β- (1) in which D-glucosamine is polymerized by a β- (1 → 4) bond. , 4) -2-amino-2-deoxy-β-D-glucan), has a relatively high solubility in water. Chitosan dissolves in water under acidic protonation of the amine group at the C-2 position.

탈아세틸화도는 수용화되었을 때 양(+)전하가 되는 아미노기의 양을 나타내는 것으로, 키토산의 분자량과 함께 키토산의 품질을 결정하는 중요한 요소이다. 즉, 탈아세틸화도 80%란 키틴이 20%, 키토산이 80%가 혼재되어 있는 것을 말한다.The degree of deacetylation indicates the amount of amino group that becomes positive (+) when solubilized, and is an important factor in determining the quality of chitosan along with the molecular weight of chitosan. That is, 80% of deacetylation means that 20% of chitin and 80% of chitosan are mixed.

본 발명에서는 상기 γ-PGA와 키토산으로 이루어진 공중합체를 제공하는 것을 특징으로 한다. 본 발명에 따른 공중합체는 γ-PGA에 있는 여분의 카르복실(carboxyl) 반응기로부터 생긴 음전하(-COO-)와 키토산에 있는 아미노(amino) 반응기가 프로톤화 되면서 생긴 양전하(-NH3 +) 간에 정전기적 인력(electrostatic interaction)이 작용함으로써 형성된다.In the present invention, it is characterized in that the copolymer consisting of the γ-PGA and chitosan. The copolymers according to the invention are negatively charged (-COO) resulting from the extra carboxyl reactor in γ-PGA.-Positive charge (-NH) produced by the protonation of the amino reactors in3 +) It is formed by the action of electrostatic interaction in the liver.

본 발명의 공중합체 제조에 사용된 키토산은 키틴을 탈아세틸화한 것으로 탈아세틸화도가 80-100%인 것을 사용하는 것이 바람직하다. 상기에서 탈아세틸화도가 80 미만이면 키토산의 용해도와 전하량이 감소하는 문제점이 있기 때문에 80 미만의 것은 사용하지 않는 것이 바람직하다.Chitosan used in the preparation of the copolymer of the present invention is a deacetylation of chitin, it is preferable to use a deacetylation degree of 80-100%. If the deacetylation degree is less than 80, the solubility of the chitosan and the amount of charge are reduced, so it is preferable not to use less than 80.

또한, 본 발명의 공중합체 제조에 사용된 키토산은 점도가 100-150cps인 것이 바람직하다. 상기에서 키토산의 점도가 100cps 미만이면 분자량이 너무 작고, 점도가 150cps를 초과하게 되면 혼합, 균질화, 가용화 등에 있어서 문제점이 발생할 수 있기 때문에 상기 범위의 점도를 갖는 키토산을 사용하는 것이 바람직하다.In addition, the chitosan used in the preparation of the copolymer of the present invention preferably has a viscosity of 100-150 cps. When the viscosity of the chitosan is less than 100 cps, the molecular weight is too small, and if the viscosity exceeds 150 cps, it is preferable to use chitosan having a viscosity in the above range because problems may occur in mixing, homogenization, and solubilization.

또한, 본 발명의 공중합체 제조에 사용된 키토산은 회분 농도가 낮은 것이 바람직하다. 상기에서 회분이란 고온에서 태우고 남는 재의 양을 말하는 것으로서 회분 농도가 너무 높으면, 키토산 재료속에 불순물이 많이 포함되어 있다는 것을 의미하기 때문에 회분의 농도가 낮은 키토산을 사용하는 것이 바람직하다.In addition, the chitosan used in the preparation of the copolymer of the present invention is preferably low ash concentration. Ash is the amount of ash remaining after burning at high temperatures. If the ash concentration is too high, it means that the chitosan material contains a large amount of impurities, so it is preferable to use chitosan having a low ash concentration.

구체적으로, 본 발명의 공중합체 제조에는 탈아세틸화도가 96.7%, 회분농도가 0.08%, 1% 키토산 용액의 점도가 120cps, 0.25% 아세트산에 대한 용해도가 75.1%, 0.25% 아세트산에 대한 불용도가 1.1%, 그리고, 수분함량이 8%인 키토산을 사용하였다.Specifically, the copolymer of the present invention has a deacetylation degree of 96.7%, ash concentration of 0.08%, 1% chitosan solution with a viscosity of 120 cps, solubility in 0.25% acetic acid, 75.1%, insoluble in 0.25% acetic acid. Chitosan with 1.1% and 8% moisture content was used.

한편, 본 발명에 따른 공중합체의 제조에 사용되는 γ-PGA는 바실러스 리체니포르미스(Bacillus licheniformis)의 배양액으로부터 분리, 정제된 γ-PGA를 사용하는 것이 바람직하다. 상기 γ-PGA는 당업계에 공지된 일반적인 방법에 의하여 분리 정제될 수 있으며, 통상적으로 분자량 약 80만-120만 달톤(dalton)에 상당하는 고분자가 얻어진다.On the other hand, γ-PGA used in the preparation of the copolymer according to the present invention, it is preferable to use the purified γ-PGA separated from the culture solution of Bacillus licheniformis ( Bacillus licheniformis ). The γ-PGA may be separated and purified by a general method known in the art, and a polymer having a molecular weight of about 800,000 to 1.2 million daltons is usually obtained.

또한, 본 발명은 상기 키토산과 γ-PGA의 공중합체로 제조된 필름을 제공하는 것을 특징으로 한다.In addition, the present invention is characterized by providing a film made of the copolymer of the chitosan and γ-PGA.

본 발명의 일 실시예에서는 상기 키토산과 γ-PGA로 제조된 공중합체를 이용하여 생분해성 필름을 제조하였다. 상기 필름의 제조에는 통상적인 첨가제인 글리세롤, 솔비톨과 같은 가소제가 배합될 수 있다. 가소제는 강직한 고분자에 첨가하여 가소성을 가지게 함으로써 가공성을 우수하게 하는 물질로서, 고분자 필름 제조시 일반적으로 사용된다.In one embodiment of the present invention, a biodegradable film was prepared using the copolymer prepared with the chitosan and γ-PGA. In preparing the film, a plasticizer such as glycerol and sorbitol, which are conventional additives, may be blended. Plasticizers are materials which are excellent in workability by being added to rigid polymers to have plasticity and are generally used in the production of polymer films.

본 발명에 따른 키토산과 γ-PGA의 공중합체로 제조된 필름은 인장강도가 50-100 Mpa, 신장률이 10-20%, 용해도가 1.0-10.0%, 흡수율이 1.0-20.0% 인 것이 바람직하다.The film made of the copolymer of chitosan and γ-PGA according to the present invention preferably has a tensile strength of 50-100 Mpa, an elongation of 10-20%, a solubility of 1.0-10.0%, and an absorption of 1.0-20.0%.

본 발명에 따른 공중합체로 제조된 필름은 인체에 무해하므로 의료용, 약물 전달용, 약물 코팅용 등으로 사용될 수 있다.Since the film made of the copolymer according to the present invention is harmless to the human body, it may be used for medical, drug delivery, drug coating, and the like.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<실시예 1><Example 1>

생분해성 공중합체 및 이를 이용한 필름의 제조Biodegradable Copolymer and Preparation of Film Using the Same

1-1) γ-PGA 및 키토산 샘플의 준비1-1) Preparation of γ-PGA and Chitosan Samples

바실러스 리체니포르미스(Bacillus licheniformis, ATCC 9945a)를 배양한 후, 다음과 같은 방법으로 γ-PGA를 분리 정제하였다.After culturing Bacillus licheniformis ( Bacillus licheniformis , ATCC 9945a), γ-PGA was purified by the following method.

바실러스 리체니포르미스 배양액에 6%가 되도록 NaCl을 첨가하고, 혼합기(blender)를 사용하여 1분 동안 고속으로 진탕시켰다. 상기 혼합액을 10,000×g에서 30분 동안 원심분리하여 균체 세포가 제거된 배양액을 얻었고, 상기배양액에 부피기준으로 3배에 상당하는 95% 에탄올을 가하여 γ-PGA를 침전시켰다. 침전물로 얻어진 γ-PGA를 증류수에 재용해 시킨 후, 0.45㎛(pore size) 규격의 여과기로 여과하여 잔존 고형분을 제거하였고, 증류수에 투석하여 분자량 3만 달톤 이하의 저분자 물질을 제거하였다. 상기 용액에 10N 염산을 소량 가하여 γ-PGA 수용액의 pH를 1.5로 조절한 후, 여기에 n-프로판올(n-propanol)과 에테르(ether)의 1:1 혼합용매를 가하여 γ-PGA를 침전시켰다. 침전된 γ-PGA를 회수하고 건조시킨 후, 100mM 소디움 아세테이트 용액(sodium acetate, pH 5.0)에 용해시켜 이후 실험에 사용하였다. 상기 분리, 정제된 γ-PGA의 분자량은 약 100만 달톤이었다.NaCl was added to the Bacillus licheniformis culture to 6% and shaken at high speed for 1 minute using a blender. The mixed solution was centrifuged at 10,000 × g for 30 minutes to obtain a culture medium from which the cell cells were removed. Three times of 95% ethanol was added to the culture medium to precipitate γ-PGA. Γ-PGA obtained as a precipitate was redissolved in distilled water and then filtered through a filter of 0.45 μm (pore size) to remove residual solids, and dialyzed with distilled water to remove low molecular weight substances having a molecular weight of 30,000 Daltons or less. 10N hydrochloric acid was added to the solution to adjust the pH of the γ-PGA aqueous solution to 1.5, and then 1: 1 mixed solvent of n-propanol and ether was added thereto to precipitate γ-PGA. . The precipitated γ-PGA was recovered and dried, and then dissolved in 100 mM sodium acetate solution (pH 5.0) to be used in subsequent experiments. The molecular weight of the isolated and purified γ-PGA was about 1 million Daltons.

또한, 키토산은 다음과 같은 방법으로 제조하였다.In addition, chitosan was prepared by the following method.

게 껍질을 분쇄하여 5-10 메쉬(mesh) 크기로 만든 후, 물로 세척하였고, 에탄올을 80℃에서 2시간 동안 처리하여 색소를 제거하였다. 이후 1N KOH를 80℃에서 2시간 동안 처리하여 단백질을 제거하였고, 다시 물로 세척하였다. 1N HCl을 실온에서 1시간 동안 처리하여 무기물을 제거한 후, 물로 세척하여 키틴을 얻었다. 상기와 같이 준비된 키틴을 55% KOH로 50℃에서 24시간 동안 탈아세틸화(deacetylation)시켜 키토산을 제조하였으며, 이와 같이 제조된 키토산의 특성을 하기 표 1에 나타내었다.Crab shells were ground to a size of 5-10 mesh, washed with water, and ethanol was treated at 80 ° C. for 2 hours to remove pigments. Then 1N KOH was treated for 2 hours at 80 ℃ to remove the protein, washed again with water. 1N HCl was treated at room temperature for 1 hour to remove inorganics, and then washed with water to obtain chitin. The chitin prepared as described above was deacetylated for 24 hours at 50 ° C. with 55% KOH to prepare chitosan, and the properties of the chitosan thus prepared are shown in Table 1 below.

특성characteristic 0.25% 아세트산에 대한 용해도(%)Solubility in 0.25% acetic acid (%) 0.25%아세트산에 대한 불용도(%)% Insoluble for 0.25% acetic acid 회분(%)Ash content (%) 탈아세틸화도(%)Deacetylation degree (%) 수분(%)moisture(%) 1% 키토산의점도(cps)1% chitosan viscosity (cps) 75.175.1 1.11.1 0.080.08 96.796.7 88 120120

1-2) γ-PGA와 키토산의 공중합체 및 이를 이용한 필름의 제조1-2) Copolymer of γ-PGA and Chitosan and Preparation of Film Using the Same

상기 실시예 1-1)에서 제조된 10% γ-PGA 수용액과 2% 키토산 용액을 혼합(blending)하여 20℃에서 용액중합시켜 공중합체를 제조하였다.A copolymer was prepared by blending a 10% γ-PGA aqueous solution prepared in Example 1-1 and a 2% chitosan solution and solution polymerization at 20 ° C.

상기 공중합체 용액을 유리 플레이트에 캐스팅하고, 유리 플레이트를 실온에서 2일간 방치한 후, 70℃에서 건조함으로써 필름을 제조하였다. 가소제로 순도 99.5%의 글리세롤(TEDIA Company, INC., USA)을 0.3% 수준으로 첨가하였다.The copolymer solution was cast on a glass plate, and the glass plate was left at room temperature for 2 days, and then dried at 70 ° C to prepare a film. As a plasticizer, 99.5% pure glycerol (TEDIA Company, INC., USA) was added at a level of 0.3%.

<비교예 1>Comparative Example 1

키토산 필름의 제조Preparation of Chitosan Film

약산성의 젖산(lactic acid, Hayashi Pure Chemical Industries Ltd.)에 키토산의 최종농도가 2%(w/w)가 되도록 용해시킨 후, 용해되지 않은 침전물을 0.45㎛크기의 필터를 사용하여 여과함으로써 제거하였다. 글리세롤(glycerol, Sigma)과 솔비톨(sorbitol, Sigma)을 가소제로 첨가하여 잘 교반한 후, 평평한 유리판에 캐스팅하여 실온에서 2일간 방치하였고, 70℃에서 24시간 건조시켜 키토산 필름을 제조하였다.After dissolving the lactic acid (Lactic acid, Hayashi Pure Chemical Industries Ltd.) to a final concentration of chitosan of 2% (w / w), the undissolved precipitate was removed by filtration using a 0.45 μm filter. . Glycerol (glycerol, Sigma) and sorbitol (sorbitol, Sigma) were added as a plasticizer and stirred well, then cast on a flat glass plate and left at room temperature for 2 days, and dried at 70 ℃ for 24 hours to prepare a chitosan film.

<비교예 2>Comparative Example 2

γ-PGA 필름의 제조Preparation of γ-PGA Film

100mM 소디움 아세테이트 용액(sodium acetate, pH 5.0) 100㎖에 γ-PGA 2g을 넣고, 가소제로서 글리세롤 0.3g을 첨가한 후, 이 용액을 평평한 유리판에 캐스팅하여 실온에서 2일간 방치하였고, 70℃에서 24시간 건조시켜 γ-PGA 필름을 제조하였다.2 g of γ-PGA was added to 100 ml of 100 mM sodium acetate (pH 5.0), 0.3 g of glycerol was added as a plasticizer, and the solution was cast on a flat glass plate and left at room temperature for 2 days. Time drying resulted in γ-PGA film.

<실시예 2><Example 2>

γ-PGA와 키토산의 공중합체 필름의 물리적 특성 분석Physical Characterization of Copolymer Films of γ-PGA and Chitosan

상기 실시예 1에서와 같이 제조한 본 발명에 따른 공중합체 필름과 기존 폴리에틸렌 필름, 키토산 필름(비교예 1)과 γ-PGA 필름(비교예 2)간의 물리적 특성을 비교하는 실험을 수행하였다.Experiments were performed to compare the physical properties between the copolymer film according to the present invention prepared as in Example 1, the existing polyethylene film, chitosan film (Comparative Example 1) and γ-PGA film (Comparative Example 2).

2-1) 인장강도 및 신장률 측정2-1) Tensile strength and elongation rate measurement

각 필름을 상대습도 65%, 20℃의 온도에서 24시간 동안 전처리(preconditioning)한 후, 10×2.5cm 크기로 절단하였으며, 텍스쳐 분석기(texture analyzer TA-XT2, Haslemere Surrey, England)를 사용하여 인장강도 및 신장률을 측정하였다. 초기 파지거리(그립(grip)간의 거리)는 5cm이었고, 인장속도(cross head)는 500mm/분이었다. 필름의 인장강도(MPa)는 필름이 절단될 때까지의 최대 장력을 초기의 필름의 단면적으로 나누어서 계산하였으며, 필름의 신장율(%)은 필름이 끊어질 때까지 늘어난 길이를 초기의 그립간 거리에 대한 백분율로 나타내었고, 그 결과를 하기 표 2 및 표 3에 나타내었다.Each film was preconditioned for 24 hours at a temperature of 65% relative humidity and 20 ° C., and then cut into 10 × 2.5 cm size and tensioned using a texture analyzer (TA-XT2, Haslemere Surrey, England). Strength and elongation were measured. The initial gripping distance (distance between grips) was 5 cm and the cross head was 500 mm / min. The tensile strength (MPa) of the film was calculated by dividing the maximum tension until the film was cut by the cross section of the initial film, and the elongation (%) of the film was calculated by extending the length of the film to the distance between the initial grips. It is expressed as a percentage, and the results are shown in Tables 2 and 3 below.

기존 폴리에틸렌 필름Conventional polyethylene film 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 인장강도(MPa)Tensile Strength (MPa) 2.92.9 17.217.2 10.810.8 85.585.5

기존폴리에틸렌 필름Conventional Polyethylene Film 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 신장률(%)Elongation (%) 95.495.4 53.453.4 80.280.2 12.512.5

상기 표 2에 기재된 바와 같이, 신장에 소요되는 힘(인장강도)은 폴리에틸렌 필름이 가장 작았고(2.9 MPa), 그 다음 γ-PGA 필름(10.8 MPa), 키토산 필름(17.2 MPa) 순서이었으며, 본 발명의 공중합체 필름이 85.5 MPa로 가장 많은 힘이 소요되었다. 즉, 본 발명의 공중합체 필름의 인장강도가 높음을 확인할 수 있었다.As shown in Table 2 above, the force (tensile strength) required for stretching was the smallest (2.9 MPa) for polyethylene film, followed by the γ-PGA film (10.8 MPa), followed by the chitosan film (17.2 MPa). The copolymer film of 85.5 MPa was used the most force. That is, it was confirmed that the tensile strength of the copolymer film of the present invention is high.

또한, 상기 표 3에 기재된 바와 같이, 기존 폴리에틸렌 필름의 신장률이 95.4%, 그 다음 γ-PGA(80.2%), 키토산 필름(53.4%) 순서이었고, 본 발명의 공중합체 필름이 12.5%로 가장 적게 늘어났다. 즉, 본 발명의 공중합체 필름이 쉽게 늘어나지 않음을 확인할 수 있었다.In addition, as shown in Table 3, the elongation of the existing polyethylene film was 95.4%, followed by γ-PGA (80.2%), chitosan film (53.4%), the copolymer film of the present invention was the least 12.5% Increased. That is, it was confirmed that the copolymer film of the present invention did not easily stretch.

2-2) 필름의 용해도(내수성) 및 흡수율(수분율) 측정2-2) Measurement of solubility (water resistance) and water absorption (water content) of film

공중합체 필름의 물에 대한 용해도(내수성)를 확인하기 위하여 표준상태(20℃, 상대습도 65%)에서의 무게를 측정한 후, 상온(20℃)의 물에서 24시간 동안 교반시켰다. 상기 필름을 건조하여 표준상태에서 무게를 측정함으로써, 물에 용해된필름의 양을 측정하였다. 필름의 용해도는 물에 용해된 양의 초기의 건물량에 대한 백분율로 하였고, 그 결과를 하기 표 4에 나타내었다.In order to confirm the solubility (water resistance) of the copolymer film in water, the weight was measured at a standard state (20 ° C., relative humidity 65%), followed by stirring for 24 hours in water at room temperature (20 ° C.). The film was dried and weighed in a standard state to determine the amount of film dissolved in water. The solubility of the film was taken as a percentage of the initial dry amount of the amount dissolved in water, and the results are shown in Table 4 below.

또한, 표준상태(20℃, 상대습도 65%)에서 24시간 이상 방치시킨 후의 무게와 100℃ 에서 30분간 건조시킨 후의 무게로부터 흡수율(수분율)을 계산하였으며, 그 결과를 하기 표 5에 나타내었다.In addition, the water absorption rate (water content) was calculated from the weight after leaving for 24 hours at a standard state (20 ℃, 65% relative humidity) and the weight after drying for 30 minutes at 100 ℃, the results are shown in Table 5 below.

기존폴리에틸렌 필름Conventional Polyethylene Film 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 용해도(%)Solubility (%) 00 47.747.7 100100 6.86.8

기존폴리에틸렌 필름Conventional Polyethylene Film 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 흡수율(%)Absorption rate (%) 00 44.544.5 72.372.3 18.418.4

상기 표 4에 기재된 바와 같이, γ-PGA는 용해도가 100%로 증류수에 완전히 용해되었으며, 키토산 필름은 47.7%의 무게 감소를 나타내었으나, 본 발명의 공중합체 필름은 6.8%의 무게 감소를 나타내었다. 즉, 본 발명의 공중합체 필름이 쉽게 물에 용해되지 않는 성질을 갖고 있음을 확인할 수 있었다.As shown in Table 4, γ-PGA was completely dissolved in distilled water with 100% solubility, chitosan film showed a weight loss of 47.7%, but the copolymer film of the present invention showed a weight loss of 6.8%. . That is, it was confirmed that the copolymer film of the present invention has a property that is not easily dissolved in water.

또한, 표준상태(20℃, 상대습도 65%)에서 대기중의 수분을 흡수하여 증가되는 무게의 변화를 측정한 결과, 상기 표 5에 기재된 바와 같이, γ-PGA 필름이 72.3% 그리고 키토산 필름이 44.5%의 무게 증가를 나타내었으나, 본 발명의 공중합체 필름은 18.4%의 무게 증가를 나타내었다. 즉, 본 발명의 공중합체 필름이 쉽게 수분을 흡수하지 않음을 확인할 수 있었다.In addition, as a result of measuring the change in weight increased by absorbing moisture in the air at a standard condition (20 ° C., 65% relative humidity), as shown in Table 5, 72.3% of the γ-PGA film and the chitosan film were The weight gain of 44.5% was shown, but the copolymer film of the present invention showed a weight gain of 18.4%. That is, it was confirmed that the copolymer film of the present invention does not readily absorb moisture.

상기에서와 같이, 기존 폴리에틸렌 필름과 본 발명의 공중합체 필름의 인장강도, 신장률, 용해도 및 흡수율을 비교하여 본 결과, 기존 폴리에틸렌 필름이 본 발명의 공중합체 필름에 비해 물에 쉽게 용해되지 않아 내수성이 좋았으나, 그 차이는 미미하였다. 그러나, 필름의 품질 평가에서 중요한 인장강도 및 신장률면에서 본 발명의 공중합체 필름이 훨씬 우수함을 확인할 수 있었다.As described above, as a result of comparing the tensile strength, elongation rate, solubility and water absorption of the existing polyethylene film and the copolymer film of the present invention, the existing polyethylene film is not easily dissolved in water compared to the copolymer film of the present invention, It was good, but the difference was small. However, it was confirmed that the copolymer film of the present invention is much superior in terms of tensile strength and elongation, which are important in film quality evaluation.

<실시예 3><Example 3>

γ-PGA와 키토산의 공중합체 필름의 생분해성 측정Determination of Biodegradability of Copolymer Films of γ-PGA and Chitosan

상기와 같이 품질이 우수하다고 판명된 본 발명에 따른 공중합체 필름의 생분해성을 측정하였다.As described above, the biodegradability of the copolymer film according to the present invention was found to be excellent in quality.

먼저, 삼각플라스크에 토양과 본 발명에 따라 제조된 공중합체 필름을 섞어서 집어넣고, 고무마개로 밀봉한 후, 두 개의 유리관을 고무마개에 꽂았다. 대조구로는 공중합체 필름을 넣지 않고 토양만 넣은 것을 사용하였다. 한쪽 유리관으로는 NaOH 용액을 통과시켜 이산화탄소가 제거된 공기를 에어펌프로 플라스크 안의 토양 속으로 천천히 불어넣었고, 다른 한 쪽 유리관을 통해서는 토양 속에 들어갔던 공기가 천천히 플라스크 밖으로 나오도록 하였다. 이때, 만약 토양 중에 있는 필름 또는 탄소화합물(유기물)이 분해되면 이산화탄소가 발생하여 유리관을 통하여밖으로 나온다. 이때 나오는 공기를 또 다른 NaOH 용액 속으로 통과시켜서 이산화탄소 가스를 포집하였다. 따라서, 포집된 이산화탄소의 양으로부터 필름(또는 유기물)의 분해여부를 검정할 수 있다.First, the mixture of the soil and the copolymer film prepared according to the present invention in the Erlenmeyer flask was put, sealed with a rubber stopper, and two glass tubes were plugged into the rubber stopper. As a control, only the soil was used without the copolymer film. The NaOH solution was passed through one glass tube to slowly blow carbon dioxide-depleted air into the soil in the flask with an air pump, and the other glass tube allowed the air that had entered the soil to slowly come out of the flask. At this time, if the film or carbon compound (organic matter) in the soil is decomposed carbon dioxide is emitted through the glass tube. The air exited was then passed through another NaOH solution to capture carbon dioxide gas. Therefore, it is possible to test whether the film (or organic matter) is decomposed from the amount of carbon dioxide collected.

그 결과, 하기 표 6에 기재된 바와 같이, 대조군과 비교하여 높은 이산화탄소 양을 발생시켰음을 확인할 수 있었다. 즉, 본 발명에서 제조한 공중합체 필름은 자연상태에서 분해가 가능하다는 것을 알 수 있었다.As a result, as shown in Table 6, it was confirmed that the generation of high carbon dioxide compared to the control. That is, it was found that the copolymer film prepared in the present invention can be decomposed in a natural state.

호기적 토양 환경에서의 이산화탄소 발생량CO2 emissions in aerobic soil environments 부숙시간(단위: 일)Housing time (unit: days) 1One 22 44 88 1616 3232 이산화탄소발생량 누계(mg)Accumulated Carbon Dioxide (mg) 공중합체 필름(실시예 1)Copolymer Film (Example 1) 100100 150150 220220 300300 470470 600600 대조구Control 8080 120120 150150 160160 170170 170170

본 발명에 따른 γ-PGA와 키토산의 공중합체는 생분해도와 물리적 특성이 우수하며, 의료용, 식품용, 화학제품용 등의 상업적인 면에서 적용이 용이하다. 또한, 상기 공중합체로 제조된 필름은 인장강도, 신장률과 같은 물리적 특성이 우수할 뿐만 아니라, 물에 대한 용해도가 낮다는 장점이 있다.The copolymer of γ-PGA and chitosan according to the present invention has excellent biodegradability and physical properties, and is easily applied in commercial fields such as medical, food, and chemical products. In addition, the film made of the copolymer is not only excellent in physical properties such as tensile strength, elongation, but also has the advantage of low solubility in water.

Claims (10)

감마 폴리글루탐산과 키토산의 공중합체.Copolymer of gamma polyglutamic acid and chitosan. 제 1항에 있어서, 하기 화학식 1로 표시되는, 감마 폴리글루탐산과 키토산의 공중합체.The copolymer of gamma polyglutamic acid and chitosan according to claim 1, represented by the following general formula (1). <화학식 1><Formula 1> 제 1항에 있어서, 상기 키토산의 탈아세틸화도가 80-100%인 것을 특징으로 하는 공중합체.The copolymer according to claim 1, wherein the degree of deacetylation of the chitosan is 80-100%. 제 1항에 있어서, 상기 키토산의 점도는 100-150cps인 것을 특징으로 하는공중합체.The copolymer of claim 1, wherein the chitosan has a viscosity of 100-150 cps. 제 1항에 있어서, 상기 감마폴리글루탐산은 바실러스 리체니포르미스(Bacillus licheniformis)로부터 분리된 것을 특징으로 하는 공중합체.The copolymer of claim 1, wherein the gamma polyglutamic acid is separated from Bacillus licheniformis . 제 1항의 공중합체로부터 제조되는 생분해성 필름.A biodegradable film made from the copolymer of claim 1. 제 6항에 있어서, 인장강도가 50-100 MPa인 것을 특징으로 하는 생분해성 필름.7. The biodegradable film of claim 6, wherein the tensile strength is 50-100 MPa. 제 6항에 있어서, 신장률이 10-20%인 것을 특징으로 하는 생분해성 필름.The biodegradable film according to claim 6, wherein the elongation is 10-20%. 제 6항에 있어서, 물에 대한 용해도가 1.0-10.0%인 것을 특징으로 하는 생분해성 필름.The biodegradable film according to claim 6, wherein the solubility in water is 1.0-10.0%. 제 6항에 있어서, 수분 흡수율이 1.0-20.0%인 것을 특징으로 하는 생분해성 필름.The biodegradable film according to claim 6, wherein the water absorption is 1.0-20.0%.
KR10-2001-0069079A 2001-11-07 2001-11-07 Biodegradable interpolymer of gamma-poly(glutamic acid) and chitosan and manufactured film using the same KR100466480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0069079A KR100466480B1 (en) 2001-11-07 2001-11-07 Biodegradable interpolymer of gamma-poly(glutamic acid) and chitosan and manufactured film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0069079A KR100466480B1 (en) 2001-11-07 2001-11-07 Biodegradable interpolymer of gamma-poly(glutamic acid) and chitosan and manufactured film using the same

Publications (2)

Publication Number Publication Date
KR20030038892A true KR20030038892A (en) 2003-05-17
KR100466480B1 KR100466480B1 (en) 2005-01-15

Family

ID=29568302

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0069079A KR100466480B1 (en) 2001-11-07 2001-11-07 Biodegradable interpolymer of gamma-poly(glutamic acid) and chitosan and manufactured film using the same

Country Status (1)

Country Link
KR (1) KR100466480B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691869B1 (en) * 2004-07-01 2007-03-12 주식회사 바이오폴 A method for preparing chitosan/poly ?-glutamic acid polyelectrolyte complex
KR101101279B1 (en) * 2010-07-13 2012-01-04 이소영 Wireless microphone recording device and method by record button operation
KR20180122801A (en) * 2017-05-04 2018-11-14 주식회사 테라시온 바이오메디칼 Anti-adhesion composition and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455102B1 (en) 2020-05-21 2022-10-14 충북대학교 산학협력단 Biodegradable materials based on defatted Chlorella biomass and its preparing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117388A (en) * 1991-10-29 1993-05-14 Nippon Paint Co Ltd Poly-gamma-glutamic acid ester and its production
JP3274550B2 (en) * 1993-08-03 2002-04-15 株式会社日本触媒 Manufacturing method of water absorbing material
JPH07138364A (en) * 1993-11-16 1995-05-30 Fukuoka Pref Gov Molded poly-gamma-glutamic acid and method for molding poly-gamma-glutamic acid
US6229009B1 (en) * 1997-08-29 2001-05-08 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Polycarboxylic based cross-linked copolymers
KR980008040A (en) * 1998-02-02 1998-04-30 이주형 Cheonggukjang containing chitosan and / or chitosan oligosaccharide
KR20010078440A (en) * 2001-01-11 2001-08-21 김형순,성문희 Bacillus subtilis var. chungkookjang Producing High Molecular Weight Poly-gamma-glutamic Acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691869B1 (en) * 2004-07-01 2007-03-12 주식회사 바이오폴 A method for preparing chitosan/poly ?-glutamic acid polyelectrolyte complex
KR101101279B1 (en) * 2010-07-13 2012-01-04 이소영 Wireless microphone recording device and method by record button operation
KR20180122801A (en) * 2017-05-04 2018-11-14 주식회사 테라시온 바이오메디칼 Anti-adhesion composition and method for manufacturing the same

Also Published As

Publication number Publication date
KR100466480B1 (en) 2005-01-15

Similar Documents

Publication Publication Date Title
Bakshi et al. Chitosan as an environment friendly biomaterial–a review on recent modifications and applications
Lim et al. In vitro and in vivo degradation behavior of acetylated chitosan porous beads
US7740883B2 (en) Nanoparticles from chitosan
Abdelgawad et al. Fabrication and characterization of bactericidal thiol-chitosan and chitosan iodoacetamide nanofibres
Shukla et al. Chitosan-based nanomaterials: A state-of-the-art review
Du et al. Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan
KR100375299B1 (en) Crosslinked derivatives of hyaluronic acid by amide formation and their preparation methods
Komoto et al. Preparation of polyelectrolyte complex gel of sodium alginate with chitosan using basic solution of chitosan
KR100507545B1 (en) Hyaluronic acid derivatives and processes for preparing them
Yixue et al. Modification of agarose with carboxylation and grafting dopamine for promotion of its cell-adhesiveness
Ghosh et al. Modification of microstructural morphology and physical performance of chitosan films
Kumari et al. Controlled release of metformin hydrochloride through crosslinked blends of chitosan-starch
CN108210932B (en) Preparation method of charge-driven self-assembled chitosan-based drug-loaded nanoparticles
CN109161060B (en) Modified succinyl chitosan hydrogel and preparation method and application thereof
Choi et al. Synthesis and characterization of pH‐sensitive and biodegradable hydrogels prepared by γ irradiation using microbial poly (γ‐glutamic acid) and poly (ϵ‐lysine)
Hu et al. Novel complex hydrogels based on N-carboxyethyl chitosan and quaternized chitosan and their controlled in vitro protein release property
JPH04275346A (en) Compatibel mixture containing chitosan
Rajeswari et al. Current research on the blends of chitosan as new biomaterials
KR100466480B1 (en) Biodegradable interpolymer of gamma-poly(glutamic acid) and chitosan and manufactured film using the same
Bodnár et al. Nanoparticles from chitosan
CN111138682A (en) Fluorescence-labeled biological material and preparation method thereof
Palumbo et al. Interpenetrated 3D porous scaffolds of silk fibroin with an amino and octadecyl functionalized hyaluronic acid
US20170096500A1 (en) Site-selective modification of polysaccharides and applications thereof
KS Yadav et al. Naturally occurring chitosan and chitosan derivatives: a review
El-Nesr et al. Radiation synthesis and characterization of N, O-carboxymethyl chitosan/poly (vinylpyrrolidone) Copolymer Hydrogel

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131213

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 15