KR20030035435A - thermal-storage electric boiler - Google Patents

thermal-storage electric boiler Download PDF

Info

Publication number
KR20030035435A
KR20030035435A KR1020010067531A KR20010067531A KR20030035435A KR 20030035435 A KR20030035435 A KR 20030035435A KR 1020010067531 A KR1020010067531 A KR 1020010067531A KR 20010067531 A KR20010067531 A KR 20010067531A KR 20030035435 A KR20030035435 A KR 20030035435A
Authority
KR
South Korea
Prior art keywords
heat storage
time
controller
temperature
heating element
Prior art date
Application number
KR1020010067531A
Other languages
Korean (ko)
Other versions
KR100441944B1 (en
Inventor
한승호
권성철
정우용
고기중
최병윤
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR10-2001-0067531A priority Critical patent/KR100441944B1/en
Publication of KR20030035435A publication Critical patent/KR20030035435A/en
Application granted granted Critical
Publication of KR100441944B1 publication Critical patent/KR100441944B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/0208Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid using electrical energy supply
    • F24H7/0233Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid using electrical energy supply the transfer fluid being water
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/1923Control of temperature characterised by the use of electric means characterised by the type of controller using thermal energy, the cost of which varies in function of time
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/1928Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperature of one space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/02Resistances

Abstract

PURPOSE: A regeneration control system is provided to efficiently operate an electricity distribution facility by preventing the shortage of the capacity of a line and a transformer. CONSTITUTION: A regeneration control system comprises a time switch(10) counting time, a heating element(40) generating heat by using supplied power, a regenerative temperature controller(20) collecting the heat generated from the heating element and supplying temperature-controlled heat, a regeneration controller(30) automatically controlling the supply time of mid-night electricity serially connected to the regenerative temperature controller, a main switch(MSW1) switching for supplying power to the heating element, and input switches(SW1,SW2). The generation controller outputs a signal for controlling the heating element corresponding to the control algorithm embedded in a microcontroller(31) serially connected to the regenerative temperature controller.

Description

축열제어시스템{thermal-storage electric boiler}Heat storage control system {thermal-storage electric boiler}

본 발명은 축열제어시스템에 관한 것으로서, 더 자세하게는 축열식 전기보일러에 기계식 타임스위치와 축열온도조절기에 직렬연결된 축열제어기를 추가하여 내장된 마이크로컨트롤로에 축열제어 알고리즘을 탑재하여 축열잔량 및 익일 출열율 및 사용열량을 추정하여 능동작으로 축열 시작시간을 자동제어하여 심야 전력수요를 분산시켜 최대 전력수요 발생을 억제하여 배전계통의 선로 및 변압기 용량부족을 막아 배전설비의 효율적인 운용 및 비용 절감을 기대할 수 있는 축열제어시스템에 관한 것이다.The present invention relates to a heat storage control system. More particularly, a heat storage control algorithm is installed in a built-in microcontroller by adding a heat storage controller connected in series to a mechanical time switch and a heat storage temperature controller to a heat storage electric boiler. It is possible to expect efficient operation and cost reduction of distribution facilities by estimating the amount of heat used and automatically controlling the start time of heat storage by distributing the midnight electric power demand to suppress the occurrence of maximum electric power demand. The present invention relates to a heat storage control system.

일반적으로 전력은 수요관리 정책의 일환으로 주간의 특정시산대에 집중되는 전력수요를 분산하고, 전기 사용이 적은 심야(밤 10시 ~아침 8시) 시간대 수요를 증대시켜 부하 평균화를 위하여 상대적으로 저렴한 심야 전력 요금체계를 운영하고, 축열 및 축냉식 심야전력기기를 보급하여 왔다. 그러나 축열식 심야 전력기기의 보급률이 높아짐에 따라 주간 최대 수요를 넘어서는 야간 최대수요를 발생하여 배전선호의 변압기 및 선로 용량 초과등의 또 다른 문제점을 야기했다.In general, power is relatively inexpensive for load averaging by distributing power demand that is concentrated in specific time zones as part of the demand management policy, and increasing demand for late-night (10 pm to 8 am) hours with low electricity usage. It has operated a midnight electricity tariff system and has been spreading heat storage and refrigerated late night power equipment. However, as the penetration rate of regenerative late-night power equipment increased, the peak demand at night exceeded the weekly peak demand, causing another problem such as exceeding transformer and line capacity of the distribution line.

축열식 삼야전력기기 중 가장 보급률이 높은 축열식 전기보일러는 기존에 사용중인 축열제어장치는 기계식타임스위치(Time Swich)를 통해 심야전력이 공급되고 보일러의 내부 온도를 감지하여 발열체의 온/오프를 제어하는 축열온도조절기가 부착되어 있는 형태이다. 그러나 이러한 기존의 축열제어장치로는 타임스위치가 온되는 역 22시경에 일제히 축열을 시작하게 됨으로써, 현재 보급되어 있는 전국의 모든 심야 전력기기가 일체히 축열에 들어감으로써 타임스위치의 오차를 고려하여 심야 전력이 공급되기 시작한지 1시간이 지난 약 23시경에 전력수요가 최대에 이르러 하계주간이 아닌 동계야간에 전력수요 피크가 발생할 우려의 문제점을 가지고 있다.The most popular type of regenerative electric boilers among the regenerative triangular power equipments is the regenerative control system used in the past, which is supplied with a midnight power through a mechanical time switch and controls the on / off of the heating element by sensing the internal temperature of the boiler. Regenerative temperature controller is attached. However, as the existing heat storage control device starts to accumulate at about 22 o'clock when the time switch is turned on, all of the late-night power equipments currently in use in the heat storage are integrated into the heat storage in consideration of the error of the time switch. There is a concern that power demand peaks at about 23 o'clock, one hour after power supply starts, and a peak in power demand occurs during the winter night, not during the summer week.

본 발명은 이와 같은 종래의 제반 문제점을 해결하기 위한 것으로서 그 목적은 심야절력기기의 재어장치에 설치되어 있는 기계식 타임스위치와 축열온도조절기에 직렬로 별도의 축열제어장치를 추가하여 축열단량 및 축열율을 고려하여 심아전력의 공급시간을 자동제어하는 장치로부터 축열잔량과 익일의 축열율 및 이용되는 열량을 추정하여 이에 따라 축열 시작시간을 지연시켜 야간에의 최대전력수요 발생을 억제하는 데 있다.The present invention is to solve such a conventional problem, its purpose is to add a separate heat storage control device in series with a mechanical time switch and a heat storage temperature controller installed in the control device of the midnight power saving device, the heat storage capacity and heat storage rate In this regard, the remaining heat storage rate, the heat storage rate of the next day, and the amount of heat used are estimated from the apparatus for automatically controlling the supply time of the deep-core power, thereby delaying the heat storage start time, thereby suppressing the occurrence of the maximum power demand at night.

도 1은 본 발명의 실시예에 따른 축열제어시스템의 연결구성도이다.1 is a connection configuration diagram of a heat storage control system according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 축열제어시스템의 동작 흐름도이다.2 is an operation flowchart of a heat storage control system according to an embodiment of the present invention.

-도면의 주요부분에 대한 부호설명-Code descriptions for the main parts of the drawings

10;타임스위치20;축열온도조절기10; time switch 20; regenerative temperature controller

30;축열제어기31;마이크로컨트롤러30; Thermal controller 31; Microcontroller

40;발열체MSW1;메인스위치40; heating element MSW1; main switch

SW1,SW2;입력스위치SW1, SW2; input switch

이하, 이 발명이 속하는 기술분야에서 통상의 지식을 갖는 자가 이 발명을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 이 발명의 가장 바람직한 실시예를 첨부된 도면을 참조로 하여 상세히 설명하기로 한다. 이 발명의 목적, 작용효과를 포함하여 기타 다른 목적들, 특징점들, 그리고 동작상의 이점들이 바람직한 실시예의 설명에 의해 보다 명확해질 것이다.DETAILED DESCRIPTION Hereinafter, the most preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention. . Other objects, features, and operational advantages, including the purpose, working effects, and the like of the present invention will become more apparent from the description of the preferred embodiment.

참고로 여기에서 개시되는 실시예는 여러가지 실시가능한 예중에서 당업자의 이해를 돕기 위하여 가장 바람직한 예를 선정하여 제시한 것일 뿐, 이 발명의 기술적 사상이 반드시 이 실시예만 의해서 한정되거나 제한되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 다양한 변화와 변경이 가능함은 물론, 균등한 타의 실시예가 가능함을 밝혀 둔다.For reference, the embodiments disclosed herein are only presented by selecting the most preferred examples to help those skilled in the art from the various possible examples, the technical spirit of the present invention is not necessarily limited or limited only by this embodiment, Various changes and modifications are possible within the scope without departing from the technical spirit of the present invention, as well as other equivalent embodiments will be found.

도 1은 본 발명의 실시예에 따른 축열제어시스템의 연결구성도이고, 도 2는 본 발명의 실시예에 따른 축열제어시스템의 동작 흐름도이다.1 is a connection configuration diagram of a heat storage control system according to an embodiment of the present invention, Figure 2 is an operation flowchart of a heat storage control system according to an embodiment of the present invention.

본 발명은 축열식 보일러 및ㅌ 온수기의 심야전력공급시간을 자동으로 제어할 수 있도록 하는 장치 및 방법에 관한 것으로서, 도 1 또는 도 2에서 보는 바와 같이 일정시간을 카운터하는 타임스위치(10)와, 전력공급으로 열을 발열하는 발열체(40)와, 상기 발열체(40)에서 발열하는 열을 모아 조절된 온도를 공급하는 축열온도조절기(20)와, 상기 축열온도조절기(20)에 직렬연결된 심야전력의 공급시간을 자동조절하는 축열제어기(30)와, 상기 발열체(40)에 전원을 공급하기 위해 스위칭 동작하는 메인스위치(MSW1)와, 입력스위치(SW1)(SW2)가 연결되는 구성을 갖는다.The present invention relates to an apparatus and a method for automatically controlling a late-night power supply time of a regenerative boiler and a hot water heater, as shown in FIG. 1 or FIG. The heating element 40 for generating heat by supplying, the heat storage temperature controller 20 for supplying a regulated temperature by collecting the heat generated by the heating element 40, and the late-night power connected in series to the heat storage temperature controller 20 The heat storage controller 30 which automatically adjusts the supply time, the main switch MSW1 for switching operation to supply power to the heating element 40, and the input switches SW1 and SW2 are connected.

상기 축열제어기(30)는 타임스위치(10)나 발열체(40)인 히터의 온/오프 접점신호와 축열조 내부 온도를 입력하여 축열온도조절기(20)와 직렬로 연결되어 내장된 마이크로컨트롤러(31)에 내장된 제어 알고리즘에 따라 발열체(40)를 제어할 수 있는 신호가 출력될 수 있도록 되어 있다.The heat storage controller 30 is connected to the heat storage temperature controller 20 in series by inputting the on / off contact signal of the heater, which is the time switch 10 or the heating element 40, and the heat storage tank internal microcontroller 31. According to the control algorithm built in the signal to control the heating element 40 is to be output.

상기 축열제어기(30)는 마이크로컨트롤러(31)가 내장되어 축열제어가 이루어질 수 있도록 하는 내장된 프로그램에 따라 축열 지연시간을 계산한다.The heat storage controller 30 calculates a heat storage delay time according to a built-in program in which the microcontroller 31 is built to allow heat storage control.

축열제어프로그램은 초기운전모드와 자동제어운전모드 2가지를 가지고 있다.The heat storage control program has two modes of initial operation mode and automatic control operation mode.

초기운전모드는 보일러가 가동한 첫날 또는 초기와 버튼을 조작한 날에 동작하게 되고, 이 모드에서는 축열온도조절기(20)에 의하여 보일러를 동작시키면서 자동제어운전모드를 위하야 축열조 평균온도를 측정하고 축열시간중의 축열온도상승률을 계산한다. 초기모드에서 운전한 다음날 부터 축열제어기(30)에 의하여 운전되고 이때부터 자동제어운전모드로 작동된다. 자동제어운전모드에서는 심아전력 계약 사용시간의 시작시점으로부터 매 1분 간격으로 계산되는 예측 지연시간이 '0'이하가 되는 시점에서 축열이 시작된다. 이때 예측 지연시간은 다음과 같이 계산된다.The initial operation mode is operated on the first day of boiler operation or on the day of initial and button operation. In this mode, the average temperature of the heat storage tank is measured and the heat storage is performed for the automatic control operation mode while operating the boiler by the heat storage temperature controller 20. Calculate the rate of heat storage temperature rise over time. The day after the operation in the initial mode is operated by the heat storage controller 30 and from this time it is operated in the automatic control operation mode. In the automatic control operation mode, the heat storage starts when the predicted delay time, which is calculated every 1 minute from the start of the deep-core power contract usage time, is less than or equal to '0'. At this time, the prediction delay time is calculated as follows.

예측지연시간은이다.Forecast delay time to be.

상기의은 예측된 축열지연시간이고,는 계약사용시간 계시 후 측정시점까지의 경과시간이며,은 계약사용시간의 시작시각으로부터 축열종료시각가지의 분단위시간이고,는 직전일의 축열종료시점에서의 축열조 평균온도이며,은 직전일의 축열종료시점에서의 축열조 평균온도이고,는 전일 축열시간 동안의 평균온도상승률이다.Above Is the estimated heat storage delay time, Is the elapsed time from measurement time to the measurement time Is the minute time from the start time of contract usage time to the end time of heat storage Is the average temperature of the heat storage tank at the end of heat storage on the previous day, Is the average temperature of the heat storage tank at the end of heat storage on the previous day, Is the average temperature rise rate during the day before heat storage time.

본 발명에서는 10시간방식(22시 ~익일 8시)이외에 7시간방식(24시 ~익일 7시), 1+9 시간방식(21~22(1시간)+24시 ~익일 09시 (9시간)의 2가지 방식을 추가로 적용할 수 있다.심야전력 요금메뉴는의 설정값 변경에 의해 정해진다.은 계약사용시간의 시작시각으로부터 축열 종료시각까지의 분단위 시간을 의미하는 상수로 10시간 모드에서는 축열여유시간(90분)을 제외한=510을 적용한다.In the present invention, in addition to the 10-hour system (22 o'clock to 8 o'clock next day), the 7-hour system (24 o'clock to 7 o'clock the next day), 1 + 9 hour system (21 to 22 (1 hour) + 24 o'clock to the next o'clock (9 hours) There are two additional options: midnight power bill menu. It is determined by changing the set value of. Is the constant time in minutes from the start time of the contract usage time to the end time of the heat storage. Apply = 510.

7시간 모드로 동작하면 축열여유시간(60분)을 두어=360을 적용하고 1+9 시간 모드로 동작하면 9시간에 축열여유시간(90분)을 두어=450을 적용한다. 이경우 처음 1시간만 공급되는 시단(21~22시)에는 자동제어운전이 되지 않도록 되어 있다.When operating in 7 hours mode, allow for 60 minutes If you apply = 360 and operate in 1 + 9 hour mode, you have 9 hours Apply = 450. In this case, automatic control operation is prevented at the start time (21 ~ 22 o'clock), which is supplied only for the first hour.

한편, 본 발명은 처음 사용자가 선택한 심야전력 요금메뉴에 따라값을 설정하고, 초기운전모드로 들어간다. 초기운전모드에서는 축열온도제어기에 의해서만 축열제어가 이루어지고, 축열제어기(30)는 내부적으로 축열율을 계산한다. 둘째날부터는 축열제어기(30)에 의한 자동제어운전모드로 동작을 하여 축열지연시간을 계산하여 축열동작으로 제어한다. 축열을 시작한 후 단위시간당 평균 축열온도 상승율을 계산하면 다음과 같다.On the other hand, the present invention according to the first night power charge menu selected by the user Set the value and enter the initial operation mode. In the initial operation mode, the heat storage control is performed only by the heat storage temperature controller, and the heat storage controller 30 internally calculates the heat storage rate. From the second day, the operation is performed in the automatic control operation mode by the heat storage controller 30 to calculate the heat storage delay time and control the heat storage operation. The average heat storage temperature increase rate per unit time after starting the heat storage is calculated as follows.

축열온도상슬율은이다.The heat storage temperature to be.

상기의은 발열체(40)에 전력이 투입된 시점에서의 축열조 평균온도이고,은 발열체(40)의 전원이 투입 또는 차단된 시점의 시각이다.Above Is the average temperature of the heat storage tank at the time when electric power is supplied to the heating element 40, Is the time when the power of the heating element 40 is turned on or off.

또한, 축열조 내부의 평균온도는이다.In addition, the average temperature inside the heat storage tank is to be.

상기의는 축열조 상부에서 하부로의 온도센서로부터 측정한 온도이다.Above Is the temperature measured from the temperature sensor from the top of the heat storage tank to the bottom.

이와 같이 작용하는 본 발명은 축열식 전기보일러에 기계식 타임스위치와 축열온도조절기에 직렬연결된 축열제어기를 추가하여 내장된 마이크로컨트롤러에 축열제어 알고리즘을 탑재하여 축열잔량 및 익일 출열율 및 사용열량을 추정하여 능동작으로 축열 시작시간을 자동제어하여 심야 전력수요를 분산시켜 최대 전력수요 발생을 억제하여 배전계통의 선로 및 변압기 용량부족을 막아 배전설비의 효율적인 운용 및 비용 절감을 기대할 수 있는 효과가 있다.The present invention works as described above by adding a heat storage controller connected in series to a mechanical time switch and a heat storage temperature controller in a heat storage electric boiler, and equipped with a heat storage control algorithm in a built-in microcontroller to estimate the heat storage remaining amount, the next day heat release rate, and the amount of heat used. By automatically controlling the start time of the heat storage, it is possible to distribute the midnight power demand to suppress the occurrence of the maximum power demand, thereby preventing the shortage of the line and the transformer capacity of the distribution system, and to effectively operate the power distribution equipment and reduce the cost.

Claims (4)

일정시간을 카운터하는 타임스위치(10)와, 전력공급으로 열을 발열하는 발열체(40)와, 상기 발열체(40)에서 발열하는 열을 모아 조절된 온도를 공급하는 축열온도조절기(20)와, 상기 발열체(40)에 전원을 공급하기 위해 스위칭 동작하는 메인스위치(MSW1)와 입력스위치(SW1)(SW2)와,상기 축열온도조절기(20)에 직렬연결된 심야전력의 공급시간을 자동조절하는 축열제어기(30)가 연결되는 있어서, 상기 축열제어기(30)가A time switch 10 for counting a predetermined time, a heat generator 40 for generating heat by power supply, a heat storage temperature controller 20 for collecting heat generated from the heat generator 40 and supplying a regulated temperature; Heat storage for automatically adjusting the supply time of the late night power connected in series with the main switch (MSW1) and the input switch (SW1) (SW2) and the heat storage temperature controller 20 to supply power to the heating element (40) In the controller 30 is connected, the heat storage controller 30 is 타임스위치(10)나 발열체(40)를 온/오프 접점신호와 축열조 내부 온도를 입력하여 축열온도조절기(20)와 직렬로 연결되어 내장된 마이크로컨트롤러(31)에 내장된 제어 알고리즘에 따라 상기 발열체(40)를 제어하도록 연결되는 축열제어장치.The heating element is connected to the heat storage temperature controller 20 by inputting an on / off contact signal and a heat storage tank internal temperature to the time switch 10 or the heating element 40 in accordance with a control algorithm embedded in the built-in microcontroller 31. A heat storage control device connected to control the 40. 상기 축열제어기(30)내의 마이크로컨트롤로에 내장된 제어알고리즘은 보일러가 가동한 첫날 또는 초기와 버튼을 조작한 날에 동작하게 되고 축열온도조절기(20)에 의하여 보일러를 동작시키면서 축열조 평균온도를 측정하고 축열시간중의 축열온도상승률을 계산하는 초기운전모드와, 상기 초기운전모드에서 운전한 다음날 부터 축열제어기(30)에 의하여 운전되고 이때부터 심아전력 계약 사용시간의 시작시점으로부터 매 1분 간격으로 계산되는 예측 지연시간이 '0'이하가 되는 시점에서 축열이 시작되는 자동제어운전모드가 설정되어 제어하는 축열제어방법.The control algorithm embedded in the microcontroller in the heat storage controller 30 operates on the first day of operation of the boiler or the day of operation of the button and the operation of the button and measures the average temperature of the heat storage tank while operating the boiler by the heat storage temperature controller 20. And the initial operation mode for calculating the heat storage temperature rise rate during the heat storage time, and the operation by the heat storage controller 30 from the day after the operation in the initial operation mode and from this time every one minute from the start of the planting power contract use time A heat storage control method in which an automatic control operation mode in which heat storage starts is set and controlled when the estimated delay time calculated is '0' or less. 제 2항에 있어서, 상기 자동제어운전모드에서 계산하는 예측지연시간을에 대입하여 연산하여 축열제어가 이루어질 수 있도록 하는 축열제어방법.The method of claim 2, wherein the predicted delay time calculated in the automatic control operation mode is calculated. Regenerative control method to perform regenerative control by calculating by substituting to. 제 2항에 있어서, 상기 초기운전모드에서 축열온도제어기에 의해 연산디는 축열온도상승율은으로 연산하고, 축열조 내부의 평균온도는으로 연산하여 축열제어가 이루어질 수 있도록 하는 축열제어방법.The heat storage temperature increase rate calculated by the heat storage temperature controller in the initial operation mode is The average temperature inside the heat storage tank is Heat storage control method to perform the heat storage control by the operation. 여기서, 상기의은 예측된 축열지연시간이고,는 계약사용시간 계시 후 측정시점까지의 경과시간이며,은 계약사용시간의 시작시각으로부터 축열종료시각가지의 분단위시간이고,는 직전일의 축열종료시점에서의 축열조 평균온도이며,은 직전일의 축열종료시점에서의 축열조 평균온도이고,는 전일 축열시간 동안의 평균온도상승률이다.Where Is the estimated heat storage delay time, Is the elapsed time from measurement time to the measurement time Is the minute time from the start time of contract usage time to the end time of heat storage Is the average temperature of the heat storage tank at the end of heat storage on the previous day, Is the average temperature of the heat storage tank at the end of heat storage on the previous day, Is the average temperature rise rate during the day before heat storage time. 상기의은 발열체(40)에 전력이 투입된 시점에서의 축열조 평균온도이고,은 발열체(40)의 전원이 투입 또는 차단된 시점의 시각이다.Above Is the average temperature of the heat storage tank at the time when electric power is supplied to the heating element 40, Is the time when the power of the heating element 40 is turned on or off. 상기의는 축열조 상부에서 하부로의 온도센서로부터 측정한 온도이다.Above Is the temperature measured from the temperature sensor from the top of the heat storage tank to the bottom.
KR10-2001-0067531A 2001-10-31 2001-10-31 Apparatus for controling thermal-storage electric boiler and method for controling thermal-storage electric boiler KR100441944B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0067531A KR100441944B1 (en) 2001-10-31 2001-10-31 Apparatus for controling thermal-storage electric boiler and method for controling thermal-storage electric boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0067531A KR100441944B1 (en) 2001-10-31 2001-10-31 Apparatus for controling thermal-storage electric boiler and method for controling thermal-storage electric boiler

Publications (2)

Publication Number Publication Date
KR20030035435A true KR20030035435A (en) 2003-05-09
KR100441944B1 KR100441944B1 (en) 2004-07-27

Family

ID=29567268

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0067531A KR100441944B1 (en) 2001-10-31 2001-10-31 Apparatus for controling thermal-storage electric boiler and method for controling thermal-storage electric boiler

Country Status (1)

Country Link
KR (1) KR100441944B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489036B1 (en) * 2002-10-31 2005-05-17 한국전력공사 Method for controlling the Power Supply Time in a Thermal-storage Heating Radiator
KR100857222B1 (en) * 2007-09-27 2008-09-05 한국전력공사 Apparatus and method for determining the effective thermal storage of water storage tank using materials with low biot number
KR20220169900A (en) 2021-06-21 2022-12-28 세명대학교 산학협력단 Energy renewable system using waste heat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716616B1 (en) 2016-06-24 2017-03-14 이병택 Method for driving heating and cooling in alternating temperature and storing heat system, and alternating temperature and storing heat system implementing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618553A (en) * 1984-06-21 1986-01-16 Matsushita Electric Ind Co Ltd Electric water heater
JPH0743169B2 (en) * 1988-02-16 1995-05-15 タカラスタンダード株式会社 Boil-up control device for energization control type electric water heater
KR920000475B1 (en) * 1988-12-10 1992-01-14 한국과학기술원 Device for controling of regenerator
KR950012671B1 (en) * 1992-06-12 1995-10-20 박예환 Filter fabric and its making method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489036B1 (en) * 2002-10-31 2005-05-17 한국전력공사 Method for controlling the Power Supply Time in a Thermal-storage Heating Radiator
KR100857222B1 (en) * 2007-09-27 2008-09-05 한국전력공사 Apparatus and method for determining the effective thermal storage of water storage tank using materials with low biot number
KR20220169900A (en) 2021-06-21 2022-12-28 세명대학교 산학협력단 Energy renewable system using waste heat

Also Published As

Publication number Publication date
KR100441944B1 (en) 2004-07-27

Similar Documents

Publication Publication Date Title
US10135248B2 (en) Control apparatus, control system, control method, and recording medium for controlling devices to charge or discharge electricity storage apparatus
JP5025835B2 (en) Operation planning method and operation method of heat pump hot water supply and heating system
JP5836164B2 (en) Solar power system
KR20060113772A (en) Device for covering the peak load
JP2007166818A (en) Power supply system and control method thereof
JP6066296B2 (en) Equipment operation plan determination method
JP6280788B2 (en) Cogeneration system
JP2004194485A (en) Energy system
JP5819225B2 (en) Equipment operation plan determination method
KR100441944B1 (en) Apparatus for controling thermal-storage electric boiler and method for controling thermal-storage electric boiler
WO2004100337A1 (en) Power supply including system interconnection inverter
JP4810786B2 (en) Fuel cell cogeneration system
JP6025443B2 (en) Power supply system
JP4142837B2 (en) Power use device and power control method
JP7228421B2 (en) hot water system
JP6456153B2 (en) Power control apparatus, charge / discharge control method, and program
JP2003045460A (en) Fuel cell device and its control method
JP2002298887A (en) Power management device
JP4036774B2 (en) Cogeneration system
JP4861059B2 (en) Cogeneration system
JP2006029771A (en) Cogeneration system
JP3970239B2 (en) Cogeneration system energy saving degree calculation method
JP6280741B2 (en) Power supply system
JP2004278510A (en) Cogeneration system
JP2004263622A (en) Cogeneration system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130716

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150715

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170717

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 16