KR20030034762A - Method of preparing positive active material for rechargeable lithium batteries and preparing the same - Google Patents
Method of preparing positive active material for rechargeable lithium batteries and preparing the same Download PDFInfo
- Publication number
- KR20030034762A KR20030034762A KR1020010066486A KR20010066486A KR20030034762A KR 20030034762 A KR20030034762 A KR 20030034762A KR 1020010066486 A KR1020010066486 A KR 1020010066486A KR 20010066486 A KR20010066486 A KR 20010066486A KR 20030034762 A KR20030034762 A KR 20030034762A
- Authority
- KR
- South Korea
- Prior art keywords
- lithium
- active material
- parts
- positive electrode
- weight
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
본 발명은 리튬 이차 전지용 양극 활물질 및 그의 제조방법에 관한 것으로서, 상세하게는 과충전 특성 및 고전압 안전성이 향상된 리튬 이차 전지용 양극 활물질 및 그의 제조방법에 관한 것이다.The present invention relates to a positive electrode active material for a lithium secondary battery and a method for manufacturing the same, and more particularly, to a positive electrode active material for a lithium secondary battery with improved overcharge characteristics and high voltage safety and a method for manufacturing the same.
리튬 이차 전지는 가역적으로 리튬 이온의 삽입과 탈리가 가능한 가능한 물질을 양극 및 음극으로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 양극 및 음극에서 삽입/탈리될 때의 산화, 환원 반응에 의하여 전기 에너지를 생성한다.Lithium secondary batteries are manufactured by reversibly inserting and detaching lithium ions as a positive electrode and a negative electrode, and filling an organic or polymer electrolyte between the positive electrode and the negative electrode, and lithium ions are inserted / Electrical energy is generated by oxidation and reduction reactions when desorption.
리튬 이차 전지의 음극 활물질로는 리튬 금속을 사용하였으나, 리튬 금속을 사용하는 경우 덴드라이트(dendrite)의 형성으로 인한 전지 단락에 의해 폭발 위험성이 있어서 리튬 금속 대신 비정질 탄소 또는 결정질 탄소 등의 탄소계 물질로 대체되어 가고 있다. 특히, 최근에는 탄소계 물질의 용량을 증가시키기 위하여 탄소계 물질에 보론을 첨가하여 보론 코팅된 그라파이트(BOC)를 제조하고 있다.Lithium metal was used as a negative electrode active material of a lithium secondary battery. However, when lithium metal is used, a carbon-based material such as amorphous carbon or crystalline carbon may be used instead of lithium metal due to a risk of explosion due to a short circuit of the battery due to the formation of dendrite. Is being replaced. In particular, in recent years, boron-coated graphite (BOC) is manufactured by adding boron to a carbon-based material to increase the capacity of the carbon-based material.
양극 활물질로는 칼코게나이드(chalcogenide) 화합물이 사용되고 있으며, 그 예로 LiCoO2, LiMn2O4, LiNiO2, LiNi1-xCoxO2(0 < x <1), LiMnO2등의 복합 금속 산화물들이 연구되고 있다. 상기 양극 활물질 중 LiCoO2는 양호한 전기전도도와 높은 전지 전압 그리고 우수한 전극 특성을 보이며, 현재 Sony사 등에서 상업화되어 시판되고 있는 대표적인 양극 활물질이나, 가격이 비싸다는 단점이 있다. LiMnO2, LiMn2O4등의 망간계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 환경에 대한 오염도 적어 매력이 있는 물질로 알려져 왔다. 그러나, 망간계 양극 활물질은 용량이 작고 고온에서 열화되어 폭발의 위험성 있다는 단점이 있다.A chalcogenide compound is used as the positive electrode active material, and examples thereof include a composite metal such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1-x Co x O 2 (0 <x <1), LiMnO 2, and the like. Oxides are being studied. Among the positive electrode active materials, LiCoO 2 shows good electrical conductivity, high battery voltage, and excellent electrode characteristics, and is a representative positive electrode active material currently commercialized and sold by Sony, etc., but has a disadvantage of high price. Manganese-based positive electrode active materials such as LiMnO 2 and LiMn 2 O 4 have been known as attractive materials because they are easy to synthesize, relatively inexpensive, and have little pollution to the environment. However, the manganese-based positive electrode active material has a disadvantage that the capacity is small and deteriorated at high temperature, which may cause an explosion.
이에 따라, 망간계 양극 활물질의 열적 안정성을 높이면서, 코발트계 양극 활물질에 버금가는 열적 특성을 지닌 망간계 양극 활물질을 합성하기 위하여, 망간의 일부를 다른 니켈이나 코발트 등으로 치환한 복합 산화물에 대한 연구가 진행되고 있다.Accordingly, in order to synthesize a manganese-based cathode active material having thermal properties comparable to that of the cobalt-based cathode active material while improving the thermal stability of the manganese-based cathode active material, a portion of the complex oxide in which manganese is replaced with another nickel, cobalt, or the like is used. Research is ongoing.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 과충전 특성 및 고전압 안정성이 향상된 리튬 이차 전지용 양극 활물질 및 그의 제조방법을 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a positive electrode active material for a lithium secondary battery with improved overcharge characteristics and high voltage stability and a method of manufacturing the same.
상기 목적을 달성하기 위하여, 본 발명은 리튬 코발트계 산화물과 리튬 망간계 산화물을 포함하는 리튬 이차 전지용 양극 활물질을 제공한다.In order to achieve the above object, the present invention provides a cathode active material for a lithium secondary battery comprising a lithium cobalt oxide and a lithium manganese oxide.
또한 본 발명은 리튬 코발트계 산화물과 리튬 망간계 산화물을 혼합하는 공정을 포함하는 리튬 이차 전지용 양극 활물질의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a positive electrode active material for a lithium secondary battery comprising a step of mixing a lithium cobalt oxide and a lithium manganese oxide.
이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
리튬 코발트계 산화물은 용량특성, 및 충방전 특성이 뛰어나 리튬 이차 전지용 양극 활물질로 널리 쓰이고 있으나 과충전 시 수명특성이 저하된다는 문제점이 있다. 그 외에 리튬 이차 전지용 양극 활물질로 쓰이는 리튬 망간계 산화물은 충방전 특성이 뛰어나나 용량이 작고 고온에서 열화될 수 있다는 문제점이 있다. 본 발명은 코발트계 산화물과 망간계 산화물의 장점을 최대로 이용하여, 충방전 특성, 및 고전압 안정성이 뛰어나고 과충전 특성이 향상된 리튬 이차 전지용 양극 활물질 및 그의 제조방법을 제공한다.Lithium cobalt oxide is widely used as a cathode active material for lithium secondary batteries because of its excellent capacity characteristics and charge / discharge characteristics, but has a problem in that its lifetime characteristics are lowered during overcharging. In addition, lithium manganese oxide, which is used as a cathode active material for lithium secondary batteries, has a problem in that its charge and discharge characteristics are excellent, but its capacity is small and may be degraded at high temperature. The present invention provides the positive electrode active material for a lithium secondary battery with excellent charging and discharging characteristics, high voltage stability, and improved overcharge characteristics by utilizing the advantages of cobalt oxide and manganese oxide to the maximum, and a method of manufacturing the same.
본 발명의 리튬 이차 전지용 양극 활물질은 리튬 코발트계 산화물과 리튬 망간계 산화물의 혼합물을 포함한다. 상기 리튬 코발트계 산화물으로는 하기 화학식 1의 산화물을 사용할 수 있고, 상기 리튬 망간계 산화물로는 하기 화학식 2 또는 3의 화합물을 사용할 수 있다.The positive electrode active material for a lithium secondary battery of the present invention contains a mixture of a lithium cobalt oxide and a lithium manganese oxide. As the lithium cobalt oxide, an oxide of Formula 1 may be used, and as the lithium manganese oxide, a compound of Formula 2 or 3 may be used.
[화학식 1][Formula 1]
LixCo1-yMyA2 Li x Co 1-y M y A 2
[화학식 2][Formula 2]
LixMn1-yMyO2-zAz Li x Mn 1-y M y O 2-z A z
[화학식 3][Formula 3]
LixMn2-yMyO4-zAz Li x Mn 2-y M y O 4-z A z
(상기 식에서, 1.0 ≤ x ≤ 1.1, 0.01 ≤ y ≤ 0.1, 0.01 ≤ z ≤ 0.5이며, M은 Ni, Al, Cr, Co, Mg, La, Ce, Sr 및 V로 이루어진 군에서 선택되는 전이 금속 또는 란타나이드 금속 중 적어도 하나 이상의 금속이고, A는 O, F, S 및 P로 이루어진 군에서 선택된다.)(Wherein, 1.0 ≦ x ≦ 1.1, 0.01 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.5, and M is a transition metal selected from the group consisting of Ni, Al, Cr, Co, Mg, La, Ce, Sr and V) Or at least one metal of the lanthanide metal, and A is selected from the group consisting of O, F, S and P.)
상기 양극 활물질은 리튬 망간계 산화물을 리튬 코발트계 산화물 100 중량부 대비 10 내지 50 중량부의 양으로 포함하는 것이 바람직하다. 상기 리튬 망간계 산화물이 리튬 코발트계 산화물 100 중량부 대비 10 중량부 미만인 경우에는, 사용량이 미미하여 양극 활물질의 과충전 특성이 향상되지 않는다는 문제점이 있다.The positive electrode active material preferably contains lithium manganese oxide in an amount of 10 to 50 parts by weight based on 100 parts by weight of lithium cobalt oxide. When the lithium manganese oxide is less than 10 parts by weight relative to 100 parts by weight of the lithium cobalt oxide, the amount of the lithium manganese oxide is insignificant, and thus there is a problem that the overcharge characteristic of the positive electrode active material is not improved.
본 발명의 리튬 이차 전지용 양극 활물질은 리튬 코발트계 산화물과 리튬 망간계 산화물을 혼합하여 제조된다. 상기 리튬 망간계 산화물의 사용량은 리튬 코발트계 산화물 100 중량부 대비 10 내지 50 중량부이고, 바람직하게는 20 내지 30 중량부이다. 상기 리튬 망간계 산화물이 리튬 코발트계 산화물 100 중량부 대비 10 중량부 미만인 경우에는, 사용량이 미미하여 양극 활물질의 과충전 특성이 향상되지 않는다는 문제점이 있다.The positive electrode active material for a lithium secondary battery of the present invention is prepared by mixing a lithium cobalt oxide and a lithium manganese oxide. The amount of the lithium manganese oxide used is 10 to 50 parts by weight, preferably 20 to 30 parts by weight based on 100 parts by weight of the lithium cobalt oxide. When the lithium manganese oxide is less than 10 parts by weight relative to 100 parts by weight of the lithium cobalt oxide, the amount of the lithium manganese oxide is insignificant, and thus there is a problem that the overcharge characteristic of the positive electrode active material is not improved.
본 발명에서 사용한 상기 리튬 코발트계 산화물 및 리튬 망간계 산화물을 제조하기 위해서는, 우선 리튬염과 금속염을 원하는 당량비로 혼합한다. 상기 리튬염으로는 리튬 나이트레이트, 리튬 아세테이트 또는 리튬 하이드록사이드를 사용할 수 있고, 상기 금속염으로는 망간염, 코발트염과 Ni, Al, Cr, Co, Mg, La, Ce, Sr및 V로 이루어진 군에서 선택되는 전이 금속 또는 란타나이드 금속을 포함하는 금속염을 사용할 수 있다.In order to manufacture the lithium cobalt oxide and lithium manganese oxide used in the present invention, first, a lithium salt and a metal salt are mixed in a desired equivalent ratio. Lithium nitrate, lithium acetate or lithium hydroxide may be used as the lithium salt, and the metal salt may include manganese salt, cobalt salt, and Ni, Al, Cr, Co, Mg, La, Ce, Sr, and V. Metal salts comprising a transition metal or lanthanide metal selected from the group can be used.
상기 코발트염으로는 코발트 옥사이드, 코발트 나이트레이트, 또는 코발트 카보네이트를 사용할 수 있으며, 상기 망간염으로는 망간 아세테이트 또는 망간 디옥사이드를 사용할 수 있다. 또한, 금속염으로 망간염 및 코발트염과 함께 불소염, 황염 또는 인염을 함께 침전시킬 수도 있다. 상기 불소염으로는 망간 플루오라이드, 또는 리튬 플루오라이드가 사용될 수 있으며, 상기 황염으로는 망간 설파이드 또는 리튬 설파이드를 사용할 수 있고, 상기 인염으로는 H3PO4를 사용할 수 있다. 상기 망간염, 코발트염 및 불소염, 황염, 인염이 상기 화합물에 한정되는 것은 아니다.Cobalt oxide, cobalt nitrate, or cobalt carbonate may be used as the cobalt salt, and manganese acetate or manganese dioxide may be used as the manganese salt. In addition, as the metal salt, fluorine salt, sulfur salt or phosphorus salt may be precipitated together with manganese salt and cobalt salt. Manganese fluoride or lithium fluoride may be used as the fluorine salt, manganese sulfide or lithium sulfide may be used as the sulfur salt, and H 3 PO 4 may be used as the phosphate salt. The manganese salt, cobalt salt and fluorine salt, sulfur salt and phosphorus salt are not limited to the compound.
혼합 방법은 예를 들면, 몰타르 그라인더 혼합(mortar grinder mixing)을 사용할 수 있고, 이때, 리튬염 및 금속염의 반응을 촉진하기 위하여, 에탄올, 메탄올, 물, 아세톤 등 적절한 용매를 첨가하고 용매가 거의 없어질 때까지(solvent-free) 몰타르 그라인더 혼합을 실시하는 것이 바람직하다.The mixing method may use, for example, mortar grinder mixing, in which an appropriate solvent such as ethanol, methanol, water, acetone is added and there is little solvent in order to promote the reaction of lithium salt and metal salt. It is desirable to perform a mortar grinder mixture until solvent-free.
얻어진 혼합물을 약 400 내지 600℃의 온도에서 열처리하여 준 결정성(semi-crystalline) 상태의 화학식 1 내지 3의 화합물 전구체 분말을 제조한다. 열처리 온도가 400℃보다 낮으면 리튬염과 금속염의 반응이 충분하지 않다는 문제점이 있다. 또한 열처리하여 제조된 전구체 분말을 건조시킨 후, 또는 열처리 과정 후에 건조 공기를 블로잉(blowing)하면서 상기 전구체 분말을 상온에서재혼합(remixing)시켜 리튬염을 균일하게 분포시킬 수도 있다.The obtained mixture is heat-treated at a temperature of about 400 to 600 ° C. to prepare compound precursor powders of formulas 1 to 3 in a semi-crystalline state. If the heat treatment temperature is lower than 400 ℃ there is a problem that the reaction between the lithium salt and the metal salt is not sufficient. In addition, after drying the precursor powder prepared by the heat treatment, or after the heat treatment process (blowing) dry air may be uniformly distributed by remixing the precursor powder at room temperature (remixing).
얻어진 준 결정성 전구체 분말을 700 내지 900℃의 온도로 약 10 내지 15시간 동안 2차 열처리한다. 2차 열처리 온도가 700℃보다 낮으면 결정성 물질이 형성되기 어려운 문제점이 있다. 상기 열처리 공정은 건조 공기 또는 산소를 블로잉하는 조건하에서 1 내지 5℃/분의 속도로 승온하여 실시하고, 각 열처리 온도에서 일정 시간 동안 유지한 후 자연 냉각하는 것으로 이루어진다.The semi-crystalline precursor powder obtained is subjected to secondary heat treatment at a temperature of 700 to 900 ° C. for about 10 to 15 hours. If the secondary heat treatment temperature is lower than 700 ° C, there is a problem that the crystalline material is difficult to form. The heat treatment step is carried out by heating at a rate of 1 to 5 ℃ / min under the conditions of blowing dry air or oxygen, it is maintained by a certain time at each heat treatment temperature and then naturally cooled.
이와 같이 제조된 리튬 이차 전지용 양극 활물질을 이용하여 통상의 방법에 따라 리튬 이차 전지를 제조한다. 제조된 양극 활물질을 폴리비닐리돈 등의 결착제 및 아세틸렌블랙, 카본 블랙 등의 도전재와 함께 N-메틸-2-피롤리돈 등의 유기 용매에 첨가하여 양극 활물질 슬러리 조성물을 제조한다. 상기 슬러리 조성물을 알루미늄 호일 등의 전류 집전체에, 집전체 두께를 포함하여 60 내지 70 ㎛가 되도록 도포한 다음 건조시켜 양극을 제조한다.A lithium secondary battery is manufactured according to a conventional method using the cathode active material for a lithium secondary battery manufactured as described above. The prepared positive electrode active material is added to an organic solvent such as N-methyl-2-pyrrolidone together with a binder such as polyvinylidone and conductive materials such as acetylene black and carbon black to prepare a positive electrode active material slurry composition. The slurry composition is applied to a current collector such as aluminum foil so as to have a thickness of 60 to 70 μm, including the current collector thickness, and then dried to prepare a positive electrode.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.
(실시예 1)(Example 1)
리튬염과 코발트염을 혼합하여 리튬 코발트계 산화물 LiCoO2분말을 제조한 다음, 리튬염과 망간염을 혼합하여 리튬 망간계 산화물 LiMn2O4분말을 제조하였다. 상기 제조된 리튬 코발트계 산화물 분말 100 중량부 대비 상기 리튬 망간계산화물 분말 30 중량부를 혼합하여 리튬 이차 전지용 양극 활물질을 제조하였다.Lithium salt and cobalt salt were mixed to prepare a lithium cobalt oxide LiCoO 2 powder, and then lithium salt and manganese salt was mixed to prepare a lithium manganese oxide LiMn 2 O 4 powder. 30 parts by weight of the lithium manganese oxide powder was mixed with respect to 100 parts by weight of the prepared lithium cobalt oxide powder to prepare a cathode active material for a lithium secondary battery.
제조된 양극 활물질, 카본 도전재, 폴리비닐리덴 플루오라이드를 94: 3: 3의 중량비로 측량하여 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 유기 용매에 녹여 양극용 슬러리를 제조하였다. 상기 슬러리를 알루미늄 호일 위에 코팅하여 얇은 극판 형태로 만든 후, 135 ℃ 오븐에서 3 시간 이상 건조한 다음 프레싱하여 양극을 제조하였다. 이어서, 글로브 박스(glove box) 내에서 리튬 금속을 대극으로 사용하여 코인 타입 반쪽 전지를 리튬 금속을 대극으로 사용하여 코인 타입의 반쪽 전지를 제조하였다.The prepared positive electrode active material, carbon conductive material, and polyvinylidene fluoride were weighed in a weight ratio of 94: 3: 3, and dissolved in N-methyl-2-pyrrolidone organic solvent to prepare a slurry for the positive electrode. Was prepared. The slurry was coated on aluminum foil to form a thin electrode plate, and then dried in an oven at 135 ° C. for at least 3 hours, and then pressed to prepare a cathode. Subsequently, a coin type half cell was produced using a lithium metal as a counter electrode using lithium metal as a counter electrode in a glove box.
(실시예 2)(Example 2)
LiMn2O4분말을 LiCoO2분말 100 중량부 대비 50중량부로 하여 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.LiMn 2 O 4 powder was carried out in the same manner as in Example 1 except for mixing 50 parts by weight with respect to 100 parts by weight of LiCoO 2 powder.
(실시예 3)(Example 3)
LiMn2O4분말을 LiCoO2분말 100 중량부 대비 30중량부로 하여 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.LiMn 2 O 4 powder was carried out in the same manner as in Example 1, except that 30 parts by weight to 100 parts by weight of LiCoO 2 powder was mixed.
(실시예 4)(Example 4)
LiMn2O4분말을 LiCoO2분말 100 중량부 대비 20중량부로 하여 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.LiMn 2 O 4 powder was carried out in the same manner as in Example 1 except for mixing 20 parts by weight with respect to 100 parts by weight of LiCoO 2 powder.
(실시예 5)(Example 5)
LiMn2O4분말을 LiCoO2분말 100 중량부 대비 10 중량부로 하여 혼합한 것을제외하고는 상기 실시예 1과 동일하게 실시하였다.Except for mixing the LiMn 2 O 4 powder 10 parts by weight with respect to 100 parts by weight of LiCoO 2 powder was carried out in the same manner as in Example 1.
(비교예 1)(Comparative Example 1)
LiMn2O4분말만을 이용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that only LiMn 2 O 4 powder was used.
(비교예 2)(Comparative Example 2)
LiCoO2분말만을 이용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that only LiCoO 2 powder was used.
상기 실시예 2 내지 5, 및 비교예 1 내지 2의 방법으로 제조된 리튬 이차 전지를 이용하여 과충전 수명 시험을 실시하였다. 4.5 ~ 2.75 V의 범위에서 충방전을 실시한 후, 전지의 충방전 평가를 실시하여 전지의 수명 특성을 평가하였다. 하기 표 1은 전지의 실시예 2 내지 5 및 비교예 1 내지 2의 방법으로 제조된 양극 활물질의 방전 용량 및 방전 전압을 나타낸 것이다.An overcharge life test was performed using the lithium secondary batteries prepared in Examples 2 to 5 and Comparative Examples 1 to 2. After charging and discharging in the range of 4.5-2.75 V, charging / discharging evaluation of the battery was performed to evaluate the life characteristics of the battery. Table 1 shows discharge capacities and discharge voltages of the positive electrode active materials prepared by the methods of Examples 2 to 5 and Comparative Examples 1 to 2 of the battery.
상기 표 1에서와 같이, 실시예 2 내지 5의 혼합 양극 활물질은 비교예 1 내지 2의 양극 활물질들과 유사한 방전용량을 나타내었으며, 리튬 코발트계 산화물 100 중량부 대비 20 내지 30 중량부의 리튬 망간계 산화물을 사용한 실시예3 및 실시예4의 방전용량이 특히 우수하였다.As shown in Table 1, the mixed positive electrode active material of Examples 2 to 5 showed a discharge capacity similar to those of the positive electrode active materials of Comparative Examples 1 to 2, 20 to 30 parts by weight of lithium manganese based on 100 parts by weight of lithium cobalt-based oxide The discharge capacity of Example 3 and Example 4 using an oxide was particularly excellent.
또한 2C에서 전지의 안전성을 시험한 결과, 실시예 2 내지 5의 혼합 양극 활물질을 사용한 리튬 이차 전지는 과전류에도 파열되지 않고 안전함을 확인할 수 있었다. 반면, 비교예 2의 양극 활물질을 이용한 전지는 우수한 방전 용량에도 불구하고, 전지에 과전류가 인가되었을 때 파열(L5)이 발생하였다.In addition, as a result of testing the safety of the battery at 2C, it was confirmed that the lithium secondary battery using the mixed positive electrode active material of Examples 2 to 5 is safe without being ruptured by overcurrent. On the other hand, the battery using the positive electrode active material of Comparative Example 2, despite the excellent discharge capacity, burst (L5) occurred when an overcurrent was applied to the battery.
이는 리튬 망간계 산화물을 이용한 전지에서 과전류가 인가되어도 급격한 열화를 방지할 수 있기 때문에 안정적인 수명특성을 보이는 것이다.This is a stable life characteristics because it can prevent the rapid deterioration even when overcurrent is applied in the battery using a lithium manganese oxide.
표 1에서와 같이, 실시예 3 내지 4의 양극활물질을 이용한 전지는 고전압 수명 진행시에도 우수한 성능을 가지는 것을 확인할 수 있다.As shown in Table 1, it can be seen that the battery using the cathode active materials of Examples 3 to 4 has excellent performance even during the progress of high voltage life.
본 발명의 제조방법을 통하여 과충전 특성 및 고전압 안정성이 향상된 리튬 이차전지용 양극 활물질을 제조할 수 있다.Through the manufacturing method of the present invention, it is possible to manufacture a cathode active material for lithium secondary battery with improved overcharge characteristics and high voltage stability.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0066486A KR100424638B1 (en) | 2001-10-26 | 2001-10-26 | Method of preparing positive active material for rechargeable lithium batteries and preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0066486A KR100424638B1 (en) | 2001-10-26 | 2001-10-26 | Method of preparing positive active material for rechargeable lithium batteries and preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030034762A true KR20030034762A (en) | 2003-05-09 |
KR100424638B1 KR100424638B1 (en) | 2004-03-24 |
Family
ID=29566650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0066486A KR100424638B1 (en) | 2001-10-26 | 2001-10-26 | Method of preparing positive active material for rechargeable lithium batteries and preparing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100424638B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8932480B2 (en) | 2006-03-20 | 2015-01-13 | Lg Chem, Ltd. | Stoichiometric lithium cobalt oxide and method for preparation of the same |
US8951435B2 (en) | 2006-03-20 | 2015-02-10 | Lg Chem, Ltd. | Cathode materials for lithium battery having higher performance |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100550361B1 (en) * | 2003-11-15 | 2006-02-08 | 한국전기연구원 | Method for manufacturing metal oxides for lithium secondary battery using glycine solution |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08315860A (en) * | 1995-05-23 | 1996-11-29 | Fuji Photo Film Co Ltd | Nonaqueous electrolyte secondary battery |
-
2001
- 2001-10-26 KR KR10-2001-0066486A patent/KR100424638B1/en active IP Right Grant
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8932480B2 (en) | 2006-03-20 | 2015-01-13 | Lg Chem, Ltd. | Stoichiometric lithium cobalt oxide and method for preparation of the same |
US8951435B2 (en) | 2006-03-20 | 2015-02-10 | Lg Chem, Ltd. | Cathode materials for lithium battery having higher performance |
US9564636B2 (en) | 2006-03-20 | 2017-02-07 | Lg Chem, Ltd. | Stoichiometric lithium cobalt oxide and method for preparation of the same |
US9567240B2 (en) | 2006-03-20 | 2017-02-14 | Lg Chem, Ltd. | Cathode materials for lithium battery having higher performance |
Also Published As
Publication number | Publication date |
---|---|
KR100424638B1 (en) | 2004-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7326498B2 (en) | Method for preparing positive active material for rechargeable lithium battery and positive active material prepared by same | |
KR100696619B1 (en) | A positive actvive material for a lithium secondary battery and a method of preparing the same | |
US7608365B1 (en) | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same | |
US7883798B2 (en) | Active material for battery and method of preparing the same | |
US7473493B2 (en) | Process of preparing active material for battery and active material for battery prepared therefrom | |
US6878487B2 (en) | Active material for battery and method of preparing same | |
JP3024636B2 (en) | Non-aqueous electrolyte secondary battery | |
KR100412188B1 (en) | Nonaqueous Electrolyte Secondary Cell | |
US20060281005A1 (en) | Active material for battery and battery having the same | |
KR20190008120A (en) | Ni based cathode material for rechargeable lithium-ion batteries | |
US20020071991A1 (en) | Positive active material for rechargeable lithium batteries and method of preparing same | |
JP2015213075A (en) | Laminated lithium-rich complex metal oxide high in specific capacity and superior in cycle | |
JP2013503449A (en) | Cathode material for lithium batteries coated with metal oxide | |
TW201031044A (en) | Positive electrode materials for high discharge capacity lithium ion batteries | |
CA2522107A1 (en) | Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same | |
EP3506400A1 (en) | Composite cathode active material for lithium ion battery, manufacturing method therefor, and lithium ion battery containing cathode comprising same | |
KR100560534B1 (en) | A positive active material for a lithium secondary battery and a method of preparing the same | |
KR101835586B1 (en) | Composite cathode active material, and cathode and lithium battery containing the material | |
KR100307165B1 (en) | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same | |
KR100354224B1 (en) | Mn-based positive active material for Li-ion battery and method of preparing the same | |
KR100424638B1 (en) | Method of preparing positive active material for rechargeable lithium batteries and preparing the same | |
KR100312689B1 (en) | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same | |
KR100434547B1 (en) | Lithium metal oxide cathode and lithium secondary battery using the same | |
KR100346546B1 (en) | A positive electrode plate for a lithium secondary battery | |
KR101972155B1 (en) | Positive electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130222 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140225 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20150211 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20160218 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20180220 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20190304 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20200214 Year of fee payment: 17 |