KR20030034668A - Method for determining center of gravity on vertical axis of an aircraft - Google Patents

Method for determining center of gravity on vertical axis of an aircraft Download PDF

Info

Publication number
KR20030034668A
KR20030034668A KR1020010066339A KR20010066339A KR20030034668A KR 20030034668 A KR20030034668 A KR 20030034668A KR 1020010066339 A KR1020010066339 A KR 1020010066339A KR 20010066339 A KR20010066339 A KR 20010066339A KR 20030034668 A KR20030034668 A KR 20030034668A
Authority
KR
South Korea
Prior art keywords
aircraft
gravity
center
vertical axis
support
Prior art date
Application number
KR1020010066339A
Other languages
Korean (ko)
Inventor
박진우
Original Assignee
한국항공우주산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주산업 주식회사 filed Critical 한국항공우주산업 주식회사
Priority to KR1020010066339A priority Critical patent/KR20030034668A/en
Publication of KR20030034668A publication Critical patent/KR20030034668A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity
    • G01M1/125Determining position of centre of gravity of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/022Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing wheeled or rolling bodies in motion
    • G01G19/024Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing wheeled or rolling bodies in motion using electrical weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/23Support or suspension of weighing platforms

Abstract

PURPOSE: A method for measuring the centroid of a vertical shaft of an airplane is provided to accurately predict interference between the airplane and a runway when the airplane turns on the ground, thereby securing the safety of the airplane. CONSTITUTION: Three supports(32,34) support three points of an airplane(10) in front and in the rear to measure the centroid in a first perpendicular shaft direction. Each support is formed of a hydraulic cylinder and a load cell. The hydraulic cylinder of the front support or the rear supports is adjusted to grant a tilt angle to the airplane and the centroid in a second perpendicular shaft direction is measured. The centroid of the airplane in a vertical shaft direction is measured by the centroid values in first and second perpendicular shaft directions.

Description

항공기 수직축의 무게중심 측정방법{METHOD FOR DETERMINING CENTER OF GRAVITY ON VERTICAL AXIS OF AN AIRCRAFT}METHOD FOR DETERMINING CENTER OF GRAVITY ON VERTICAL AXIS OF AN AIRCRAFT}

본 발명은 항공기 수직축 방향의 무게중심의 위치를 측정하는 방법에 관한 것으로, 보다 상세하게는 유압실린더와 로드셀로 구성된 지지대를 이용하여 항공기의 수직축 방향의 무게중심의 위치를 정확히 측정하는 항공기 수직축의 무게중심 측정방법에 관한 것이다.The present invention relates to a method for measuring the position of the center of gravity in the vertical direction of the aircraft, more specifically, the weight of the vertical axis of the aircraft to accurately measure the position of the center of gravity in the vertical axis direction of the aircraft using a support consisting of a hydraulic cylinder and a load cell The center measurement method.

일반적으로 항공기의 무게 중심은 도 5에 도시된 바와 같이 횡축(가로축)과 종축(세로축) 및 수직축에서 각각 구할 수 있다.In general, the center of gravity of the aircraft can be obtained from the horizontal axis (horizontal axis), the vertical axis (vertical axis) and the vertical axis, respectively, as shown in FIG.

특히, 항공기 수직축 방향의 무게중심은 지면에서 터닝(turning)시 활주로와의 간섭여부, 착륙시 지상과의 간섭여부 및 기타 항공기의 안정성 확인을 위한 기본 데이터로서 중요하다.In particular, the center of gravity in the vertical axis of the aircraft is important as basic data for checking the interference with the runway when turning from the ground, the interference with the ground during landing, and other aircraft stability.

그러나, 종래에는 항공기의 종축방향의 긴 형상 특성으로 인해 3곳의 지지대의 로드셀에서 측정된 하중으로 기본적인 항공기 중량 및 종축(가로축)과 횡축(세로축)의 무게중심을 계산할 수 있었지만 수직축 방향의 무게중심은 계산할 수 없었다.However, in the past, due to the long shape characteristics of the longitudinal axis of the aircraft, the weights measured in the load cells of the three support bases and the center of gravity of the vertical axis (horizontal axis) and the horizontal axis (vertical axis) could be calculated, but the center of gravity in the vertical axis direction. Could not be calculated.

이에 본 발명은 상술한 문제점을 해소하기 위한 것으로, 유압실린더와 로드셀로 구성된 지지대를 이용하여 항공기 수직축에 대한 무게중심을 정확히 계산하는 항공기 수직축의 무게중심 측정방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for measuring the center of gravity of an aircraft vertical axis that accurately calculates the center of gravity of an aircraft vertical axis using a support composed of a hydraulic cylinder and a load cell.

도 1은 본 발명의 실시예에 따른 항공기 수직축 무게중심 측정방법에 있어서, 종축 방향의 1차 무게중심을 구하는 방법을 설명하기 위한 측면도,1 is a side view for explaining a method for obtaining the primary center of gravity in the longitudinal axis direction in the vertical axis of gravity measurement method according to an embodiment of the present invention,

도 2는 본 발명의 실시예에 따른 항공기 수직축 무게중심 측정방법에 있어서, 종축 방향의 2차 무게중심을 구하는 방법을 설명하기 위한 측면도,2 is a side view for explaining a method for obtaining a secondary center of gravity in the longitudinal axis direction in the vertical axis of gravity measurement method of the aircraft according to an embodiment of the present invention;

도 3은 본 발명의 실시예에 따른 항공기 수직축 무게중심 측정방법을 설명하기 위한 개략적인 배면도,3 is a schematic rear view for explaining a method for measuring the vertical axis of gravity of an aircraft according to an embodiment of the present invention;

도 4는 본 발명의 실시예에 따른 항공기 수직축 무게중심 측정방법의 원리를 설명하기 위한 도면,4 is a view for explaining the principle of the aircraft vertical axis of gravity center measuring method according to an embodiment of the present invention,

도 5는 종래의 항공기 축을 설명하기 위한 사시도.5 is a perspective view for explaining a conventional aircraft axis.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 ... 항공기32 ... 전방지지대10 ... Aircraft 32 ... Front Support

34, 36 ... 후방지지대C ... 무게중심34, 36 ... Rear support C ... Center of gravity

A-A1 ... 종축A-A1 ... longitudinal axis

상술한 목적을 달성하기 위해, 본 발명에 따른 항공기 수직축의 무게중심 측정방법은, 항공기에 유압실린더와 로드셀로 구성된 지지대로 항공기 3곳을 지지하여 1차 종축 방향의 무게중심을 측정하고, 전방 또는 후방 지지대의 유압실린더를 조정하여 항공기에 경사각을 주고 2차 종축 방향의 무게중심을 측정하며, 상기 1차 및 2차 종축 방향의 무게중심의 측정값을 통해 항공기 수직축 방향의 무게중심을 산출하는 것을 특징으로 한다.In order to achieve the above object, the method for measuring the center of gravity of the vertical axis of the aircraft according to the present invention, by supporting the three aircraft as a support consisting of a hydraulic cylinder and a load cell on the aircraft to measure the center of gravity in the primary longitudinal axis direction, or Adjust the hydraulic cylinder of the rear support to give the aircraft an inclination angle, measure the center of gravity in the secondary longitudinal axis direction, and calculate the center of gravity in the vertical direction of the aircraft through the measurement of the center of gravity in the primary and secondary longitudinal axis direction It features.

이와 같이, 본 발명에 따르면, 항공기 수직축의 무게중심의 위치를 정확하게 결정함으로써 항공기 운항 중에 발생할 수 있는 잠재적 사고 원인으로부터 승객과 승무원 및 항공기의 안전에 크게 기여할 수 있다.As such, according to the present invention, by accurately determining the position of the center of gravity of the vertical axis of the aircraft can greatly contribute to the safety of passengers, crew and aircraft from potential accidents that may occur during the operation of the aircraft.

이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시예에 따른 항공기 수직축 무게중심 측정방법에 있어서, 종축 방향의 1차 무게중심을 구하는 방법을 설명하기 위한 측면도이고, 도 2는 본 발명의 실시예에 따른 항공기 수직축 무게중심 측정방법에 있어서, 종축 방향의 2차 무게중심을 구하는 방법을 설명하기 위한 측면도이며, 도 3은 본 발명의 실시예에 따른 항공기 수직축 무게중심 측정방법을 설명하기 위한 개략적인 배면도이며, 도 4는 본 발명의 실시예에 따른 항공기 수직축 무게중심 측정방법의 원리를 설명하기 위한 도면이다.1 is a side view for explaining a method for obtaining the primary center of gravity in the vertical axis of the aircraft in the measuring method according to an embodiment of the present invention, Figure 2 is a vertical axis of gravity of the aircraft in accordance with an embodiment of the present invention In the measuring method, it is a side view for explaining a method for obtaining the secondary center of gravity in the longitudinal axis direction, Figure 3 is a schematic rear view for explaining the vertical axis of gravity measurement method according to an embodiment of the present invention, Figure 4 Is a view for explaining the principle of the aircraft vertical axis of gravity center measuring method according to an embodiment of the present invention.

도 1 및 도 3에서와 같이, 항공기의 종축 방향을 따라 유압실린더와 로드셀로 구성된 지지대를 항공기 종축의 전방 한 곳에 설치하고 항공기 후방의 두 곳 즉, 항공기 종축과 직교하는 항공기 후방 선상의 두 곳에 동일한 거리로 설치하여 각 지지대의 로드셀에 걸리는 항공기의 하중을 측정한다. 그런 다음, 아래의 수학식 1에 각 측정값을 대입하여 항공기 종축에 대한 1차 무게중심을 구한다. 즉, 후방 지지대에서부터 종축 방향의 무게중심까지의 거리 X1을 측정한다.As shown in Figs. 1 and 3, a support consisting of a hydraulic cylinder and a load cell along the longitudinal axis of the aircraft is installed at one front of the vertical axis of the aircraft and is identical to two locations at the rear of the aircraft, that is, two places on the rear of the aircraft perpendicular to the vertical axis of the aircraft. Measure the load of the aircraft on the load cell of each support by installing it at a distance. Then, the first center of gravity for the longitudinal axis of the aircraft is obtained by substituting each measurement value in Equation 1 below. That is, the distance X1 from the rear support to the center of gravity in the longitudinal axis direction is measured.

(식에서, X1은 항공기 후방 지지대에서 종축 방향의 무게중심까지의 거리이고, W1은 항공기 전방 지지대의 하중값이고, W2는 항공기 후방 지지대 2곳의 하중값의 합이며, L은 전방 지지대와 후방 지지대 사이의 거리를 나타낸다)Where X1 is the distance from the aircraft rear support to the center of gravity in the longitudinal axis, W1 is the load value of the front support of the aircraft, W2 is the sum of the load values of the two aircraft rear supports, and L is the front support and the rear support. Represents the distance between

그런 다음, 도 2 및 도 3에서와 같이 항공기를 일정한 각도로 경사지게 하기 위해 항공기 전방 지지대의 유압실린더를 조정하여 항공기의 전방 높이를 높여 항공기를 소정 각도로 기울인다. 그리고, 항공기 경사각(α)과 각 로드셀의 하중과 지지대 사이의 거리를 측정하고 아래의 수학식 2를 통해 경사각(α)을 가진 항공기의 후방지지대로부터 종축 방향의 무게중심까지의 거리 X2를 산출한다.Then, as shown in Figures 2 and 3 to adjust the hydraulic cylinder of the aircraft front support to incline the aircraft at a certain angle to increase the front height of the aircraft to tilt the aircraft at a predetermined angle. Then, the distance between the aircraft inclination angle α and the load of each load cell and the support is measured, and the distance X2 from the rear support of the aircraft having the inclination angle α to the center of gravity in the longitudinal direction is calculated through Equation 2 below. .

(식에서, X2는 경사각(α)을 가진 항공기 후방 지지대에서 종축 방향의 무게중심까지의 거리이고, W'1은 경사각을 가진 항공기 전방 지지대의 하중값이며, W'2는 경사각을 가진 항공기 후방 지지대 2곳의 하중값의 합이며, L'은 경사각을 가진 항공기의 전방 지지대와 후방 지지대 사이의 거리를 나타낸다)(Where X2 is the distance from the aircraft rear support with inclination angle α to the center of gravity in the longitudinal axis, W'1 is the load value of the aircraft front support with inclination angle, and W'2 is the aircraft rear support with inclination angle) The sum of the two load values, L ' represents the distance between the front and rear supports of an aircraft with an inclination angle)

다음으로, 도 4에서와 같이 앞서 측정한 X1, X2, α를 아래의 수학식 3에 대입하여 항공기의 A-A1 종축의 무게중심에서 수직축방향의 무게중심까지의 거리(y)를 계산한다.Next, the distance y from the center of gravity of the A-A1 longitudinal axis of the aircraft to the center of gravity in the vertical axis direction is calculated by substituting X1, X2, and α as previously described in FIG. 4 into Equation 3 below.

(식에서, y는 항공기의 종축선상에서 수직축 방향의 무게중심까지의 최단거리이고, X1은 항공기 후방 지지대에서 종축 방향의 무게중심까지의 거리이며, X2는 경사각을 가진 항공기 후방 지지대에서 종축 방향의 무게중심까지의 거리이며, α는 항공기의 수직축 방향의 경사각을 나타낸다)Where y is the shortest distance from the longitudinal axis of the aircraft to the center of gravity in the vertical axis, X1 is the distance from the rear support to the center of gravity in the longitudinal direction, and X2 is the weight in the longitudinal direction at the rear support of the aircraft with an inclination angle. Distance to the center, α represents the angle of inclination in the vertical axis of the aircraft)

다시 말해서, 항공기 수직축의 무게중심의 위치를 결정하기 위해, 항공기의 전방 1곳과 후방 2곳에 유압실린더와 로드셀로 구성된 지지대를 설치하고, 항공기를 일정 높이로 들어 올린 후 각각의 로드셀에 부가되는 하중을 1차 측정하고 그 측정값을 위의 수학식 1에 대입하여 종축방향의 1차 무게중심을 산출한다. 그런 다음, 항공기를 지지하는 3개의 지지대중 전방 지지대의 유압실린더를 조절하여 항공기를 일정의 각도로 기울어지게 하고, 3곳의 유압실린더 지지대에 부착된 로드셀에 부가되는 하중을 재측정한 후 그 측정값을 위의 수학식 2에 대입하여 종축방향의 2차 무게중심을 산출한다. 그런 다음, 위에서 측정한 1차 및 2차의 각 종축방향의 무게중심을 위의 수학식 3에 대입하여 항공기의 수직축 방향의 무게중심을 산출한다.In other words, in order to determine the position of the center of gravity of the vertical axis of the aircraft, a load consisting of a hydraulic cylinder and a load cell is installed at one front and two rear of the aircraft, and the load applied to each load cell after lifting the aircraft to a certain height. Is measured first and the measured value is substituted into Equation 1 above to calculate the first center of gravity in the longitudinal direction. Then, by adjusting the hydraulic cylinder of the front support among the three supports supporting the aircraft, the aircraft is inclined at an angle, and the load applied to the load cells attached to the three hydraulic cylinder supports is remeasured and then measured. Substitute the value in Equation 2 above to calculate the second center of gravity in the longitudinal axis direction. Then, the center of gravity in the vertical axis direction of the aircraft is calculated by substituting the center of gravity in each longitudinal axis of the primary and secondary measured in the above equation (3).

한편, 상술한 실시예에서는 항공기를 소정 각도로 기울어지게 하기 위해 전방 지지대를 소정 높이만큼 높였다. 하지만 본 발명은 그러한 구성으로 한정되지 않는다. 즉, 후방 지지대를 소정 높이만큼 낮추어 항공기를 소정 각도록 기울어지게 할 수도 있다. 이러한 경우, 2곳의 후방 지지대는 동일한 높이만큼 낮추어진다.On the other hand, in the above-described embodiment, the front support was raised by a predetermined height to tilt the aircraft at a predetermined angle. However, the present invention is not limited to such a configuration. That is, the rear support may be lowered by a predetermined height to incline the aircraft to a predetermined angle. In this case, the two posterior supports are lowered by the same height.

이상에서 설명한 바와 같이, 본 발명에 의하면, 항공기 수직축에 대한 무게중심을 정확히 계산함으로써, 항공기가 지상에서 터닝(turning)할 때 항공기와 활주로와의 간섭여부를 보다 정확하게 예상할 수 있고, 항공기가 지상에 착륙할 때 항공기와 지상과의 간섭여부를 보다 정확하게 예상할 수 있다. 따라서, 항공기의 안정성 확보에 크게 기여할 수 있다는 이점이 있다.As described above, according to the present invention, by accurately calculating the center of gravity with respect to the vertical axis of the aircraft, it is possible to more accurately predict the interference between the aircraft and the runway when the aircraft is turning on the ground, the aircraft is ground You can more accurately anticipate the interference between the aircraft and the ground when landing at. Therefore, there is an advantage that can greatly contribute to securing the stability of the aircraft.

Claims (2)

항공기(10)에 유압실린더와 로드셀로 구성된 3개의 지지대(32, 34, 36)로 항공기(10)의 전방과 후방의 3곳을 지지하여 1차 종축 방향의 무게중심을 측정하고,Measuring the center of gravity in the direction of the primary longitudinal axis by supporting the three places of the front and rear of the aircraft 10 with three supports (32, 34, 36) consisting of a hydraulic cylinder and a load cell in the aircraft 10, 전방 지지대(32) 또는 후방 지지대(34, 36)의 유압실린더를 조정하여 항공기에 경사각을 주고 2차 종축 방향의 무게중심을 측정하며,Adjust the hydraulic cylinder of the front support (32) or rear support (34, 36) to give the aircraft an inclination angle and measure the center of gravity in the secondary longitudinal axis direction, 상기 1차 및 2차 종축방향의 무게중심의 측정값을 통해 항공기 수직축 방향의 무게중심을 측정하는 것을 특징으로 하는 항공기 수직축 무게중심 측정방법.And measuring the center of gravity in the vertical direction of the aircraft through the measured values of the center of gravity in the primary and secondary longitudinal directions. 제 1항에 있어서,The method of claim 1, 상기 1차 종축 방향의 무게중심은 하기의 수학식 4에 의해 산출하고,The center of gravity in the first longitudinal axis direction is calculated by the following Equation 4, 상기 2차 종축 방향의 무게중심은 하기의 수학식 5에 의해 산출하며,The center of gravity in the secondary longitudinal axis direction is calculated by Equation 5 below. 상기 항공기 수직축 방향의 무게중심은 하기의 수학식 6에 의해 산출하는 것을 특징으로 하는 항공기 수직축 무게중심 측정방법:Method of measuring the center of gravity of the aircraft vertical axis, characterized in that the center of gravity in the vertical direction of the aircraft is calculated by the following equation: (식에서, X1은 항공기 후방 지지대에서 무게중심까지의 거리이고, W1은 항공기 전방 지지대의 하중값이고, W2는 항공기 후방 지지대 2곳의 하중값의 합이며, L은 전방 지지대와 후방 지지대 사이의 거리를 나타낸다)Where X1 is the distance from the aircraft rear support to the center of gravity, W1 is the load on the aircraft front support, W2 is the sum of the load values from the two aircraft rear supports, and L is the distance between the front and rear supports. Indicates) (식에서, X2는 경사각(α)을 가진 항공기 후방 지지대에서 무게중심까지의 거리이고, W'1은 경사각을 가진 항공기 전방 지지대의 하중값이며, W'2는 경사각을 가진 항공기 후방 지지대 2곳의 하중값의 합이며, L′은 경사각을 가진 항공기의 전방 지지대와 후방 지지대 사이의 거리를 나타낸다)Where X2 is the distance from the aircraft rear support with the angle of inclination α to the center of gravity, W'1 is the load value of the aircraft front support with the inclination angle, and W'2 is the Sum of load values, L 'represents the distance between the front and rear supports of an aircraft with an inclination angle) (식에서, y는 항공기의 종축에서부터 수직축 방향의 무게중심까지의 거리이고, X1은 항공기 후방 지지대에서 무게중심까지의 거리이며, X2는 경사각을 가진 항공기 후방 지지대에서 무게중심까지의 거리이며, α는 항공기의 수직축 방향의 경사각을 나타낸다)Where y is the distance from the longitudinal axis of the aircraft to the center of gravity in the vertical axis, X1 is the distance from the rear support to the center of gravity, X2 is the distance from the rear support to the center of gravity with the angle of inclination, and α is Shows the angle of inclination in the vertical direction of the aircraft)
KR1020010066339A 2001-10-26 2001-10-26 Method for determining center of gravity on vertical axis of an aircraft KR20030034668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010066339A KR20030034668A (en) 2001-10-26 2001-10-26 Method for determining center of gravity on vertical axis of an aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010066339A KR20030034668A (en) 2001-10-26 2001-10-26 Method for determining center of gravity on vertical axis of an aircraft

Publications (1)

Publication Number Publication Date
KR20030034668A true KR20030034668A (en) 2003-05-09

Family

ID=29566565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010066339A KR20030034668A (en) 2001-10-26 2001-10-26 Method for determining center of gravity on vertical axis of an aircraft

Country Status (1)

Country Link
KR (1) KR20030034668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413840B (en) * 2007-12-27 2011-05-11 奇瑞汽车股份有限公司 Device and method for measuring object mass center
CN108357696A (en) * 2018-03-29 2018-08-03 西安爱生技术集团公司 A kind of small drone thrust line surveyors' staff device and measurement method
KR20190055407A (en) * 2017-11-15 2019-05-23 한국항공우주연구원 Device, system and method for measuring center of gravity for multi-axis driving system
EP4245667A1 (en) 2022-03-16 2023-09-20 Fundación Tekniker Method, system and computer program product for obtaining the position of the centre of gravity of an aircraft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328438A (en) * 1991-04-26 1992-11-17 Mitsubishi Heavy Ind Ltd Apparatus for measuring weight and center of gravity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328438A (en) * 1991-04-26 1992-11-17 Mitsubishi Heavy Ind Ltd Apparatus for measuring weight and center of gravity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413840B (en) * 2007-12-27 2011-05-11 奇瑞汽车股份有限公司 Device and method for measuring object mass center
KR20190055407A (en) * 2017-11-15 2019-05-23 한국항공우주연구원 Device, system and method for measuring center of gravity for multi-axis driving system
CN108357696A (en) * 2018-03-29 2018-08-03 西安爱生技术集团公司 A kind of small drone thrust line surveyors' staff device and measurement method
EP4245667A1 (en) 2022-03-16 2023-09-20 Fundación Tekniker Method, system and computer program product for obtaining the position of the centre of gravity of an aircraft

Similar Documents

Publication Publication Date Title
EP2113743B1 (en) Displacement measuring method, displacement measuring instrument, displacement measuring target and structure
US4850552A (en) Landing gear load transducer
CN108974250B (en) Method for controlling positioning and mounting precision of special equipment base on block
CN103673972B (en) Deflection of arm support measuring method, equipment, system and crane
CN113494950B (en) Measuring method, measuring device, measuring system, and storage medium
US20190390955A1 (en) Method of vertical displacement measurement of building structural elements
CN112146738B (en) Aircraft weighing method and system
CN102778893B (en) Precise locating detecting method for truss girder
CN213579166U (en) Sensor mounting position calibration device of intelligent driving vehicle
CN103964311A (en) Engineering equipment as well as overall stability detection method and device thereof
KR20030034668A (en) Method for determining center of gravity on vertical axis of an aircraft
CN106066163A (en) A kind of piler and the on-line monitoring method of stereo storage rack perpendicularity
CN107782499B (en) Device and method for measuring mass center of irregular object based on 3D scanner
CN208250918U (en) A kind of inclination Arch rib positioning device
US20220281463A1 (en) Method for monitoring vehicle overload based on gravity anomaly
CN110318338A (en) A kind of measurement control method of installation positioning steel anchor beam
CN106197389A (en) Total station instrument fixed support
KR101181441B1 (en) Arrangement method of ballast for rotor plane
CN211110554U (en) Elevator car landing door stop matching calibration device
CN106595450B (en) Track centering measuring tool and method for automobile collision test
CN208291229U (en) A kind of railway vehicle air conditioner gravity center measurement device
KR100937888B1 (en) Aircraft Balance Adjustment Leveler and Aircraft Gravity/The Center of Gravity Measurement Method of Using this
CA2810801A1 (en) Method for evaluating the structural compatibility of an aircraft for use on rough runways
KR101751808B1 (en) Measurement system for lateral displacement of tall buildings using an elevator core and method of the same
CN208520455U (en) A kind of highway dynamic weigher

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application