KR20030022985A - manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding - Google Patents

manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding Download PDF

Info

Publication number
KR20030022985A
KR20030022985A KR1020010055849A KR20010055849A KR20030022985A KR 20030022985 A KR20030022985 A KR 20030022985A KR 1020010055849 A KR1020010055849 A KR 1020010055849A KR 20010055849 A KR20010055849 A KR 20010055849A KR 20030022985 A KR20030022985 A KR 20030022985A
Authority
KR
South Korea
Prior art keywords
back frame
injection molding
seat back
injection
manufacturing process
Prior art date
Application number
KR1020010055849A
Other languages
Korean (ko)
Other versions
KR100438037B1 (en
Inventor
이용철
이영재
허성호
김근협
Original Assignee
아폴로산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아폴로산업 주식회사 filed Critical 아폴로산업 주식회사
Priority to KR10-2001-0055849A priority Critical patent/KR100438037B1/en
Publication of KR20030022985A publication Critical patent/KR20030022985A/en
Application granted granted Critical
Publication of KR100438037B1 publication Critical patent/KR100438037B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0096Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor drying the moulding material before injection, e.g. by heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: A manufacturing process of a seat back frame by using injection molding is provided to manufacture the seat back frame not by a steel or GMT(Glass Mat reinforced Thermoplastic) press process but injection molding process. CONSTITUTION: A manufacturing process of a seat back frame by using injection molding comprises the steps of: drying injection resins with a silo or a hopper; heating and melting the injection resins with a heater and a screw; injection-molding the melted resins with a mold manufactured with 1-2 cavity shape; cooling the mold and removing a seat back frame from the mold; and inspecting the seat back frame.

Description

사출성형을 이용한 시트백 프레임의 제조 공정 및 이 공정으로 만들어진 시트백 프레임{manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding}Manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding}

본 발명은 사출 성형을 이용한 시트백 프레임의 제조공정 및 이 공정으로 만들어진 시트백 프레임에 관한 것으로서, 더욱 상세하게는 열가소성 수지인 PA6/GF(폴리아미드6/유리섬유(GlassFiber))를 주재료로 한 고분자 화합물을 적용하여, 자동차의 시트백 프레임(seatback frame)을 사출 성형의 방법으로 생산하기 위한 사출성형을 이용한 시트백 프레임의 제조공정 및 이 공정으로 만들어진 시트백 프레임에 관한 것이다.The present invention relates to a manufacturing process of a seat back frame using injection molding and a seat back frame made by the process, and more particularly, a polymer compound mainly based on thermoplastic resin PA6 / GF (polyamide 6 / glass fiber). The present invention relates to a manufacturing process of a seatback frame using injection molding for producing a seatback frame of an automobile by injection molding, and a seatback frame made by this process.

자동차의 시트백 프레임은 통상적으로 강성(승원하중 및 화물 보호고정 (CARGO SECURING)등이 요구되어 스틸(STEEL)이 통상 사용되어 왔음은 주지의 사실이다.It is well known that the seat back frame of an automobile typically requires rigidity (CARGO SECURING, etc.) and steel has been commonly used.

이는 스틸을 롤 포밍(ROLL FOAMING) 공정 및 용접으로 제작하여 왔으며, 연비향상을 위한 차체 경량화 일환으로 강화 플라스틱으로 대체하여 일부 사용되고 있으나 여전히 제조 공정상의 원가문제와 경량화 문제 및 성능 불만족등이 해결과제로 남아있어 이를 대체할 수 있는 재질과 공법 개발이 꾸준히 요구되어 왔다.This steel has been produced by the roll forming process and welding, and it is partially replaced by reinforced plastic as part of the weight reduction of the body to improve fuel efficiency. However, the problem of cost, weight reduction and performance dissatisfaction in the manufacturing process is still a challenge. There has been a constant demand for the development of materials and methods to replace them.

기존 GMT 플라스틱 시트백 프레임 제조 공법은 GMT(Glass Mat reinforced Thermoplastic)쉬트(sheet)를 프레싱(Pressing)해서 제품화하는 공정으로써, 강화섬유 매트(G/F MAT:Glass Fiber의 직조 매트)와 폴리프로필렌(PP)을 압출, 압축 성형하여 얻어지는 강화 폴리프로필렌 쉬트(sheet)를 가열해서 최종 제품 가공을 대형 프레스 장비로 가압하는 공정과, 지그(JIG) 제품냉각, 펀칭, 드릴링 등 여러 개의 후공정으로 이루어져 있어, 공정의 복잡함으로 인해 제조비용 상승, 투자비 과다, 품질 불균일 및 인-라인 리사이클(IN-LINE RECYCLE) 불가의 문제점이 대두되고 있다.Existing GMT plastic seatback frame manufacturing method is a process of pressing GMT (Glass Mat reinforced Thermoplastic) sheet (Press) to commercialize, G / F MAT (Glass Fiber Weave Mat) and polypropylene (PP) ), Which consists of heating the reinforced polypropylene sheet obtained by extruding and compression molding to pressurize the final product processing with a large press equipment, and several post-processing such as JIG product cooling, punching, drilling, Due to the complexity of the process, problems such as increased manufacturing costs, excessive investment costs, uneven quality and in-line recycling are not possible.

도 3는 기존의 GMT 시트백 프레임 생산을 위한 플라스틱 프레스 공정이다.3 is a plastic press process for producing a conventional GMT seatback frame.

GMT SHEET를 재단하는 공정과 이를 오븐에서 가열하여 프레스기계에서 프레스 성형을 한다. 이렇게 얻은 제품을 냉각시키는 공정이 뒤따르며, 최종 제품을 펀치나 드릴링으로 후가공하는 복합한 공정으로 되어 있다.GMT sheet cutting process and heating in oven to press molding in press machine. This is followed by a process of cooling the product, followed by a complex process of finishing the final product by punching or drilling.

기존의 GMT(glass mat reinforced thermoplastic)에 사용되는 재료의 주요물성을 살펴보면 강화섬유(GF:glass-fiber)의 함량이 30-60%이며 리사이클 (RECYCLE)성은 인라인(in-line)이 아닌 오프라인 (off-line)생산이 가능하며 인장강도는 1,500kg/㎠이상이고, 인장 탄성율은 55,000kg/㎠ 이상, 굴곡강도는 1,500kg ㎠ 이상, 굴곡탄성율은 60,000kg/㎠ 이상, 비중은 1.15-1.20g/㎤, 열변형온도는 150。C이상으로 200℃가 넘는 PA6/GF에 비하여 상대적으로 낮은 것을 알 수 있다.Looking at the main physical properties of the materials used for the existing glass mat reinforced thermoplastic (GMT), the content of glass fiber (GF) is 30-60%, and the recycling (RECYCLE) is offline (not in-line). Off-line) production, tensile strength is more than 1,500kg / ㎠, tensile modulus is more than 55,000kg / ㎠, flexural strength is more than 1,500kg ㎠, flexural modulus is more than 60,000kg / ㎠, specific gravity 1.15-1.20g / Cm 3, and the heat distortion temperature is 150 ° C or more, it can be seen that it is relatively lower than PA6 / GF over 200 ℃.

자동차용 시트 백 프레임으로써의 성능과 품질을 만족하기 위해서는 여러부문의 최적화 조건이 확보되어야 한다.In order to satisfy the performance and quality as a seat back frame for automobiles, various conditions of optimization must be secured.

첫째, 원재료 측면에서 인장강도나 인장탄성률, 굴곡강도, 굴곡탄성율, 충격강도 및 열변형 온도가 시트백 프레임의 재질로서 물성이 확보되어야 하며,First, in terms of raw materials, tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength and heat deformation temperature should be secured as materials of the seat back frame.

둘째, 제품 경량화(10∼30% 중량감소) 및 제품 강성을 만족하기 위한 보강 리브(RIB)의 설계 패턴(DESIGN PATTERN)의 최적화 설계가 이루어져야 하며,Second, the optimized design of DESIGN PATTERN of reinforcing rib (RIB) should be made to satisfy the product weight (10-30% weight reduction) and product rigidity.

셋째, 자동차용 시트 백 프레임의 요구 성능 중 승원하중 및 카고 시큐리티(CARGO SECURITY) 법규를 만족하기 위한 CAE(Computer aided engineering) 설계검증이 최적화가 되어야 한다.Third, the computer aided engineering (CAE) design verification to satisfy the crew load and CARGO SECURITY regulations among the required performance of the seat back frame for automobiles should be optimized.

넷째, 사출성형 후 제품의 후변형(싱크(SINK), 뒤틀림, 수축 등) 방지를 위한 성형조건(실린더온도, 사출압력, 사출시간, 금형온도, 냉각조건)이 최적화 되어야 하고,Fourth, the molding conditions (cylinder temperature, injection pressure, injection time, mold temperature, cooling conditions) should be optimized to prevent post deformation of the product after injection molding (sink, distortion, shrinkage, etc.)

다섯째, 제품 후변형 방지를 위한 금형의 윈데지(WINDAGE) 설계 및 제작기술이 확보되어야 한다.Fifth, the windage design and manufacturing technology of the mold to prevent post deformation of the product should be secured.

따라서 내충격성 및 인장탄성이 좋은 나일론(nylon)에 유리섬유(glass-fiber)를 첨가시켜 혼련시킨 고강성 소재로 GMT 대비 비중이 비교적 높은 PA6/GF를 사출성형하여 제품 설계의 자유도를 이용, Design 최적화를 통해 경량화가 가능하며 우수한 물성을 가진 재료로 기능성 부품에 사용이 적합하다. 이러한 최적의 사출공법으로 자동차 연비향상 및 생산비용 절감의 경제성 효과와 우수한 성형성 및 법규 성능을 만족하는 제품의 고기능성 품질을 확보할 수 있으며, 인-라인 리사이클링(in-line recycling)이 가능하다.Therefore, it is a high-strength material that is kneaded by adding glass-fiber to nylon, which has good impact resistance and tensile elasticity, and injection molding of PA6 / GF, which has a higher specific gravity than GMT, to take advantage of design freedom. It is possible to lighten through optimization and is suitable for use in functional parts with excellent physical properties. With this optimal injection method, it is possible to secure economical effects of improving fuel economy and reducing production costs, as well as high functional quality of products satisfying excellent moldability and legal performance, and in-line recycling. .

따라서, 본 발명은 상기와 같은 점을 감안하여 발명한 것으로서, 자동차용 시트 백 프레임(Seat Back Frame)을 기존 제조 공법인 스틸(STEEL) 또는 GMT 프레스 공정이 아닌 사출성형(injection molding) 공정으로 생산하는 사출성형을 이용한 시트백 프레임의 제조공정 및 이 공정으로 만들어진 시트백 프레임을 제공하는데 그 목적이 있는 것이다.Therefore, the present invention was invented in view of the above, and is to produce a seat back frame for automobiles by injection molding process instead of steel or GMT press process, which is a conventional manufacturing method. It is an object of the present invention to provide a process for producing a seatback frame using injection molding and a seatback frame made by the process.

도 1은 본 발명의 사출성형을 이용한 시트백 프레임 제조공정도,1 is a seat back frame manufacturing process using the injection molding of the present invention,

도 2는 도 1의 제조공정에 따라 만들어진 시트백 프레임을 나타내는 개략도,2 is a schematic view showing a seat back frame made according to the manufacturing process of FIG.

도 3은 종래 기술의 GMT PLASTICS 프레스 성형을 이용한 시트백 프레임의 제조공정도.Figure 3 is a manufacturing process of the seat back frame using the prior art GMT PLASTICS press molding.

이하, 본 발명을 첨부도면을 참조로 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

본 발명의 주안점은 자동차용 시트백 프레임을 열가소성 수지로 사출 성형 (injection molding)하여 제조하는 공정 및 이 공정으로 만들어진 시트백 프레임을 제공하는데 있다.An object of the present invention is to provide a process for manufacturing an automobile seatback frame by injection molding with a thermoplastic resin and a seatback frame made by the process.

자동차의 시트 백 프레임은 통상적으로 기계적 강도가 요구되어 스틸이나, G/F 강화 플라스틱으로 프레스 가공하여 왔으나, 부품공정의 단순화 및 제조 비용(COST) 및 투자비 절감, 그리고 경량화가 그 기술적 해결 과제라 볼 수 있다.The seat back frame of automobiles has been press-molded with steel or G / F reinforced plastics because mechanical strength is usually required.However, the simplification of the parts process, the reduction of cost and investment cost, and the weight reduction are technical challenges. Can be.

따라서, 자동차의 시트 백 프레임을 사출 성형하기 위해서는 제품의 기능과 성능을 만족시키고 경량화와 성능을 만족시키는 적정 소재 선정 작업과, 제품의 기능성과 강성을 만족하는 설계를 위한 CAE 및 3차원 제품 설계를 하는 제품설계 단계, 그리고 금형제작을 위한 금형설계와 N/C 가공이나 사상작업으로 이루어진 금형 제작단계, 제품의 후변형 및 잔류응력 최소화를 위한 성형조건 최적화 단계로 구분을 할 수 있다.Therefore, in order to injection molding the seat back frame of an automobile, it is necessary to select a suitable material that satisfies the function and performance of the product, to satisfy the weight and performance, and to design a CAE and a three-dimensional product for the design that satisfies the product's functionality and rigidity. It can be divided into product design stage, mold design for mold manufacturing, mold manufacturing stage consisting of N / C processing or finishing work, and molding condition optimization stage for minimizing post-strain and residual stress.

먼저, 본 발명에 따른 제조 공정으로 만들어지는 시트백 프레임의 기본 두께와 보강 리브(RIB) 설계 치수는 다음과 같다.First, the basic thickness and reinforcement rib (RIB) design dimensions of the seatback frame made by the manufacturing process according to the present invention are as follows.

시트백 프레임의 제품 두께와 보강 리브(RIB) 구조는 성능과 제품 중량에 직결되는 가장 중요한 요소로써, CAE(Computer Aided Engineering)를 통해 최적화 설계가 되어야 하는 데, 이때 최종 시트백 프레임 제품의 베이스(BASE) 두께는 2.0 - 3.2㎜, 리브(RIB)의 구조는 두께가 1.5 - 3.0㎜, 높이는 15.0 - 35.0㎜가 되도록 한다.(도 2 참조.)The product thickness of the seat back frame and the reinforcement rib (RIB) structure are the most important factors directly related to the performance and product weight, and should be optimized through CAE (Computer Aided Engineering), which is the base of the final seat back frame product. The thickness is 2.0-3.2mm, the structure of the rib (RIB) is 1.5-3.0mm thick and 15.0-35.0mm height (see Fig. 2).

이러한 시트백 프레임 제품 설계와 금형 제작 공정은 다음과 같다.The seat back frame product design and mold fabrication process are as follows.

제품의 기능과 성능을 만족시키고 경량화와 성능을 만족시키는 소재 선정의 최적화 작업과 최소중량 및 성능 최적화 CAE를 통한 설계를 수행하는 제품 설계단계, 그리고 금형 제작단계로 나뉜다.It is divided into the product design stage and the mold fabrication stage to optimize the selection of materials to satisfy the function and performance of the product, and to satisfy the weight and performance, and the design through the minimum weight and performance optimization CAE.

이를 작업순으로 요약하면 초기 CAE - 제품 개략설계 - 성능해석 및 모델고정 - 제품 세부설계 - 금형 및 사출 해석 - 금형 설계 - 금형제작순이 된다.The work order is summarized in the following order: initial CAE-product schematic design-performance analysis and model fixing-product detail design-mold and injection analysis-mold design-mold manufacturing.

한편, 본 발명의 시트백 프레임 사출금형 제작시에 적용되는 금형 설계 기술의 특성은 다음과 같다.On the other hand, the characteristics of the mold design technology applied at the time of manufacturing the seatback frame injection mold of the present invention are as follows.

금형 설계시에 중요 항목으로 필요시 제품의 두께가 조절 가능한 설계가 되어지며, 제품 형상의 변형 방지를 위해 윈데지(WINDAGE) 설계(성형품 변형 방향에 대한 역방향 설계)가 적용된다.When designing the mold, it is important to control the thickness of the product when needed. Windage design (reverse design against the deformation direction of the molded part) is applied to prevent deformation of the product shape.

이때, 변형 감안량은 금형 CAE 결과치와 시작금형을 통한 경험치로 최적화 시킬 수 있는 데, 보통은 2.0 - 6.0㎜ 이다.At this time, the deformation consideration amount can be optimized by the mold CAE result value and the experience value through the starting mold, which is usually 2.0-6.0 mm.

여기서, 본 발명에 따른 사출성형을 이용한 시트백 프레임의 제조공정을 도 1을 참조로 설명하면 다음과 같다.Here, the manufacturing process of the seat back frame using the injection molding according to the present invention with reference to Figure 1 as follows.

본 발명은 호퍼나 사일로에 사출물 원료를 저장하여 사출성형기의 가열실린더를 통해 가열 용융시켜 일정 사출압으로 금형에 사출하여 적정 보압 및 냉각으로 성형 완료하여 제품을 취출해 내는 아주 간단한 공정으로 되어 있어, 공정시간이 매우 짧고 제품의 생산성이 우수하다. 사출기는 850 - 1600톤 정도의 형체력으로 제품의 투영면적과 수지의 평균압에 따라 결정되어 사출성형이 이루어진다.The present invention is a very simple process of storing the raw material of the injection molding material in the hopper or silo, heating and melting it through the heating cylinder of the injection molding machine, injecting it into the mold at a predetermined injection pressure, and completing the molding by appropriate holding pressure and cooling to take out the product. The process time is very short and the product productivity is excellent. The injection molding machine has a clamping force of 850-1600 tons, which is determined by the projected area of the product and the average pressure of the resin.

따라서, 본 발명의 제조공정은 사출용 수지를 일정 단위량으로 저장할 수 있는 사일로나 호퍼를 통해 건조시키는 단계와; 건조후, 이를 850 - 1800ton 사출기의 실린더 가열부 히터와 스크류를 통하여 가열 용융 시키는 단계와; 용융된 수지를 1 - 2 캐비티(CAVITY) 형상으로 제작된 금형에 사출 성형시킨 후, 제품을 금형내에서 냉각, 취출하는 단계와; 제품의 검사 단계로 이루어진다.Therefore, the manufacturing process of the present invention comprises the steps of drying through a silo or hopper that can store the injection resin in a predetermined unit amount; After drying, heating and melting the same through a cylinder heater and a screw of the 850-1800ton injection machine; Injection molding the molten resin into a mold manufactured in a 1 to 2 cavity shape, and then cooling and taking out the product in the mold; It consists of the inspection phase of the product.

이때, 상기 건조단계에서, 사출용 수지의 원재료 건조 조건은 제습 건조기의 경우 80 - 110℃에서 3시간 이상, 열풍 건조기의 경우 90 - 120℃에서 4시간 이상건조시켜야 한다.At this time, in the drying step, the raw material drying conditions of the injection resin should be dried for more than 3 hours at 80-110 ℃ in the case of dehumidifying dryer, 90-120 ℃ for hot air dryer at least 4 hours.

또한, 상기 가열 융융 단계에서, 상기 사출기의 실린더 및 노즐온도는 200 - 280℃ 이어야 한다.In addition, in the heat melting step, the cylinder and nozzle temperature of the injection machine should be 200-280 ℃.

바람직한 구현예로서, 상기 사출 성형 및 냉각단계에서 사용되는 금형은 핫-런너(HOT-RUNNER)방식의 금형으로서, 사출/성형시의 조건은 다음과 같다.In a preferred embodiment, the mold used in the injection molding and cooling step is a hot-runner (HOT-RUNNER) type of mold, the conditions during injection / molding are as follows.

1)금형의 온도는 40 - 90℃ 이내,1) The mold temperature is within 40-90 ℃,

2)핫-러너 온도는 220 - 280℃,2) The hot runner temperature is 220-280 ℃,

3)금형의 성형압력은 100 - 130㎏f/㎠ 으로 관리,3) Molding pressure of mold is controlled to 100-130㎏f / ㎠,

4)보압은 50 - 90㎏f/㎠ 사이,4) holding pressure is between 50-90㎏f / ㎠,

5)금형의 클램핑 압력은 140 - 180㎏f/㎠,5) The clamping pressure of the mold is 140-180㎏f / ㎠,

6)사출시간은 1차 5 - 12초, 2차가 2 - 8초로 조절,6) Injection time is adjusted to 1st 5-12 seconds, 2nd 2-8 seconds,

7) 냉각시간은 30 - 100 초 사이7) Cooling time is between 30 and 100 seconds

한편, 상기 사출용 수지의 원료는 PA6/GF를 주재료로 단섬유 타입의 유리섬유(GF:glassfiber)의 함량은 30-55%이며, 기계적 물성으로는 인장강도는 1,500kg/㎠ 이상, 인장탄성율은 60,000kg/㎠이상, 굴곡강도는 2,900kg/㎠ 이상, 굴곡탄성율은 80,000kg/㎠ 이상, 비중은 1.30∼1.40g/㎤, 열변형온도는 200℃ 이상인 것을 사용하는 것이 바람직하다.On the other hand, the raw material of the injection resin is PA6 / GF as the main material content of short fiber type glass fiber (GF: glassfiber) is 30-55%, the tensile strength is more than 1,500kg / ㎠, tensile modulus as mechanical properties Silver 60,000kg / cm 2 or more, flexural strength is 2,900kg / cm 2 or more, flexural modulus is 80,000kg / cm 2 or more, specific gravity is 1.30 to 1.40g / cm 3, and heat deformation temperature is preferably 200 ° C. or more.

특히, 상기 사출용 수지 원재료의 재생율은 15 - 30%로 인라인(in-line)생산이 가능하여, 불량 제품은 스프루(sprue), 게이트(gate)등을 통하여 분쇄 또는 재압출을 통하여 신재와 섞어서 재투입된다.In particular, the regeneration rate of the raw resin for injection is 15 to 30%, which enables in-line production, and defective products are crushed or re-extruded through sprues or gates. Mix and reload.

이때, 상기 재생(RECYCLE) 공정은 사출 - 분쇄 - 신재혼합 - 사출성형 또는 사출 - 분쇄 - 재압출 - 신재혼합 - 사출성형 으로 이루어진다.At this time, the regeneration (RECYCLE) process is composed of injection-grinding-new material mixing-injection molding or injection-grinding-re-extrusion-new material mixing-injection molding.

이에 따른, 상기 분쇄된 재료 및 재압출 수지는 유리섬유(GF)의 함량은 25 - 50% 이내이고, 기계적 물성은 인장강도 1,300kg/㎠ 이상, 인장탄성율은 50,000kg/㎠이상, 굴곡강도는 2,500kg×㎠ 이상, 굴곡탄성율은 70,000kg/㎠ 이상, 비중은 1.30∼1.40g/㎤, 열변형온도는 180℃ 이상이다.Accordingly, the pulverized material and the re-extruded resin has a glass fiber (GF) content within 25-50%, mechanical properties of tensile strength of 1,300kg / ㎠ or more, tensile modulus of 50,000kg / cm 2 or more, and bending strength of 2,500kg × cm 2 or more, flexural modulus is 70,000kg / cm 2 or more, specific gravity 1.30 to 1.40g / cm 3, and heat deformation temperature is 180 ° C. or more.

이와 같은 본 발명의 사출 성형을 이용한 시트백 프레임의 제조 공정에 따라서 제조된 시트백 프레임의 최종 제품은 첨부한 도 3에 도시한 바와 같이 베이스(BASE) 두께가 2.0 - 3.2㎜, 리브(RIB)의 구조는 두께가 1.5 - 3.0㎜, 높이는 15.0 - 35.0㎜ 의 규격으로 제조되어진다.The final product of the seat back frame manufactured according to the manufacturing process of the seat back frame using the injection molding of the present invention has a base thickness of 2.0 to 3.2 mm and a rib (RIB) structure as shown in FIG. Is manufactured to a thickness of 1.5-3.0 mm and a height of 15.0-35.0 mm.

이상에서 본 바와 같이 본 발명의 사출성형을 통한 시트백 프레임의 제조공정은 재료자체가 내충격성이나 인장 탄성율이 좋은 나일론에 유리섬유를 첨가시켜 혼련시킨 고기능 소재이기 때문에 우수한 물성을 지니면서, 생산 공정에서는 후공정이 필요없어 가공 공정이 짧아 제품의 생산성이 GMT 대비 향상되고, 제품의 보강 리브RIB) 구조 설계의 최적화로 내충격성 및 반복 피로 강성이 우수하여 부품 성능 및 법규를 만족한다.As described above, the manufacturing process of the seat back frame through the injection molding of the present invention is a high-performance material in which the material itself is kneaded by adding glass fiber to nylon having good impact resistance or tensile modulus, and thus has excellent physical properties. Since the process is shorter because there is no need for post-processing, the productivity of the product is improved compared to the GMT, and the product's performance and regulation are satisfied by optimizing the design of the product's reinforcement rib (RIB) structure.

특히, 디자인 자유도가 높아 제품의 두께 감소 및 최소의 RIB의 보강이 가능하여 이로 인한 제품 중량의 절감효과가 있으며, 인-라인 리사이클링(in-line recycling)이 우수하여 환경 친화적인 제품 생산이 가능하게 되는 효과가 있다.In particular, the design freedom is high and the thickness of the product can be reduced and the minimum RIB can be reinforced, thereby reducing the weight of the product. The excellent in-line recycling enables the production of environment-friendly products. It is effective.

Claims (8)

사출용 수지를 일정 단위량으로 저장할 수 있는 사일로나 호퍼를 통해 건조시키는 단계와;Drying the resin for injection through a silo or a hopper capable of storing a predetermined unit amount; 건조후, 이를 850 - 1800ton 사출기의 실린더 가열부 히터와 스크류를 통하여 가열 용융 시키는 단계와;After drying, heating and melting the same through a cylinder heater and a screw of the 850-1800ton injection machine; 용융된 수지를 1 - 2 캐비티(CAVITY) 형상으로 제작된 금형에 사출 성형시킨 후, 제품을 금형내에서 냉각, 취출하는 단계와;Injection molding the molten resin into a mold manufactured in a 1 to 2 cavity shape, and then cooling and taking out the product in the mold; 제품의 검사 단계로 이루어진 것을 특징으로 하는 사출성형을 이용한 시트 백 프레임의 제조 공정.Manufacturing process of the seat back frame using the injection molding, characterized in that the inspection step of the product. 제 1 항에 있어서,The method of claim 1, 상기 건조단계에서, 사출용 수지의 원재료 건조 조건은 제습 건조기의 경우 80 - 110℃에서 3시간 이상, 열풍 건조기의 경우 90 - 120℃에서 4시간 이상 건조시키는 것을 특징으로 하는 사출 성형을 이용한 시트백 프레임의 제조 공정.In the drying step, the raw material drying conditions of the injection resin is a sheet back frame using the injection molding, characterized in that for more than 3 hours at 80-110 ℃ in the dehumidification dryer, 90-120 ℃ in the case of hot air dryer Manufacturing process. 제 1 항에 있어서,The method of claim 1, 상기 가열 융융 단계에서, 상기 사출기의 실린더 및 노즐온도는 200 - 280℃ 인 것을 특징으로 하는 사출 성형을 이용한 시트백 프레임의 제조 공정.In the heating melting step, the cylinder and nozzle temperature of the injection machine is 200-280 ℃ manufacturing process of the seat back frame using the injection molding, characterized in that. 제 1 항에 있어서,The method of claim 1, 상기 사출 성형 및 냉각단계에서 사용되는 금형은 핫-런너(HOT-RUNNER)방식의 금형으로서,The mold used in the injection molding and cooling step is a hot-runner mold. 사출/성형시 조건은Injection / molding conditions 1) 금형의 온도는 40 - 90℃ 이내이고,1) The mold temperature is within 40-90 ℃, 2) 핫-러너 온도는 220 - 280℃이고,2) hot-runner temperature is 220-280 ℃, 3) 금형의 성형압력은 100 - 130㎏f/㎠ 으로 관리하고,3) Molding pressure of the mold is controlled to 100-130㎏f / ㎠, 4) 보압은 50 - 90㎏f/㎠ 사이에서 이루어지도록 하며,4) The packing pressure should be made between 50-90㎏f / ㎠, 5) 금형의 클램핑 압력은 140 - 180㎏f/㎠ 이고,5) The clamping pressure of the mold is 140-180㎏f / ㎠, 6) 사출시간은 1차 5 - 12초, 2차가 2 - 8초로 조절되어야 하고,6) The injection time should be adjusted to the first 5-12 seconds, the second 2-8 seconds, 7) 냉각시간은 30 - 100 초 사이7) Cooling time is between 30 and 100 seconds 로 정해진 것을 특징으로 하는 사출 성형을 이용한 시트백 프레임의 제조 공정.Manufacturing process of the seat back frame using the injection molding, characterized in that. 제 1 항에 있어서,The method of claim 1, 상기 사출용 수지의 원료는:The raw material of the injection resin is: PA6/GF를 주재료로 단섬유 타입의 유리섬유(GF:glassfiber)의 함량은 30-55%이며, 기계적 물성으로는 인장강도는 1,500kg/㎠ 이상, 인장탄성율은 60,000kg/㎠이상, 굴곡강도는 2,900kg/㎠ 이상, 굴곡탄성율은 80,000kg/㎠ 이상, 비중은 1.30∼1.40g/㎤, 열변형온도는 200℃ 이상인 것을 사용하는 것을 특징으로 하는 사출 성형을 이용한 시트백 프레임의 제조 공정.PA6 / GF is the main material, and the content of short fiber type glass fiber (GF: glassfiber) is 30-55%, and the tensile strength is over 1,500kg / ㎠, the tensile modulus is over 60,000kg / ㎠, and the flexural strength. Is 2,900kg / cm 2 or more, flexural modulus is 80,000kg / cm 2 or more, specific gravity is 1.30 to 1.40g / cm 3, heat deformation temperature is 200 ℃ or more manufacturing process of the seat back frame using injection molding. 제 1 항 또는 제 5 항에 있어서,The method according to claim 1 or 5, 상기 사출용 수지 원재료의 재생율은 15 - 30%로 인라인(in-line)생산이 가능하여, 불량 제품은 스프루(sprue), 게이트(gate)등을 통하여 분쇄 또는 재압출을 통하여 신재와 섞어서 재투입되는 것을 특징으로 하는 사출 성형을 이용한 시트백 프레임의 제조 공정.Regeneration rate of the raw material for injection resin is 15-30%, which enables in-line production, and defective products are mixed with new materials through crushing or re-extrusion through sprue, gate, etc. Process for producing a seat back frame using injection molding, characterized in that the input. 제 6 항에 있어서,The method of claim 6, 상기 분쇄된 재료 및 재압출 수지는 유리섬유(GF)의 함량은 25 - 50% 이내이고, 기계적 물성은 인장강도 1,300kg/㎠ 이상, 인장탄성율은 50,000kg/㎠이상, 굴곡강도는 2,500kg×㎠ 이상, 굴곡탄성율은 70,000kg/㎠ 이상, 비중은 1.30∼1.40g/㎤, 열변형온도는 180℃ 이상인 것을 특징으로 하는 사출 성형을 이용한 시트백 프레임의 제조 공정.The pulverized material and the re-extruded resin has a content of glass fiber (GF) within 25-50%, mechanical properties of 1,300kg / ㎠ or more in tensile strength, tensile modulus of 50,000kg / ㎠ or more, and flexural strength of 2,500kg × 2 cm or more, flexural modulus is 70,000 kg / cm 2 or more, specific gravity is 1.30 to 1.40 g / cm 3, and heat deformation temperature is 180 ° C. or more. 사출 성형을 이용한 시트백 프레임의 제조 공정에 따라서 제조된 시트백 프레임 제품의 베이스(BASE) 두께는 2.0 - 3.2㎜, 리브(RIB)의 구조는 두께가 1.5 - 3.0㎜, 높이는 15.0 - 35.0㎜ 인 것을 특징으로 하는 사출성형을 이용한 시트 백 프레임의 제조 공정으로 만들어진 시트백 프레임.The base thickness of the seat back frame product manufactured by injection molding using injection molding is 2.0 to 3.2 mm, and the rib structure has a thickness of 1.5 to 3.0 mm and a height of 15.0 to 35.0 mm. The seat back frame made by the manufacturing process of the seat back frame using injection molding.
KR10-2001-0055849A 2001-09-11 2001-09-11 manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding KR100438037B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0055849A KR100438037B1 (en) 2001-09-11 2001-09-11 manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0055849A KR100438037B1 (en) 2001-09-11 2001-09-11 manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding

Publications (2)

Publication Number Publication Date
KR20030022985A true KR20030022985A (en) 2003-03-19
KR100438037B1 KR100438037B1 (en) 2004-07-01

Family

ID=27723499

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0055849A KR100438037B1 (en) 2001-09-11 2001-09-11 manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding

Country Status (1)

Country Link
KR (1) KR100438037B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487993B1 (en) * 2002-10-01 2005-05-06 에코플라스틱 주식회사 Automobile plastic seat back frame panel by injection molding process
KR101042034B1 (en) * 2009-04-15 2011-06-16 한국외국어대학교 연구산학협력단 Vehicle-mounted type information guide apparatus for providing a driver or passengers of any other vehicle with vehicle driving-related information, and system for providing vehicle driving-related information

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101208899B1 (en) * 2012-07-10 2012-12-06 (주)유니텍 Coil pad for hbs system and how to make it

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116105Y2 (en) * 1978-10-20 1986-05-19
KR870003858A (en) * 1985-10-26 1987-05-04 김학희 Manufacturing method of artificial jewelry using acrylic resin
JPS62104915U (en) * 1985-12-23 1987-07-04
DE3841532A1 (en) * 1988-12-09 1990-06-13 Bayer Ag BACKREST SUPPORT STRUCTURE FOR A VEHICLE SEAT AND VEHICLE SEAT BACKREST WITH THIS BACKREST SUPPORT STRUCTURE
JP3112604B2 (en) * 1993-06-07 2000-11-27 三菱エンジニアリングプラスチックス株式会社 Method for producing fiber-reinforced thermosetting resin molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487993B1 (en) * 2002-10-01 2005-05-06 에코플라스틱 주식회사 Automobile plastic seat back frame panel by injection molding process
KR101042034B1 (en) * 2009-04-15 2011-06-16 한국외국어대학교 연구산학협력단 Vehicle-mounted type information guide apparatus for providing a driver or passengers of any other vehicle with vehicle driving-related information, and system for providing vehicle driving-related information

Also Published As

Publication number Publication date
KR100438037B1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
Schemme LFT–development status and perspectives
Krause et al. LFT-D—a process technology for large scale production of fiber reinforced thermoplastic components
CN110757722B (en) Forming method of thermoplastic continuous fiber reinforced composite material part
Hasan et al. Design and fabrication technology in biocomposite manufacturing
EP2059382A1 (en) Water assist injection moulded structural members
CN101648429A (en) Method for manufacturing plastic mould of automobile door plate loudspeaker mask
KR100438037B1 (en) manufacturing process for seat back frame by injection molding and seat back frame produced by manufacturing process by this injection molding
Muccio Plastic part technology
Kerns Replacing metal with plastic
US5059361A (en) Method for the production of structural elements of thermosetting plastics material, particularly component parts for motor vehicle bodies, by injection moulding
JP2989931B2 (en) Method for producing molded articles from thermoplastic long fiber granules
CN103275393A (en) Glass fiber composite material applied to thin-walled part and preparation method thereof
KR102407607B1 (en) Complex materials forming device
KR100586195B1 (en) Manufacturing process and its injection mold for plastic aspherical inner lens of projection lamp of a car
KR100482443B1 (en) Method for manufacuring thermoplastic resin composition
KR100601104B1 (en) Method of making vehicle body shell from the resin, and a vehicle body shell made from the method
KR101589110B1 (en) Method for manufacturing car panel
KR20110101105A (en) Low pressure injection molding method using recycled pet for package tray of vehicle
EP1225023B1 (en) Method for injection-molding a fan
CN109514795B (en) Cambered surface workpiece and control method and application of warping degree thereof
CN210477637U (en) Clamping mechanism of injection mold
Sahu et al. Optimization Techniques in Compression Moulding: A Comprehensive Review
KR200385649Y1 (en) injection mold for plastic aspherical inner lens of projection lamp of a car
Hasan et al. 7 Design and Fabrication
JPH1158536A (en) Manufacture of fiber reinforced resin composite body

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130620

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140602

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160621

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170601

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190514

Year of fee payment: 16