KR20030016029A - Welding flaw detecting method of Spiral Welding Pipe - Google Patents

Welding flaw detecting method of Spiral Welding Pipe Download PDF

Info

Publication number
KR20030016029A
KR20030016029A KR1020010049926A KR20010049926A KR20030016029A KR 20030016029 A KR20030016029 A KR 20030016029A KR 1020010049926 A KR1020010049926 A KR 1020010049926A KR 20010049926 A KR20010049926 A KR 20010049926A KR 20030016029 A KR20030016029 A KR 20030016029A
Authority
KR
South Korea
Prior art keywords
welding
ultrasonic
spiral
pipe
detecting method
Prior art date
Application number
KR1020010049926A
Other languages
Korean (ko)
Inventor
김재열
조영태
김창현
송경석
허기복
Original Assignee
김재열
조영태
김창현
송경석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김재열, 조영태, 김창현, 송경석 filed Critical 김재열
Priority to KR1020010049926A priority Critical patent/KR20030016029A/en
Publication of KR20030016029A publication Critical patent/KR20030016029A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/048Marking the faulty objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Abstract

PURPOSE: A welding defect detecting method for a spiral welding pipe is provided to realize the objective detection of welding defects fully and safely by forming an artificial intellectual detecting system. CONSTITUTION: In a welding defect detecting method for a spiral welding pipe, welding defects are detected by an ultrasonic test while controlling the position of an ultrasonic wave sensor by a CCD camera, kinds of the welding defects are recognized by a backward propagation neural network.

Description

스파이럴 용접 파이프의 용접결함 검출 방법{Welding flaw detecting method of Spiral Welding Pipe}Welding flaw detecting method of spiral welding pipe

◆ 발명이 속하는 기술분야◆ Technical Field

스파이럴 용접 파이프의 용접부에 존재하는 결함은 제품의 수명 단축이나 용접제품의 안전성 저하의 문제를 항상 내포하고 있다.Defects present in the welds of spiral welded pipes always include problems of shortening the life of the product or deteriorating the safety of the welded product.

용접결함을 검출하는 비파괴 검사 방법은 여러가지가 있으나 초음파 탐상법을 이용하여 검사의 자동화와 검출된 용접결함의 종류인식을 위한 인공지능화하기 위한 방법이다.There are many non-destructive testing methods for detecting weld defects, but it is a method for artificial intelligence for the automation of inspection and the recognition of the detected weld defects using ultrasonic flaw detection.

◆ 그 분야의 종래기술◆ Prior art in the field

종래기술Prior art

용접결함의 검출 방법으로는 비파괴검사 기법이 주로 쓰이며, 실시간으로 용접결함을 검출하고자 방사선, 와전류, 초음파등 여러 기법들의 적용이 시도되었다.Non-destructive testing is mainly used for the detection of welding defects. In order to detect welding defects in real time, various techniques such as radiation, eddy current, and ultrasound have been attempted.

종래기술의 문제점Problems of the Prior Art

① 방사선을 이용하여 용융부의 형상을 직접 측정한 방법은 선원이 방사되는 쪽의 반대편에서 신호를 받아야 하므로 실시간 검출시 용접부재의 양면에서 접근이 가능해야 하며 또한 선원과 신호측을 동기 시켜야하는 제한이 따른다.① The method of directly measuring the shape of the molten part using radiation should receive a signal from the opposite side from which the source is radiated. Therefore, it should be accessible from both sides of the welding member during real-time detection, and there is a restriction to synchronize the source and signal side. Follow.

② 와전류를 이용하는 방법은 프로브를 고온의 용접부에 근접시켜야 하며 용접전류에 의한 영향으로 정확한 측정이 어렵다.② In the method of using eddy current, the probe should be close to the hot welding part, and it is difficult to make accurate measurement due to the influence of welding current.

③ 초음파를 이용하는 방법은 용접부의 한쪽 면만 접근이 가능하면 되고 용접시 발생되는 열, 빛 그리고 전자기장의 영향을 적게 받으므로 가능성이 큰 방법이다. 그러나 초음파를 이용하는 경우 모재의 표면에 탐상액을 계속 공급하여 초음파 센서를 밀착시켜야 하는 어려움과 초음파가 온도에 따른 특성변화가 심하기 때문에 제한이 많다.③ The method of using ultrasonic wave is a possibility because only one side of the welding part needs to be accessible and is less affected by heat, light and electromagnetic field generated during welding. However, in the case of using ultrasonic waves, there are many limitations due to the difficulty of keeping the ultrasonic sensor closely adhered to the surface of the base material by the supply of the flaw detection solution and the characteristic change of the ultrasonic waves with temperature.

또다른 방법으로는 레이저를 이용한 초음파 발생과 EMAT를 이용하여 비접촉으로 수신하는 연구가 계속되고 있으나 이 방법도 표면의 거칠기에 영향을 많이 받으며 EMAT를 사용하는 방법은 감도가 낮고 신호대 잡음비가 낮으며 용접부에 매우 가까이 위치시켜야 하는 문제가 있다.As another method, the research of ultrasonic generation using laser and non-contact reception using EMAT is continuously conducted, but this method is also affected by surface roughness, and the method using EMAT has low sensitivity, low signal-to-noise ratio, There is a problem to be very close to.

스파이럴 용접 파이프의 용접결함 검출에 쓰이는 비파괴검사 기법은 지금까지 방사선을 이용한 검출방법이 사용되었다. 그러나 방사선을 이용한 검출방법은 실시간 검출이 어려울 뿐만 아니라 방사능의 피폭문제와 필름 현상 시간으로 인한 전수검사의 어려움이 있다.The non-destructive testing technique used to detect weld defects in spiral welded pipes has been used to detect radiation. However, the radiation detection method is not only difficult to detect in real time, but also has difficulty in inspection due to radiation exposure and film development time.

스파이럴 용접 파이프상에 내재되어 있는 용접결함의 실시간 검출과 전수 검사를 위하여 방사선 대신 초음파 검사법을 이용하고, 회전하는 스파이럴 용접 파이프의용접선을 추종하여 용접결함의 검출과 종류 인식을 위해서는 초음파 센서의 위치제어와 초음파 신호의 분석을 통한 지능형 결함 평가 프로그램의 개발이 병행되어야 한다.Ultrasonic inspection instead of radiation is used for real-time detection and full inspection of welding defects inherent in spiral welded pipes, and the position control of ultrasonic sensors for detection and recognition of weld defects by following welding lines of rotating spiral welded pipes. And the development of an intelligent defect assessment program through the analysis of the ultrasonic signal should be parallel.

도 1 은 스파이럴 용접 파이프의 용접결함 검사 알고리즘의 블록도이다.1 is a block diagram of a weld defect inspection algorithm of a spiral welded pipe.

스파이럴 용접 파이프의 용접부에서 검출한 결함의 종류 인식과, 초음파 센서의 위치제어를 역전파 신경회로망(Back propagation)을 이용한다. 역전파 신경회로망에 적용하기 위한 전처리로써 결함의 종류 인식에는 신호처리를 초음파 센서의 위치제어에는 이미지 프로세싱을 이용한다.Back propagation is used to recognize the type of defect detected by the weld of the spiral weld pipe and to control the position of the ultrasonic sensor. As a preprocessing for the back propagation neural network, signal processing is used for defect type recognition and image processing is used for position control of an ultrasonic sensor.

도 2 는 검사의 자동화를 위한 설계도이다. 직경 355.6∼406.4㎜, 두께 6∼24㎜, 작업구간 1000㎜, 작업속도 max 3.8m/min, 파이프 무게는 최대 230㎏등을 기준으로 하여 설계한 도면이다.2 is a schematic diagram for the automation of inspection. 355.6-406.4mm in diameter, 6-24mm thick, 1000mm working section, max.3.8m / min working speed, pipe weight is designed based on 230kg max.

도 3 은 스파이럴 용접 파이프의 자동화와 용접결함 인식을 위한 전체 구성도이다.3 is an overall configuration diagram for the automation of the spiral weld pipe and welding defect recognition.

초음파 센서의 위치 제어는 CCD 카메라와 DSP보드로 이미지화 하고, 이미지 프로세싱 프로그램으로 특징변수를 추출하고 역전파 신경회로망으로 피드백하여 제어한다.The position control of the ultrasonic sensor is imaged by CCD camera and DSP board, and the image processing program is used to extract feature variables and feed back to back propagation neural network.

용접결함의 인식은 초음파 탐상기에서 얻어진 RF파를 PC-based 보드로 수신하고,수신된 신호는 신호처리 프로그램을 통하여 용접결함의 특징변수를 추출한다.Recognition of welding defects receives RF waves from the ultrasonic flaw detector with a PC-based board, and the received signal extracts the characteristic parameters of the welding defects through a signal processing program.

- 초음파 센서의 위치제어를 위해서는 CCD 카메라를 시각센서로 하고 화상 데이터 처리에 DSP보드를 사용하여 용접선의 형태 및 방향을 분석한다. 분석 방법으로는 취득된 영상 신호를 대표할 수 있는 특징화상의 패턴화 처리와 패턴 인식 기술을 적용한다.-For position control of ultrasonic sensor, CCD camera is used as visual sensor and DSP board is used for image data processing to analyze shape and direction of welding line. As an analysis method, the patterning processing and the pattern recognition technique of the characteristic image which can represent the acquired image signal are applied.

패턴 인식 기술로는 패턴 분류에 성능이 우수한 역전파 신경회로망을 사용한다.The pattern recognition technique uses a backpropagation neural network with excellent performance for pattern classification.

- 초음파 신호의 분석은 초음파 탐상기로부터 얻어진 결함 신호를 신호처리를 통하여 잡음 신호를 제거하고 전처리 된 초음파 신호에서 결함 신호를 대표할 수 있는 특징 신호를 추출한다. 추출된 특징신호는 초음파 센서의 위치제어에서 사용된 역전파 신경회로망을 사용한다.-The analysis of the ultrasonic signal removes the noise signal through the signal processing of the defect signal obtained from the ultrasonic flaw detector and extracts the feature signal that can represent the defect signal from the preprocessed ultrasonic signal. The extracted feature signal uses the backpropagation neural network used in the position control of the ultrasonic sensor.

- 초음파 센서의 위치제어와 초음파 신호의 분석에서 역전파 신경회로망을 같이 사용함으로 하나의 시스템으로 구성이 가능하다.-It can be configured as a system by using the back propagation neural network together in the position control of the ultrasonic sensor and the analysis of the ultrasonic signal.

종래에 사용되었던 방사선 검출 방법과 비교하면 방사선의 단점인 피폭의 위험과 필름 현상 시간으로 인한 전수검사가 어려웠던 문제를 해결하고, 초음파 검출법에서 용접결함의 검출을 사용자의 주관적 검출에서 인공지능형 검출 시스템을 구성함으로 객관적인 검출이 가능하다. 또한 검사 공정을 제품의 생산공정에 in-line화함으로써 제품의 전수검사와 이에 따른 경제적 파생 효과를 기대할 수 있다.Compared with the conventional radiation detection method, it solves the problem of radiation exposure, which is a disadvantage of radiation, and the entire inspection due to film development time, and it is possible to detect the welding defect in the ultrasonic detection method. By constructing, objective detection is possible. In addition, by in-line the inspection process to the production process of the product, it is possible to expect a full inspection of the product and the economic derivative effect.

Claims (4)

스파이럴 용접 파이프 상에 존재한는 용접결함의 검출 및 인식에 있어서, 용접결함 검출은 초음파 탐상(UT)으로 하고 초음파 센서의 위치 제어는 CCD 카메라로 제어하는 방법.A method for detecting and recognizing a weld defect present on a spiral weld pipe, wherein the weld defect detection is performed by ultrasonic flaw detection (UT) and the position control of the ultrasonic sensor is controlled by a CCD camera. 제 1 항에서 스라이럴 용접 파이프의 용접결함 종류 인식을 역전파 신경망을 이용하는 방법.The method of claim 1, wherein the back propagation neural network is used to recognize the weld defect type of the srilar welded pipe. 제 1 항에서 초음파 센서의 위치제어를 위해 역전파 신경망을 이용하여 제어하는 방법.The method of claim 1, wherein the back propagation neural network is used to control the position of the ultrasonic sensor. 제 2 항과, 제 3 항을 PC-based 오실로스코프와 DSP board를 이용하여 하나의 PC로 동시에 스라이럴 용접 파이프의 용접결함 검출 및 종류 인식과 초음파 센서의 위치제어를 하는 방법Method 2 and 3, using a PC-based oscilloscope and DSP board to simultaneously detect welding defects and recognize types of srilar welded pipes and position control of ultrasonic sensors with a single PC.
KR1020010049926A 2001-08-20 2001-08-20 Welding flaw detecting method of Spiral Welding Pipe KR20030016029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010049926A KR20030016029A (en) 2001-08-20 2001-08-20 Welding flaw detecting method of Spiral Welding Pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010049926A KR20030016029A (en) 2001-08-20 2001-08-20 Welding flaw detecting method of Spiral Welding Pipe

Publications (1)

Publication Number Publication Date
KR20030016029A true KR20030016029A (en) 2003-02-26

Family

ID=27719760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010049926A KR20030016029A (en) 2001-08-20 2001-08-20 Welding flaw detecting method of Spiral Welding Pipe

Country Status (1)

Country Link
KR (1) KR20030016029A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778242B1 (en) * 2005-12-19 2007-11-22 한국생산기술연구원 Weld-line detection apparatus for welding defect inspection
WO2013158933A1 (en) * 2012-04-18 2013-10-24 Drexel University Integration of digital image correlation with acoustic emissions
CN104574418A (en) * 2015-01-27 2015-04-29 西安工业大学 Pressure vessel weld defect identification method and device based on neural network
CN104849353A (en) * 2015-04-22 2015-08-19 杭州浙达精益机电技术股份有限公司 Wave beam time-delay control-based helical weld pipe twisting guided wave detection method and device
CN116586849A (en) * 2023-07-17 2023-08-15 黄海造船有限公司 Ship welding detection method and system based on artificial intelligence
US11965728B2 (en) 2021-04-06 2024-04-23 Saudi Arabian Oil Company Intelligent piping inspection machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655852A (en) * 1979-10-15 1981-05-16 Nippon Steel Corp Profiling method for flaw-detecting device
US4560931A (en) * 1981-08-07 1985-12-24 Kubota, Ltd. Self-propelled mobile pipeline inspection apparatus and method for inspecting pipelines
JPS63304158A (en) * 1987-06-05 1988-12-12 Hitachi Ltd Inspection method for inside of remote furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655852A (en) * 1979-10-15 1981-05-16 Nippon Steel Corp Profiling method for flaw-detecting device
US4560931A (en) * 1981-08-07 1985-12-24 Kubota, Ltd. Self-propelled mobile pipeline inspection apparatus and method for inspecting pipelines
JPS63304158A (en) * 1987-06-05 1988-12-12 Hitachi Ltd Inspection method for inside of remote furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778242B1 (en) * 2005-12-19 2007-11-22 한국생산기술연구원 Weld-line detection apparatus for welding defect inspection
WO2013158933A1 (en) * 2012-04-18 2013-10-24 Drexel University Integration of digital image correlation with acoustic emissions
CN104574418A (en) * 2015-01-27 2015-04-29 西安工业大学 Pressure vessel weld defect identification method and device based on neural network
CN104849353A (en) * 2015-04-22 2015-08-19 杭州浙达精益机电技术股份有限公司 Wave beam time-delay control-based helical weld pipe twisting guided wave detection method and device
US11965728B2 (en) 2021-04-06 2024-04-23 Saudi Arabian Oil Company Intelligent piping inspection machine
CN116586849A (en) * 2023-07-17 2023-08-15 黄海造船有限公司 Ship welding detection method and system based on artificial intelligence
CN116586849B (en) * 2023-07-17 2023-09-15 黄海造船有限公司 Ship welding detection method and system based on artificial intelligence

Similar Documents

Publication Publication Date Title
Cai et al. Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature
CN103698393A (en) Magneto-optical imaging nondestructive detection method of weld defects
Miller et al. Development of automated real-time data acquisition system for robotic weld quality monitoring
CA2052389A1 (en) Apparatus and method of discriminating flaw depths in the inspection of tubular products
CN111721768A (en) Multi-information fusion weld defect detection system and method
CN104209667B (en) Ultra micro gap butt weld magnetic rotation photoimaging automatic detection and tracking
CN101655464A (en) Surface defect form and depth on-line lossless detection method of high-temperature continuous casting blank
CN103323458A (en) Weld joint detection apparatus, weld joint detection system and weld joint detection method
CN109239081B (en) Weld quality parameter detection method based on structured light and visual imaging
CN106770628A (en) A kind of magneto-optic imaging non-destructive detection means
Vasilev et al. Non-contact in-process ultrasonic screening of thin fusion welded joints
KR20030016029A (en) Welding flaw detecting method of Spiral Welding Pipe
WO2009007817A2 (en) Method and apparatus for the contactless dynamic inspection of railway rails
CN102608123A (en) Laser ultrasonic detection method for micro defects
Li et al. Real-time measurement of weld pool oscillation frequency in GTAW-P process
CN113588566A (en) Laser-ultrasonic-based laser spot welding micro-welding point quality detection device and method
CN106645289A (en) Nondestructive detection system and method based on infrared magneto-optic imaging
CN111693611A (en) Method and system for detecting metal subsurface defects by using laser ultrasonic
CN208391295U (en) A kind of laser welded seam detection device based on magneto-optical sensor
KR20070005767A (en) Laser using welding flaw detecting for spiral welding pipe
JPS61160053A (en) Ultrasonic flaw detection test
Ewald 3-dimensional magnetic leakage field sensor in nondestructive testing
Ye et al. Weld defect inspection based on machine vision and weak magnetic technology
CN215766948U (en) Laser nondestructive testing device for detecting metal thickness change
JPS6342744B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application