KR20030013625A - Wafer alignment system in exposing apparatus - Google Patents

Wafer alignment system in exposing apparatus Download PDF

Info

Publication number
KR20030013625A
KR20030013625A KR1020010047729A KR20010047729A KR20030013625A KR 20030013625 A KR20030013625 A KR 20030013625A KR 1020010047729 A KR1020010047729 A KR 1020010047729A KR 20010047729 A KR20010047729 A KR 20010047729A KR 20030013625 A KR20030013625 A KR 20030013625A
Authority
KR
South Korea
Prior art keywords
alignment
wafer
sensor
lsa
mark
Prior art date
Application number
KR1020010047729A
Other languages
Korean (ko)
Inventor
정동식
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020010047729A priority Critical patent/KR20030013625A/en
Publication of KR20030013625A publication Critical patent/KR20030013625A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/30Reducing waste in manufacturing processes; Calculations of released waste quantities

Abstract

PURPOSE: A wafer ordering system of an exposure apparatus is provided to minimize yield loss in case of alignment error during alignment process for checking the wafer ordering state. CONSTITUTION: A wafer is loaded on an exposure apparatus(200). The x coordinate of an ordering mark is detected by using an LSA sensor(210). The y coordinate is also detected by the LSA sensor(220,230). If the state of the ordering mark is proved to be right, An EGA process is executed and then exposed(240,250). If not right, the range of alignment error is corrected automatically and alignment sensor is changed from LSA to FIA and then the alignment process is restarted(260).

Description

노광 장치의 웨이퍼 정렬 시스템{Wafer alignment system in exposing apparatus}Wafer alignment system in exposing apparatus

본 발명은 반도체 소자의 제조를 위한 리소그래피(lithography) 공정에서 사용되는 노광 장치에 관한 것으로, 특히 웨이퍼의 정렬 상태에 따라 정렬 감지 센서를 자동 변환하는 웨이퍼 정렬 시스템에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus used in a lithography process for the manufacture of semiconductor devices, and more particularly, to a wafer alignment system for automatically converting an alignment sensing sensor according to the alignment state of a wafer.

일반적으로, 반도체 소자의 제조를 위해서 웨이퍼 상에 소정의 막을 형성하고, 원하는 패턴을 형성하기 위한 리소그래피(lithography) 공정이 진행된다. 리소그래피 공정은 소정의 막이 형성된 웨이퍼 상에 포토 레지스트막을 형성하고, 마스크를 이용하여 상기 포토 레지스트막을 노광 및 현상시킨 후, 포토 레지스트 패턴을 이용하여 상기 웨이퍼 상의 막을 식각하는 공정이다. 상기 노광 공정은 반도체 소자 제조 공정의 정확도를 결정하는 중요한 공정이다.In general, a lithography process is performed to form a predetermined film on a wafer and to form a desired pattern for manufacturing a semiconductor device. The lithography process is a process of forming a photoresist film on a wafer on which a predetermined film is formed, exposing and developing the photoresist film using a mask, and then etching the film on the wafer using a photoresist pattern. The exposure process is an important process for determining the accuracy of the semiconductor device manufacturing process.

노광 공정은 스테퍼(stepper)라 불리우는 축소 노광 장비에서 이루어진다. 먼저, 포토 레지스트막이 형성된 웨이퍼가 웨이퍼 테이블 상에 로드되면, 마스크와 웨이퍼간의 정렬이 실시된다.The exposure process takes place in reduced exposure equipment called steppers. First, when the wafer on which the photoresist film is formed is loaded on the wafer table, alignment between the mask and the wafer is performed.

웨이퍼 정렬 공정은 두 단계로 이루어진다. 우선, 웨이퍼의 대체적인 위치를 검출하는 서치 얼라인먼트 공정이 진행된다. 서치 얼라인먼트 공정은 웨이퍼 상에 형성된 정렬 마크(alignment key)의 대체적인 위치를 감지함으로써, 웨이퍼의 정렬 상태를 확인하는 공정이다.The wafer alignment process is a two step process. First, a search alignment process of detecting alternative positions of the wafer is performed. The search alignment process is a process of confirming an alignment state of a wafer by detecting an alternative position of an alignment key formed on the wafer.

서치 얼라인먼트 공정은 소자의 제조 공정단계에 따라 LSA(laser scanning alignment) 또는 FIA(filed image alignment) 센서를 이용하여 이루어진다. 반도체 소자의 제조 공정중 금속 배선 형성 이전 단계까지의 공정이 수행된 웨이퍼는 LSA 센서를 사용하여 정렬마크의 위치를 감지하고, 금속 배선 형성 이후 단계까지의 공정을 수행한 웨이퍼는 FIA 센서를 사용하여 정렬마크의 위치를 감지한다.The search alignment process is performed using a laser scanning alignment (LSA) or a filed image alignment (FIA) sensor according to the manufacturing process steps of the device. In the manufacturing process of the semiconductor device, the wafer to which the process up to the formation of the metal wiring is performed is detected using the LSA sensor to detect the position of the alignment mark, and the wafer to the process after the formation of the metal wiring is processed using the FIA sensor Detect the position of the alignment mark.

LSA 센서를 사용하는 방법은 정렬 마크가 형성된 웨이퍼 상에 레이저를 조사시켜서 회절,산란된 광을 이용하여정렬마크 위치를 감지한다. FIA 센서를 사용하는 방법은 파일(file)에 기록된 정렬 마크의 패턴을 잉요하여 정렬마크 위치를 감지한다.The method using the LSA sensor detects the alignment mark position by diffracted and scattered light by irradiating a laser onto the wafer on which the alignment mark is formed. The method using the FIA sensor detects the alignment mark position by using a pattern of alignment marks recorded in a file.

다음, 웨이퍼 상의 정렬 마크 위치를 세밀하게 구하는 EGA(enhanced global alignment) 공정을 수행한다.Next, an enhanced global alignment (EGA) process is performed to precisely determine the alignment mark position on the wafer.

금속 배선 형성 이전 단계까지의 공정이 수행된 웨이퍼의 서치 얼라인먼트 공정에서, 정렬마크의 정렬 상태가 불량한 경우 FIA 센서로 변경하여 정렬마크의위치를 감지한다.In the search alignment process of the wafer where the process up to the step of forming the metal wiring is performed, if the alignment state of the alignment mark is poor, the position of the alignment mark is detected by changing to the FIA sensor.

도 1은 종래의 웨이퍼 정렬 시스템의 동작 순서를 도시한 블록도이다.1 is a block diagram showing an operation sequence of a conventional wafer alignment system.

노광 장치에 웨이퍼를 로딩한 후(100), LSA 센서를 이용하여 정렬 마크의 X축 위치를 감지한다(110). 연속하여 LSA 센서를 이용하여 정렬 마크의 Y축 위치를 감지하여(120) 정렬 마크의 위치를 감지한다(130). 정렬마크의 상태가 양호하면, 즉 웨이퍼의 정렬이 올바르면 후속의 EGA를 실시하고(140) 노광한다(150). 정렬마크의 상태가 불량이면, 즉 웨이퍼가 제대로 정렬되어 있지 않은 경우, 설비 운영자가 정렬에러 범위를 수정하고, FIA 센서로 변경하여 정렬마크의 위치를 다시 감지한다.After loading the wafer into the exposure apparatus (100), the X-axis position of the alignment mark is sensed using the LSA sensor (110). Continuously detect the position of the alignment mark Y axis 120 using the LSA sensor (130) to detect the position of the alignment mark. If the alignment mark is in a good state, that is, the alignment of the wafer is correct, subsequent EGA is performed (140) and exposed (150). If the status of the alignment mark is bad, ie the wafer is not aligned properly, the facility operator corrects the alignment error range and changes to the FIA sensor to detect the position of the alignment mark again.

각각의 웨이퍼에 대해 서치 얼라인먼트 공정의 진행 시, 정렬에러가 발생하고, 정렬에러가 발생할 때마다 설비 운영자가 정렬에러 범위를 수정하고, 수동으로 FIA 센서로 변경해야 한다. 정렬에러 범위의 수정 및 센서 변경이 수동으로 이루어지므로 공정 손실이 크고, 처리 시간이 지연된다.During the search alignment process for each wafer, an alignment error occurs, and whenever an alignment error occurs, the facility operator must correct the alignment error range and manually change to a FIA sensor. The correction of the range of alignment errors and the change of sensors are done manually, resulting in high process losses and delays in processing time.

따라서, 본 발명이 이루고자 하는 기술적 과제는 웨이퍼의 정렬 상태를 확인하는 서치 얼라인먼트 공정에 있어서, 정렬에러의 발생 시, 공정 손실을 최소화할 수 있는 웨이퍼 정렬 시스템을 제공하는 것이다.Therefore, the technical problem to be achieved by the present invention is to provide a wafer alignment system that can minimize the process loss when an alignment error occurs in the search alignment process to check the alignment state of the wafer.

도 1은 종래의 웨이퍼 정렬 시스템의 동작 순서를 도시한 블록도이다.1 is a block diagram showing an operation sequence of a conventional wafer alignment system.

도 2는 본 발명에 의한 웨이퍼 정렬 시스템의 동작 순서를 도시한 블록도이다.2 is a block diagram showing an operation procedure of the wafer alignment system according to the present invention.

본 발명의 기술적 과제를 달성하기 위하여, 본 발명의 웨이퍼 정렬 시스템은 LSA(laser scanning alignment) 센서를 이용하여 웨이퍼 상의 정렬마크를 감지하는단계 및 정렬상태의 불량 시, FIA(filed image alignment) 센서로 자동변환되어 웨이퍼 상의 정렬마크를 감지하는 단계를 포함한다.In order to achieve the technical problem of the present invention, the wafer alignment system of the present invention detects an alignment mark on a wafer using a laser scanning alignment (LSA) sensor and, in case of misalignment, uses a filed image alignment (FIA) sensor. Automatically converting to detect alignment marks on the wafer.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 그러나, 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 본 발명의 개시가 완전해지도록 하며, 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되어지는 것이다. 도면 상에서 동일한 부호로 표시된 요소는 동일한 구성 요소를 의미한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention may be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are intended to complete the present disclosure and to provide a more complete description of the present invention to those skilled in the art. Elements denoted by the same reference numerals in the drawings means the same components.

이하, 도 2를 참고로 본 발명의 실시예를 설명한다.Hereinafter, an embodiment of the present invention will be described with reference to FIG. 2.

도 2는 본 발명에 의한 웨이퍼 정렬 시스템의 동작 순서를 도시한 블록도이다.2 is a block diagram showing an operation procedure of the wafer alignment system according to the present invention.

노광 장치에 웨이퍼를 로딩한 후(200), 먼저 LSA 센서를 이용하여 정렬 마크의 X축 위치를 감지한다(210). 연속하여 LSA 센서를 이용하여 정렬 마크의 Y축 위치를 감지하여(220) 정렬 마크의 위치를 감지한다(230). 정렬마크의 상태가 양호하면, 즉 웨이퍼의 정렬이 올바르면 후속의 EGA를 실시하고(240) 노광한다(250). 정렬마크의 상태가 불량이면, 즉 웨이퍼가 제대로 정렬되어 있지 않은 경우, 자동으로 정렬에러 범위가 수정되고, FIA 센서로 변경된다(260). FIA 센서에 의해 다시 서치 얼라인먼트 공정이 수행된다.After loading the wafer into the exposure apparatus (200), first, the X-axis position of the alignment mark is detected by using the LSA sensor (210). Continuously using the LSA sensor to detect the position of the alignment mark Y axis (220) to detect the position of the alignment mark (230). If the alignment mark is in a good state, that is, the alignment of the wafer is correct, subsequent EGA is performed (240) and exposed (250). If the alignment mark is in a bad state, that is, the wafer is not properly aligned, the alignment error range is automatically corrected and changed to the FIA sensor (260). The search alignment process is performed again by the FIA sensor.

상술한 바와 같이, 본 발명의 웨이퍼 정렬 시스템에서는 먼저, LSA 센서를이용하여 서치 얼라인먼트 공정을 진행하고, 정렬에러의 발생 시, FIA 센서로의 변경을 자동화함으로써, 공정손실을 줄일 수 있고, 처리시간의 지연을 방지할 수 있다.As described above, in the wafer alignment system of the present invention, the search alignment process is first performed using the LSA sensor, and when an alignment error occurs, the process loss can be reduced by automating the change to the FIA sensor, and the processing time Delay can be prevented.

Claims (1)

노광 장치에 로딩된 웨이퍼를 정렬시키기 위한 웨이퍼 정렬 시스템에 있어서,A wafer alignment system for aligning wafers loaded into an exposure apparatus, LSA(laser scanning alignment) 센서를 이용하여 웨이퍼 상의 정렬마크를 감지하는 단계; 및Detecting an alignment mark on the wafer using a laser scanning alignment (LSA) sensor; And 정렬상태의 불량 시, FIA(filed image alignment) 센서로 자동변환되어 웨이퍼 상의 정렬마크를 감지하는 단계를 포함하는 웨이퍼 정렬 시스템.And in the event of misalignment, automatically converting to a filed image alignment (FIA) sensor to detect alignment marks on the wafer.
KR1020010047729A 2001-08-08 2001-08-08 Wafer alignment system in exposing apparatus KR20030013625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010047729A KR20030013625A (en) 2001-08-08 2001-08-08 Wafer alignment system in exposing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010047729A KR20030013625A (en) 2001-08-08 2001-08-08 Wafer alignment system in exposing apparatus

Publications (1)

Publication Number Publication Date
KR20030013625A true KR20030013625A (en) 2003-02-15

Family

ID=27718360

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010047729A KR20030013625A (en) 2001-08-08 2001-08-08 Wafer alignment system in exposing apparatus

Country Status (1)

Country Link
KR (1) KR20030013625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818408B1 (en) * 2006-12-26 2008-04-01 동부일렉트로닉스 주식회사 Alignment key for exposure process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818408B1 (en) * 2006-12-26 2008-04-01 동부일렉트로닉스 주식회사 Alignment key for exposure process

Similar Documents

Publication Publication Date Title
US5894350A (en) Method of in line intra-field correction of overlay alignment
US7834978B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US6342703B1 (en) Exposure apparatus, exposure method, and device manufacturing method employing the exposure method
KR100194255B1 (en) How to Align Reticle Patterns
JP2005101455A (en) Positioning apparatus
JP3218984B2 (en) Wafer periphery exposure method and apparatus for removing unnecessary resist on semiconductor wafer
US8174673B2 (en) Method for wafer alignment
JP2003017386A (en) Alignment method, method and apparatus for exposure, and method for manufacturing device
KR101089839B1 (en) Pojection exposure device and position alignment method
JPS6147633A (en) Projected exposure apparatus
KR20030013625A (en) Wafer alignment system in exposing apparatus
JP3168590B2 (en) Reduction projection exposure method
JP2010283157A (en) Aligner and device manufacturing method
US6936386B2 (en) Reticle alignment procedure
US20090040480A1 (en) Exposure apparatus, information processing apparatus, and method of manufacturing device
KR100598263B1 (en) Stepper and method for aligning shot using the same
JP2000195770A (en) Tilt correcting method and manufacture of device
KR20080020363A (en) Position setting method for wafer alignment
KR20050066889A (en) Mark system and estimating method for overlay alignment and mask alignment
KR20070005810A (en) Wafer alignment method
JPH1152545A (en) Reticle and pattern transferred by the same as well as method for aligning reticle and semiconductor wafer
KR100532761B1 (en) Method for forming overlay measuring mark
KR100688721B1 (en) Method for measuring a overlay status in a fabricating process of a semiconductor device
JPH02152220A (en) Alignment
JP2000124125A (en) Semiconductor aligner

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination