KR20030008299A - Zn-added magnesium oxide thin films and process for preparing same - Google Patents

Zn-added magnesium oxide thin films and process for preparing same Download PDF

Info

Publication number
KR20030008299A
KR20030008299A KR1020010043354A KR20010043354A KR20030008299A KR 20030008299 A KR20030008299 A KR 20030008299A KR 1020010043354 A KR1020010043354 A KR 1020010043354A KR 20010043354 A KR20010043354 A KR 20010043354A KR 20030008299 A KR20030008299 A KR 20030008299A
Authority
KR
South Korea
Prior art keywords
thin film
magnesium oxide
zinc
oxide thin
added
Prior art date
Application number
KR1020010043354A
Other languages
Korean (ko)
Other versions
KR100416664B1 (en
Inventor
이규철
박원일
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR10-2001-0043354A priority Critical patent/KR100416664B1/en
Publication of KR20030008299A publication Critical patent/KR20030008299A/en
Application granted granted Critical
Publication of KR100416664B1 publication Critical patent/KR100416664B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A magnesium oxide(MgO) thin film with zinc and method for manufacturing the same is provided to achieve improved crystallinity and surface roughness without causing significant changes of lattice structure and lattice constant. CONSTITUTION: A method for manufacturing magnesium oxide thin film is characterized in that an appropriate amount of zinc is added to the magnesium oxide thin film during growth of the thin film, in such a manner as to avoid a phase separation. The zinc is added by the amount of 20 mole percent or less. The growth of the magnesium oxide thin film is performed by a metal-organic chemical vapor deposition(MOCVD), sputtering or thermal or electron beam evaporation.

Description

아연이 첨가된 산화마그네슘 박막 및 이의 제조방법{ZN-ADDED MAGNESIUM OXIDE THIN FILMS AND PROCESS FOR PREPARING SAME}Zinc-doped magnesium oxide thin film and its manufacturing method {ZN-ADDED MAGNESIUM OXIDE THIN FILMS AND PROCESS FOR PREPARING SAME}

본 발명은 박막의 성장시 아연을 첨가함으로써, 결정성 및 표면 미세구조가 향상된 산화마그네슘계 박막에 관한 것이다.The present invention relates to a magnesium oxide thin film having improved crystallinity and surface microstructure by adding zinc during the growth of the thin film.

산화마그네슘계 박막은 최근 플라즈마 디스플레이 패널(plasma display panel; PDP)의 보호막 및 이차 전자 방출용으로 사용되기 위한 연구가 진행되어 왔으며, 또한 강유전체 박막 및 고온 초전도체 박막의 성장시 기판과 박막간의 격자 불일치에 의한 응력 발생을 억제하기 위한 버퍼층으로 사용되는 등 많은 분야에서 응용되고 있다. 이러한 산화마그네슘계 박막을 성장시키기 위해 스퍼터링(sputtering), 열(thermal) 또는 전자 빔 증착(electron beam evaporation)과 같은 물리적 증착법 및 유기금속 화학 기상 증착법(MOCVD)과 같은 화학증착법(CVD) 등의 여러 방법들이 이용되고 있지만, 이러한 방법은 에피 박막 성장이 어렵고, 성장된 산화마그네슘 박막의 표면도 매우 거칠다는 문제점이 있다.Magnesium oxide thin films have recently been studied to be used for plasma display panel (PDP) protective film and secondary electron emission. Also, the growth of ferroelectric thin film and high temperature superconductor thin film is caused by lattice mismatch between substrate and thin film. It is used in many fields, such as being used as a buffer layer for suppressing stress generation. In order to grow the magnesium oxide thin film, physical vapor deposition such as sputtering, thermal or electron beam evaporation, and chemical vapor deposition (CVD) such as organometallic chemical vapor deposition (MOCVD), etc. Although methods have been used, this method has a problem in that epitaxial film growth is difficult and the surface of the grown magnesium oxide thin film is also very rough.

이에 따라, 본 발명의 목적은 산화마그네슘 박막 성장시 마그네슘과 이온 반경이 유사한 아연을 상분리가 일어나지 않는 범위내에서 고용시킴으로써, 격자구조 및 격자상수의 큰 변화 없이 결정성 및 표면 미세구조가 향상된 산화마그네슘 박막을 제공하기 위한 것이다.Accordingly, an object of the present invention is to improve the crystallinity and surface microstructure of the magnesium oxide thin film in the form of solid solution within the range that phase separation does not occur in the magnesium and the ion radius of the magnesium oxide thin film growth, without significant change in lattice structure and lattice constant To provide a thin film.

도 1a는 본 발명에 따른 실시예로부터 제조된, Al2O3(0001) 기재 위에 Zn 함량을 변화시키면서 성장시킨 산화마그네슘(MgO) 막의 X-선 회절법(XRD) θ-2θ 스캔 결과를 나타내며,FIG. 1A shows the X-ray diffraction (XRD) θ-2θ scan results of a magnesium oxide (MgO) film grown with varying Zn content on an Al 2 O 3 (0001) substrate prepared from an example according to the present invention ,

도 1b는 본 발명에 따른 실시예로부터 제조된, Al2O3(0001) 기재 위에 Zn 함량을 변화시키면서 성장시킨 산화마그네슘 막의 X-선 회절법(XRD) θ-2θ 스캔 결과 얻어진 회절피크의 강도를 아연함량에 따라 도시한 것이고,FIG. 1B shows the intensity of diffraction peaks obtained by X-ray diffraction (XRD) θ-2θ scan of magnesium oxide films grown with varying Zn content on Al 2 O 3 (0001) substrates prepared from examples according to the present invention Is shown according to the zinc content,

도 2는 본 발명에 따른 실시예로부터 제조된, Al2O3(0001) 기재 위에 Zn 함량을 변화시키면서 성장시킨 산화마그네슘 막의 X-선 회절법(XRD) 진동곡선 (rocking curves) 스캔 결과를 나타내며,FIG. 2 shows the results of X-ray diffraction (XRD) rocking curves scans of magnesium oxide films grown with varying Zn content on Al 2 O 3 (0001) substrates prepared from examples according to the present invention. ,

도 3a, 도 3b 및 도 3c는 Al2O3(0001) 기재 위에 성장시킨, 각각 Zn을 0, 10 및 15 몰% 함유한 산화마그네슘 막의 AFM (atomic force microscopy) 사진이다.3A, 3B and 3C are AFM (atomic force microscopy) photographs of magnesium oxide films containing 0, 10 and 15 mol% Zn, respectively, grown on an Al 2 O 3 (0001) substrate.

상기 목적을 달성하기 위하여 본 발명에서는, 산화마그네슘 박막의 성장시 아연을 고용시킴으로써 제조된 산화마그네슘 박막을 제공한다.In order to achieve the above object, the present invention provides a magnesium oxide thin film prepared by solidifying zinc in the growth of the magnesium oxide thin film.

상기 산화마그네슘 박막 성장시에 첨가되는 아연의 함량은 산화아연(ZnO) 상이 분리되지 않는 범위내에서 첨가되며, 대략 0 내지 20 몰% 미만의 범위일 수 있다. 본 발명에 따라, 아연이 첨가된 산화마그네슘 박막은 MgO의 결정 구조를 그대로 유지할 수 있다.The amount of zinc added during the growth of the magnesium oxide thin film is added within a range in which the zinc oxide (ZnO) phase is not separated, and may be in a range of about 0 to less than 20 mol%. According to the present invention, the zinc-added magnesium oxide thin film can maintain the crystal structure of MgO as it is.

본 발명에 따른 산화마그네슘 박막의 기재로는 통상적인 것이 사용될 수 있으며, 대표적으로는 유리, 석영, SiO2/Si, Si, Al2O3(0001), Al2O3(1100) 등이 있다.As the base material of the magnesium oxide thin film according to the present invention, a conventional one can be used, and typically, glass, quartz, SiO 2 / Si, Si, Al 2 O 3 (0001), Al 2 O 3 (1100), and the like. .

본 발명에 의한 아연이 첨가된 산화마그네슘계 박막은 특정의 박막 성장 방법에 국한되지 않고, 스퍼터링, 열 또는 전자 빔 증착과 같은 물리적 증착법, 또는 유기금속 화학 증착과 같은 화학적 증착법을 사용하여 제조될 수 있다.Zinc oxide-based magnesium oxide thin films according to the present invention are not limited to a specific thin film growth method, and can be prepared using physical vapor deposition such as sputtering, thermal or electron beam deposition, or chemical vapor deposition such as organometallic chemical vapor deposition. have.

본 발명에 의해 형성된 산화마그네슘계 박막은 아연이 첨가됨에 따라 결정성이 뚜렷이 향상되며, 또한 표면 거칠기가 감소하는 등 표면 미세구조도 매우 우수하므로, 다양한 광 소자 및 전자 소자에 효율적으로 사용될 수 있다.Magnesium oxide-based thin film formed by the present invention has a very good surface microstructure, such as crystallinity is clearly improved as the zinc is added, and the surface roughness is reduced, it can be efficiently used in various optical devices and electronic devices.

또한, 본 발명에 따라 아연을 고용시켜 산화마그네슘 박막의 결정성 및 미세 구조를 향상시키는 방법은 산화마그네슘 박막뿐만 아니라 이와 유사한 결정 구조를 가지는 다른 물질의 박막에도 적용할 수 있다.In addition, the method of improving the crystallinity and microstructure of the magnesium oxide thin film by employing zinc in accordance with the present invention can be applied to not only magnesium oxide thin films but also thin films of other materials having similar crystal structures.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다.단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are not intended to limit the present invention.

실시예Example

유기금속 화학증착법(MOCVD)을 이용하여 산화마그네슘 박막을 성장시켰다. 기재로서 Al2O3(0001)을 사용하고, 반응물질로서 비스사이클로펜타디에닐마그네슘 (Cp2Mg) 및 O2를 사용하였으며, 운반기체로서 아르곤을 사용하였다. 또한 아연을 첨가하기 위하여 디에틸아연(DEZ)을 이용하였으며, DEZ을 반응기로 수송하기 위한 운반기체인 아르곤의 유량을 0 내지 5 sccm으로 조절함으로써 산화마그네슘 박막내의 아연의 몰분율을 20 몰%의 범위내에서 변화시켰다. 약 1시간에 걸쳐 막 성장이 진행되는 동안 반응기 내의 압력은 5 mmHg로, 온도는 600℃로 일정하게 유지시켰다.Magnesium oxide thin films were grown using organometallic chemical vapor deposition (MOCVD). Al 2 O 3 (0001) was used as the substrate, biscyclopentadienyl magnesium (Cp 2 Mg) and O 2 were used as the reactants, and argon was used as the carrier gas. In addition, diethyl zinc (DEZ) was used to add zinc, and the molar fraction of zinc in the magnesium oxide thin film was adjusted within the range of 20 mol% by adjusting the flow rate of argon, which is a carrier gas for transporting DEZ, to the reactor at 0 to 5 sccm. Changed from. The pressure in the reactor was kept constant at 5 mmHg and the temperature at 600 ° C. during the film growth over about 1 hour.

상기와 같이 형성된 산화마그네슘 박막들의 결정 배향성을 X-선 회절법(XRD)으로 결정하였으며, AFM(atomic force microscopy)을 통해서 표면 미세구조를 조사하였다.The crystal orientation of the magnesium oxide thin films formed as described above was determined by X-ray diffraction (XRD), and the surface microstructure was examined through atomic force microscopy (AFM).

X선 회절법(XRD)에 의한 박막 결정성 분석Thin film crystallinity analysis by X-ray diffraction (XRD)

비교예로서 Zn을 함유하지 않는 MgO 박막과, Zn을 각각 10%, 15% 및 20% 함유하는 ZnMgO 박막들의 XRD θ-2θ 스캔 결과를 도 1a에 각각 나타내었다. 도 1b는 이렇게 얻어진 X-선 회절 피크의 강도를 아연함량에 따라 도시한 것이다.As a comparative example, XRD θ-2θ scan results of MgO thin films containing no Zn and ZnMgO thin films containing 10%, 15% and 20% of Zn, respectively, are shown in FIG. 1A. Figure 1b shows the intensity of the X-ray diffraction peaks thus obtained according to the zinc content.

도 1a 및 도 1b로부터, 아연 함량이 15 몰% 이하인 MgO 박막은 기재 피크 이외에 오직 MgO(111) 피크만을 나타냄으로써, MgO 박막이 기재 표면에 (111) 방향을 따라 배향되었으며, 산화아연(ZnO) 상이 분리되지 않은 단일상이 형성되었음을 알 수 있다. 또한 첨가되는 아연의 함량이 증가함에 따라 회절 피크의 강도가 점점 증가하다가, 15 몰%에서는 회절 피크의 강도가 급격히 증가함을 볼 수 있다. 이는 아연 함량이 증가함에 따라 기재 표면에 (111) 방향으로의 배향성이 향상됨을 보여준다. 그러나 아연 함유량을 20 몰% 이상 크게 증가시키면, ZnO 상이 분리되고 산화마그네슘의 배향성이 감소하여 회절 피크의 강도가 다시 감소하였다.1A and 1B, the MgO thin film having a zinc content of 15 mol% or less shows only the MgO (111) peak in addition to the substrate peak, so that the MgO thin film was oriented along the (111) direction on the substrate surface, and zinc oxide (ZnO) It can be seen that a single phase is formed in which the phases are not separated. In addition, the intensity of the diffraction peak gradually increases as the amount of zinc added increases, and the intensity of the diffraction peak rapidly increases at 15 mol%. This shows that as the zinc content increases, the orientation in the (111) direction on the substrate surface is improved. However, when the zinc content was greatly increased by 20 mol% or more, the ZnO phase was separated and the orientation of magnesium oxide was decreased, so that the intensity of the diffraction peak was decreased again.

한편, Al2O3(0001) 기재 위에 형성된 Zn을 함유하지 않은 MgO 박막, 및 Zn을 각각 10 몰% 및 15 몰% 함유하는 MgO 박막의 (0002)면에 대한 XRD 진동 곡선(rocking curve)을 도 2에 나타내었다. 도 2에서 보는 바와 같이, 아연을 함유하지 않은 MgO 막의 진동 곡선에서의 최대값/2에서의 총 너비(full width at half maximum, FWHM)가 0.47°이었으며, 아연을 첨가함에 따라 그 값이 점점 작아져서 아연 함량이 15 몰%일 때는 0.1°로 감소하였다. 이로부터 MgO 박막 성장시 아연을 첨가함에 따라 박막의 결정성이 매우 향상되었음을 알 수 있다.Meanwhile, the XRD rocking curves for the MgO thin film not containing Zn formed on the Al 2 O 3 (0001) substrate and the (0002) plane of the MgO thin film containing 10 mol% and 15 mol% of Zn, respectively 2 is shown. As shown in FIG. 2, the full width at half maximum (FWHM) in the vibration curve of the zinc-free MgO membrane was 0.47 °, and the value gradually decreased as zinc was added. It was lowered to 0.1 ° when the zinc content was 15 mol%. From this, it can be seen that the crystallinity of the thin film was greatly improved by adding zinc during MgO thin film growth.

AFM에 의한 박막 표면 미세구조 분석Thin Film Surface Microstructure Analysis by AFM

Zn 함량을 변화시키면서 성장시킨 산화마그네슘 막의 AFM (atomic force microscopy) 이미지를 도 3a, 도 3b 및 도 3c에 각각 나타내었다. 아연을 함유하지 않은 MgO 막의 표면은 매우 거칠지만(도 3a), 아연 함량이 10 몰%인 ZnMgO 막은 표면의 거칠기(미세구조)가 좀 더 개선되었으며(도 3b), 아연 함량이 15 몰%인 경우에는 막의 표면 평균 거칠기(rms roughness)가 0.6 nm로서, 거울같이 매우 미끈한 표면이 얻어졌다. MgO 박막 성장시 아연의 첨가로 인해 박막의 결정성뿐만 아니라 표면 미세구조에도 효과적인 영향을 미쳐서 박막의 질이 매우 우수해졌다.AFM (atomic force microscopy) images of the magnesium oxide film grown with varying Zn content are shown in FIGS. 3A, 3B and 3C, respectively. Although the surface of the MgO film containing no zinc is very rough (FIG. 3A), the ZnMgO film having a zinc content of 10 mol% has further improved the surface roughness (fine structure) (FIG. 3B), and the zinc content is 15 mol%. In this case, the surface average roughness (rms roughness) of the film was 0.6 nm, and a very smooth surface like a mirror was obtained. The addition of zinc in the growth of MgO thin film has an excellent effect not only on the crystallinity of the thin film but also on the surface microstructure.

본 발명에 따른, 아연이 첨가된 산화마그네슘계 박막은 박막 성장시 적정량의, 즉 ZnO 상이 분리되지 않을 정도의 아연을 첨가함으로써, 결정성 및 표면 미세구조가 매우 우수하여, 박막의 질이 향상되고, 다양한 광소자 및 전자 소자에 효율적으로 사용될 수 있다.According to the present invention, a zinc oxide-based magnesium oxide thin film is added with an appropriate amount of zinc during growth of the thin film, that is, the ZnO phase is not separated, so that the crystallinity and surface microstructure are excellent, and the quality of the thin film is improved. It can be efficiently used in various optical devices and electronic devices.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (5)

산화마그네슘 박막을 성장시키는 공정에서, 상분리가 일어나지 않는 범위내에서 아연을 첨가하는 것을 특징으로 하는, 아연-첨가된 산화마그네슘 박막의 제조방법.In the process of growing a magnesium oxide thin film, zinc is added within a range in which phase separation does not occur, the method of producing a zinc-added magnesium oxide thin film. 제1항에 있어서,The method of claim 1, 아연이 20 몰% 미만의 양으로 첨가되는 것을 특징으로 하는 방법.Zinc is added in an amount of less than 20 mol%. 제1항에 있어서,The method of claim 1, 산화마그네슘 박막 성장 공정이 유기금속 화학증착법, 스퍼터링법, 또는 열 또는 전자 빔 증착법에 의해 수행되는 것을 특징으로 하는 방법.Magnesium oxide thin film growth process is carried out by organometallic chemical vapor deposition, sputtering, or thermal or electron beam deposition. 제1항 내지 제3항중 어느 한 항의 방법에 의해 제조된, 아연-첨가된 산화마그네슘 박막.A zinc-added magnesium oxide thin film prepared by the method of any one of claims 1 to 3. 제4항에 따른 아연-첨가된 산화마그네슘 박막을 포함하는 소자.A device comprising a zinc-added magnesium oxide thin film according to claim 4.
KR10-2001-0043354A 2001-07-19 2001-07-19 Zn-added magnesium oxide thin films and process for preparing same KR100416664B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0043354A KR100416664B1 (en) 2001-07-19 2001-07-19 Zn-added magnesium oxide thin films and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0043354A KR100416664B1 (en) 2001-07-19 2001-07-19 Zn-added magnesium oxide thin films and process for preparing same

Publications (2)

Publication Number Publication Date
KR20030008299A true KR20030008299A (en) 2003-01-25
KR100416664B1 KR100416664B1 (en) 2004-01-31

Family

ID=27715653

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0043354A KR100416664B1 (en) 2001-07-19 2001-07-19 Zn-added magnesium oxide thin films and process for preparing same

Country Status (1)

Country Link
KR (1) KR100416664B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986620B1 (en) * 2010-06-29 2010-10-08 (주)대진코스탈 Manufacturing mehtod of cutting unit for paper shredder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986620B1 (en) * 2010-06-29 2010-10-08 (주)대진코스탈 Manufacturing mehtod of cutting unit for paper shredder

Also Published As

Publication number Publication date
KR100416664B1 (en) 2004-01-31

Similar Documents

Publication Publication Date Title
Carcia et al. Synthesis and properties of thin film polymorphs of molybdenum trioxide
EP0669412B1 (en) Aluminim nitride thin film substrate and process for producing same
US8876973B2 (en) Film of n type (100) oriented single crystal diamond semiconductor doped with phosphorous atoms, and a method of producing the same
US9297093B2 (en) Layered body having a single crystal layer
US5330611A (en) Cubic boron nitride carbide films
Chang et al. Epitaxial TiO2 and VO2 films prepared by MOCVD
EP0417942B1 (en) Manufacture of polycrystalline silicon thin films and of transistors therefrom
US6911084B2 (en) Low temperature epitaxial growth of quaternary wide bandgap semiconductors
JP3716440B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
KR102072167B1 (en) MANUFACTURING METHOD OF α-Ga2O3 THIN FILM USING HALIDE VAPOR PHASE EPITAXY GROWTH
Liu et al. Growth of thick AlN layer by hydride vapor phase epitaxy
CN114361246A (en) Epitaxial structure of oxide buffer layer and preparation method thereof
US7186295B2 (en) Quartz thin film
US5326424A (en) Cubic boron nitride phosphide films
KR100416664B1 (en) Zn-added magnesium oxide thin films and process for preparing same
EP0504959B1 (en) Carbon-alloyed cubic boron nitride films
US6808743B2 (en) Growth of ZnO film using single source CVD
Gimeno et al. Cubic boron nitride thin films by tuned rf magnetron sputtering
US6800133B1 (en) Process for growing a magnesium oxide film on a silicon (100) substrate coated with a cubic silicon carbide butter layer
JP2001270799A (en) Zinc oxide thin film and method for producing the same
EP0504960B1 (en) Phosphorus-alloyed cubic boron nitride films
Liu et al. Fabrication of thick AlN film by low pressure hydride vapor phase epitaxy
JPH01120011A (en) Inp semiconductor thin film
KR100408820B1 (en) Process for the formation of magnesium oxide thin films by metal-organic chemical vapor deposition
JPH025512A (en) Molecular beam epitaxial growth method and device thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090115

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee