KR20020095769A - GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF - Google Patents

GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
KR20020095769A
KR20020095769A KR1020010033963A KR20010033963A KR20020095769A KR 20020095769 A KR20020095769 A KR 20020095769A KR 1020010033963 A KR1020010033963 A KR 1020010033963A KR 20010033963 A KR20010033963 A KR 20010033963A KR 20020095769 A KR20020095769 A KR 20020095769A
Authority
KR
South Korea
Prior art keywords
gallium nitride
light emitting
quantum well
layer
grown
Prior art date
Application number
KR1020010033963A
Other languages
Korean (ko)
Inventor
한윤봉
이형재
Original Assignee
퀀테코주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀀테코주식회사 filed Critical 퀀테코주식회사
Priority to KR1020010033963A priority Critical patent/KR20020095769A/en
Publication of KR20020095769A publication Critical patent/KR20020095769A/en

Links

Abstract

PURPOSE: A method for fabricating a gallium nitride light emitting device of a quantum well structure by using a plasma treatment is provided to remarkably improve a light emitting characteristic of a light emitting diode(LED), by performing a plasma treatment on a gallium nitride thin film grown by a metal organic chemical vapor deposition(MOCVD) process. CONSTITUTION: A gallium nitride buffer layer of a uniform thickness is grown on a sapphire substrate at a uniform temperature. An n-type gallium nitride thin film having a single or multilayered quantum well structure is formed on the gallium nitride buffer layer by a MOCVD process. A gallium nitride cap layer is grown on the n-type gallium nitride thin film at a uniform temperature and a plasma treatment process is performed. A p-type gallium nitride layer of a uniform thickness is grown on the gallium nitride cap layer at a uniform temperature to finish the growth of the structure of the LED. A metal electrode is formed to fabricate the light emitting device.

Description

플라즈마 처리에 의한 양자우물구조 질화갈륨계 발광소자 및 그 제조방법 {GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF}Quantum well structure gallium nitride-based light emitting device by plasma treatment and manufacturing method thereof {GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF}

본 발명은 질화갈륨계 발광소자 및 그의 제조방법에 관한 것이다.The present invention relates to a gallium nitride-based light emitting device and a manufacturing method thereof.

최근에 질화갈륨계의 발광소자는 청색 및 자외선 스펙트럼 영역까지 응용이 확대되고 있으며, 에너지 절약을 극대화시킬 수 있는 친환경적 반도체 소자로서 각광을 받고 있다. 이러한 응용에 있어서 해결해야 할 가장 중요한 과제중의 하나는 발광특성을 높이는 것이다.In recent years, gallium nitride-based light emitting devices have been widely applied to the blue and ultraviolet spectral regions, and are attracting attention as environmentally friendly semiconductor devices capable of maximizing energy savings. One of the most important problems to be solved in this application is to increase the luminescence properties.

이를 위해서 유기금속 화학기상증착법으로 활성층을 양자우물구조 형태로 성장시키는 방법이 이용되고 있다. 양자우물구조의 층수, 두께 및 인듐(In)함량을 조절하거나 발광 다이오드(LED : light emitting diode) 제조를 위한 전극구조 형태 및 패키징 방법 등을 최적화하여 발광효율을 높이는 방법들이 주로 연구되고 있다.To this end, a method of growing an active layer into a quantum well structure by organometallic chemical vapor deposition has been used. Methods of increasing the luminous efficiency by controlling the number of layers, thickness and indium (In) content of the quantum well structure or optimizing the electrode structure shape and packaging method for manufacturing a light emitting diode (LED) are mainly studied.

그러나 이러한 방법들은 발광 다이오드(LED) 구조의 물리적 한계와 계면에서 일어나는 여러 계면 현상 때문에 어려움이 수반되고 있으며, 나아가 발광소자 제조공정의 확립과 공정 최적화를 어렵게 하고 있다.However, these methods are accompanied with difficulties due to the physical limitations of the light emitting diode (LED) structure and various interfacial phenomena occurring at the interface, and furthermore, it is difficult to establish and optimize the light emitting device manufacturing process.

본 발명의 목적은 일반적인 유기금속 화학기상증착법으로 제조한 양자우물구조를 갖는 질화갈륨계 박막을 플라즈마로 처리하여 LED의 발광효율을 향상시키는데 있다. 보다 상세하게는 유기금속 화학기상증착법으로 제조한 단일 또는 다층 양자우물구조 질화갈륨 표면을 Cl2/N2,Cl2/He, Cl2/Ar, N2/Ar, H2/Ar 및 Ar 등의 플라즈마를 이용하여 처리함으로써 활성층의 발광효율을 제고시키는데 있다.An object of the present invention is to improve the luminous efficiency of LED by treating the gallium nitride-based thin film having a quantum well structure prepared by a general organic metal chemical vapor deposition method with a plasma. More specifically, the single or multilayer quantum well structure gallium nitride surface prepared by organometallic chemical vapor deposition is Cl 2 / N 2 , Cl 2 / He, Cl 2 / Ar, N 2 / Ar, H 2 / Ar and Ar, etc. Treatment by using plasma to improve the luminous efficiency of the active layer.

나아가 본 발명을 이용하여 질화갈륨계 발광다이오드(LED)를 제작하여 발광특성을 향상시키는 것을 특징으로 한다. 본 발명은 단층(single) 양자우물구조(SQW)와 다층(multi) 양자우물구조(MQWs)에 동일하게 적용되는 기술이다.Further, by using the present invention to produce a gallium nitride-based light emitting diode (LED) it is characterized in that to improve the light emission characteristics. The present invention is equally applicable to single quantum well structure (SQW) and multi quantum well structure (MQWs).

도 1은 본 발명에 의한 단층 또는 다층 양자우물구조 질화갈륨 발광다이오드의 성장구조를 나타낸 도면.1 is a view showing a growth structure of a single-layer or multi-layer quantum well structure gallium nitride light emitting diode according to the present invention.

도 2는 본 발명에 의한 발광 활성층위에 저온 성장시킨 질화갈륨 캡층(cap layer) 표면을 플라즈마 처리하는데 사용한 유도결합 고밀도 플라즈마(inductively coupled high density plasma)장치의 개략도.2 is a schematic diagram of an inductively coupled high density plasma apparatus used for plasma treating a surface of a gallium nitride cap layer grown at low temperature on a light emitting active layer according to the present invention;

도 3은 본 발명에 의한 유기금속 화학기상증착(MOCVD)법으로 성장한 단일 양자우물구조(GaN/SQW/n GaN/GaN/ Sapphire)의 플라즈마 처리 전후의 발광특성(PL) 측정 결과도.Figure 3 is a measurement result of the emission characteristics (PL) before and after plasma treatment of a single quantum well structure (GaN / SQW / n GaN / GaN / Sapphire) grown by organometallic chemical vapor deposition (MOCVD) method according to the present invention.

도 4는 본 발명에 의한 유기금속 화학기상증착법으로 성장한 다층 양자우물구조(GaN/SQW/n GaN/GaN/ Sapphire)의 플라즈마 처리 전후의 발광특성(PL) 측정 결과도.4 is a measurement result of light emission characteristics (PL) before and after plasma treatment of a multilayer quantum well structure (GaN / SQW / n GaN / GaN / Sapphire) grown by an organometallic chemical vapor deposition method according to the present invention.

도 5는 본 발명의 공정 절차를 이용한 발광다이오드의 제조 공정도.5 is a manufacturing process diagram of the light emitting diode using the process procedure of the present invention.

도면 주요 부위에 대한 부호의 설명Explanation of the code | symbol about main part of drawing

1 : RF 발생기(13.56 MHz, ICP souece)1: RF generator (13.56 MHz, ICP souece)

2 : 매칭 박스(Matching box)2: Matching box

3 : 바라트론 게이지(Baratron gauge)3 Baratron gauge

4 : 퍼지 가스(Purge gas)4: purge gas

5 : 식각기체5: etching gas

6 : RF 발생기(13.56 MHz, 하부전극)6: RF generator (13.56 MHz, lower electrode)

7 : 터보 펌프7: turbo pump

8 : 로터리(Rotary)와 부스터 펌프(Boostor pump)8: Rotary and Booster Pump

이하 바람직한 일 실시예를 통해 발명의 목적 및 구성을 보다 잘 이해할 수 있을 것이다.Through the following preferred embodiment will be able to better understand the object and configuration of the invention.

또한, 첨부한 도면을 참조하여 본 발명에 의한 유기금속 화학기상증착법으로 성장한 단일 또는 다층의 양자우물구조 질화갈륨을 고밀도 플라즈마를 이용하여 표면 처리함으로써 광학적 발광특성을 향상시키는 바람직한 일 실시예를 상세히 설명하기로 한다.In addition, with reference to the accompanying drawings will be described in detail a preferred embodiment of improving the optical emission characteristics by surface treatment of a single or multi-layer quantum well structure gallium nitride grown by the organic metal chemical vapor deposition according to the present invention using a high density plasma Let's do it.

도 1은 본 발명이 이루고자하는 인듐질화갈륨/질화갈륨(InGaN/GaN) 다층 양자우물구조를 갖는 발광 다이오드 웨이퍼 구조를 나타낸 것이다. 사파이어 기판 위에 저온(560℃)에서 질화갈륨 버퍼층(buffer layer)을 약 25nm 두께로 성장한 후, 그 위에 2 - 4㎛ 두께의 N형 질화갈륨(Si 도핑) 기본층(base layer)을 1130℃에서 성장시키고, 그 위에 양자우물구조를 갖는 활성층(active layer)을 750℃에서 성장시키고, 그 위에 약 100nm 정도로 질화갈륨 캡층(cap layer)을 1100℃에서 성장시킨 후 Cl2/N2, Cl2/He, Cl2/Ar, Cl2/Xe, N2/Ar, N2/He, Cl2/Xe, H2/Ar, Cl2/N2/Ar, Cl2/H2/Ar, Cl2/N2/He, Ar, He, Xe등과 같은 플라즈마로 처리하고, 그 위에 약 100 nm 두께를 갖는 P형 질화갈륨(Mg 도핑)을 고온(1050℃)에서 성장시켜서 양자우물 LED 구조의 성장을 완성한다. 질화갈륨계 박막성장을 위한 전구체로는 트리메틸갈륨 (trimethylgallium, TMGa), 트리메틸인듐(trimethylindium, TMIn), 암모니아(NH3)가 사용되며, 도펀트 물질로는 비스사이클로펜타 - 디에닐마그네슘 (biscyclopenta-dienylmagnesium, Cp2Mg), 디에틸아연(diethylzinc, DEZn)과 실란(SiH4)이 사용된다.1 illustrates a light emitting diode wafer structure having an indium gallium nitride / gallium nitride (InGaN / GaN) multilayer quantum well structure according to the present invention. After growing a gallium nitride buffer layer at a low temperature (560 ° C.) to a thickness of about 25 nm on a sapphire substrate, an N type gallium nitride (Si doped) base layer having a thickness of 2 to 4 μm thereon was formed at 1130 ° C. After growth, an active layer having a quantum well structure thereon is grown at 750 ° C., and a gallium nitride cap layer is grown at 1100 ° C. at about 100 nm, and then Cl 2 / N 2 , Cl 2 / He, Cl 2 / Ar, Cl 2 / Xe, N 2 / Ar, N 2 / He, Cl 2 / Xe, H 2 / Ar, Cl 2 / N 2 / Ar, Cl 2 / H 2 / Ar, Cl 2 / N 2 / He, Ar, He, Xe and the like treatment, and P-type gallium nitride (Mg doping) having a thickness of about 100 nm on it is grown at high temperature (1050 ℃) to grow the quantum well LED structure Complete Trimethylgallium (TMGa), trimethylindium (TMIn), and ammonia (NH 3 ) are used as precursors for the growth of gallium nitride-based thin films, and biscyclopenta-dienymagnesium (biscyclopenta-dienylmagnesium) is used as a dopant material. , Cp 2 Mg), diethylzinc (DEZn) and silane (SiH 4 ) are used.

도 2는 발광 활성층위에 저온 성장시킨 질화갈륨 캡층 표면을 플라즈마 처리하는데 사용되는 유도결합 고밀도 플라즈마(ICP) 장치의 개략도이다.2 is a schematic diagram of an inductively coupled high density plasma (ICP) device used to plasma treat a surface of a gallium nitride cap layer grown at low temperature on a light emitting active layer.

ICP 장치에서는 유도 코일에 RF 전력(즉, ICP 공급 전력)을 공급하면 반응기내에 자기장이 발생되고, 이에 따라 유도된 전기장에 의하여 반응기내에 전자들이 갇히게 되기 때문에 낮은 압력에서도 고밀도 플라즈마를 발생시킬 수 있다. 전자들은 반응기내에서 원형궤적을 따라 운동하면서 전자와 분자들의 충돌빈도가 증가하게 되어 고밀도(1011- 1012cm-3) 플라즈마를 형성한다. 벌크 플라즈마의 이온 밀도는 ICP RF 발생기의 전압을 변화시킴으로써, 기판표면에 입사되는 이온 에너지는 하부전극에 연결된 RF 발생기의 전력을 변화시킬 때 발생하는 디비아스(de vias)에 의해 독립적으로 제어된다.In the ICP device, supplying RF power (ie, ICP supply power) to the induction coil generates a magnetic field in the reactor, and thus, electrons are trapped in the reactor by the induced electric field, thereby generating a high density plasma even at low pressure. Electrons are to a collision frequency of the electrons and molecules increases as movement along a circular path in the reactor high density - to form a plasma (10 11 10 12 cm -3) . The ion density of the bulk plasma changes the voltage of the ICP RF generator so that the ion energy incident on the substrate surface is independently controlled by the devias generated when the power of the RF generator connected to the lower electrode changes.

도 3은 유기금속 화학기상증착법으로 성장한 단층 양자우물구조(GaN/SQW/n-GaN/GaN/ Sapphire)의 플라즈마 처리 전후의 발광특성(PL)을 측정한 예이다. 800W ICP 공급 전력(source power), 40 mTorr에서 하부전극의 RF 전력을 200W 및 250W로 변화시키면서 Cl2/Ar 플라즈마로 상기 박막을 처리한 후 PL을 측정하였다.3 is an example of measuring the light emission characteristics PL before and after plasma treatment of a single layer quantum well structure (GaN / SQW / n-GaN / GaN / Sapphire) grown by an organometallic chemical vapor deposition method. PL was measured after treating the thin film with Cl 2 / Ar plasma while changing the RF power of the lower electrode to 200 W and 250 W at 800 W ICP source power, 40 mTorr.

플라즈마 처리를 안한 경우에 비해서 하부전극의 RF 전력을 200W 및 250W로 변화시키면서 플라즈마 처리한 경우에 청색파장에 해당하는 2.7eV에서의 PL 강도가 각각 45% 및 200% 향상되었다. 이는 플라즈마 에너지에 의한 열처리효과, 플라즈마 이온 및 반응종들에 의한 표면결함 제거 효과 등으로 인하여 발광특성이 향상되는 것이라 할 것이다.When the plasma treatment was performed while changing the RF power of the lower electrode to 200 W and 250 W, the PL intensity at 2.7 eV corresponding to the blue wavelength was increased by 45% and 200%, respectively. This may be said to be due to the heat treatment effect by the plasma energy, the surface defect removal effect by the plasma ions and reactive species to improve the light emission characteristics.

도 4는 유기금속 화학기상증착법으로 성장한 다층 양자우물구조 (GaN/6MQWs/n-GaN/GaN/ Sapphire)의 플라즈마 처리 전후의 발광특성(PL)을 측정한 예이다.4 is an example of measuring the light emission characteristics PL before and after plasma treatment of a multi-layer quantum well structure (GaN / 6MQWs / n-GaN / GaN / Sapphire) grown by organometallic chemical vapor deposition.

하부전극의 RF 전력 200W, 반응기 압력 40mTorr에서 ICP의 RF 전력을 700W와 800W로 변화시키면서 상기 박막을 Cl2/Ar 플라즈마로 처리한 후 PL을 측정하였는데, 2.7 eV에서의 PL 강도가 각각 65% 및 50% 향상되었다.The PL was measured after treating the thin film with Cl 2 / Ar plasma while changing the RF power of the ICP to 700 W and 800 W at an RF power of 200 W and a reactor pressure of 40 mTorr. The PL strength at 2.7 eV was 65% and 50% improvement.

도 5는 본 발명을 이용한 질화갈륨계 발광소자 제조 공정도이다. 유기금속 화학기상증착법으로 단일(SQW) 또는 다층양자우물구조(MQWs)의 질화갈륨 박막을 성장시키는 제1공정, 캡층을 플라즈마 처리하는 제2공정, 제2공정 후 P형 질화갈륨을 성장시켜서 LED 구조 성장을 완성하는 제3공정, 제3공정 후에 식각 및 금속전극을 형성하여 발광소자를 제조하는 제4공정으로 되어 있다.5 is a process chart of manufacturing a gallium nitride-based light emitting device using the present invention. The first process of growing gallium nitride thin film of single (SQW) or multi-layer quantum well structure (MQWs) by organometallic chemical vapor deposition, the second process of plasma treatment of cap layer, and the growth of P-type gallium nitride after the second process The third step of completing the structure growth and the fourth step of forming the light emitting device by forming an etching and a metal electrode after the third step.

상기와 같이 본 발명에 의하면 유기금속 화학기상증착법으로 성장한 질화갈륨계 박막을 플라즈마로 처리함으로써 발광다이오드의 발광특성을 크게 향상시킬 수 있다. 본 발명에 사용된 방법은 간단하여 공정에 적용하기가 용이하며, 발광특성의 향상으로 고휘도의 광전자소자를 구현하는데 효과가 크다.As described above, according to the present invention, the light emitting characteristics of the light emitting diode can be greatly improved by treating the gallium nitride-based thin film grown by the organic metal chemical vapor deposition method with plasma. The method used in the present invention is simple and easy to apply to the process, and is effective in realizing a high brightness optoelectronic device by improving light emission characteristics.

Claims (10)

질화갈륨계 발광다이오드 제조방법에 있어서,In the manufacturing method of gallium nitride-based light emitting diode, 사파이어 기판에 일정한 두께와 온도로 질화갈륨 완충층을 성장시키고 그 위에 유기금속 화학기상증착법으로 단일 또는 다층 양자우물구조를 갖는 N형 질화갈륨 박막을 성장시키는 제1공정 ;Growing a gallium nitride buffer layer at a constant thickness and temperature on a sapphire substrate and growing an N-type gallium nitride thin film having a single or multilayer quantum well structure by organometallic chemical vapor deposition; 상기 N형 질화갈륨 박막 위에 일정한 온도로 질화갈륨 캡층을 성장시킨 후 플라즈마로 처리하는 제2공정 ;A second step of growing a gallium nitride cap layer on the N-type gallium nitride thin film at a constant temperature and then treating the same with a plasma; 상기 질화갈륨 캡층 위에 일정한 두께와 온도로 P형 질화갈륨을 성장시켜서 발광 다이오드의 구조 성장을 완성시키는 제3공정; 및A third step of growing a P-type gallium nitride at a constant thickness and temperature on the gallium nitride cap layer to complete the structure growth of the light emitting diode; And 상기 제3공정 후에 식각 및 금속전극을 형성하여 발광소자를 제조하는 제4공정이 포함되는 것을 특징으로 하는 단층 또는 다층 양자우물구조를 갖는 질화갈륨계 발광다이오드의 제조방법.And a fourth step of forming an etched and metal electrode after the third step to manufacture the light emitting device. 4. A method of manufacturing a gallium nitride-based light emitting diode having a single layer or multilayer quantum well structure. 제1항에 있어서, 질화갈륨 완충층은 25nm의 두께로 560℃에서 성장시키고, 그 위에 기본층으로 N형 질화갈륨 박막을 성장시키고, 그 위에 활성층으로 되어 있는 것을 특징으로 하는 단층 또는 다층 양자우물구조를 갖는 질화갈륨계 발광다이오드의 제조방법.The single layer or multi-layer quantum well structure according to claim 1, wherein the gallium nitride buffer layer is grown at 560 DEG C with a thickness of 25 nm, the N-type gallium nitride thin film is grown thereon, and the active layer is formed thereon. Method of manufacturing a gallium nitride-based light emitting diode having a. 제2항에 있어서, N형 질화갈륨 박막의 기본층은 2 - 4㎛의 두께로 1130℃에서 성장되는 것을 특징으로 하는 단층 또는 다층 양자우물구조를 갖는 발광다이오드의 제조방법.The method of claim 2, wherein the base layer of the N-type gallium nitride thin film is grown at 1130 ° C. with a thickness of 2 to 4 μm. 제2항에 있어서, N형 질화갈륨 박막의 활성층은 750℃에서 성장되는 것을 특징으로 하는 단층 또는 다층 양자우물구조를 갖는 발광다이오드의 제조방법.The method according to claim 2, wherein the active layer of the N-type gallium nitride thin film is grown at 750 ° C. 제1항에 있어서, 상기 질화갈륨 캡층은 100nm의 두께로 1100℃에서 성장되는 것을 특징으로 하는 단층 또는 다층 양자우물구조를 갖는 발광다이오드의 제조방법.The method of claim 1, wherein the gallium nitride cap layer is grown at 1100 ° C. with a thickness of 100 nm. 제1항에 있어서, 상기 플라즈마는 이온밀도 108- 1014cm-3의 Cl2/N2, Cl2/He, Cl2/Ar, Cl2/Xe, N2/Ar, N2/He, Cl2/Xe, H2/Ar, Cl2/N2/Ar, Cl2/H2/Ar, Cl2/N2/He, Ar, He, Xe등을 포함하는 것을 특징으로 하는 단층 또는 다층 양자우물구조를 갖는 발광다이오드의 제조방법.The method of claim 1, wherein the plasma is Cl 2 / N 2 , Cl 2 / He, Cl 2 / Ar, Cl 2 / Xe, N 2 / Ar, N 2 / He having an ion density of 10 8-10 14 cm -3 Or a monolayer comprising Cl 2 / Xe, H 2 / Ar, Cl 2 / N 2 / Ar, Cl 2 / H 2 / Ar, Cl 2 / N 2 / He, Ar, He, Xe, or the like. Method of manufacturing a light emitting diode having a multilayer quantum well structure. 제1항에 있어서, 유기금속 화학기상증착법으로 성장한 단층 양자우물구조에 플라즈마 처리를 하는 경우 300 - 1500 W ICP 공급전력, 1 - 760 mTorr에서 하부전극의 RF 전력을 50W에서 500W로 변화시키면서 Cl2/Ar 플라즈마로 상기 박막을 처리하는 것을 특징으로 하는 단층 양자우물구조를 갖는 발광다이오드의 제조방법.The method of claim 1, wherein, when a plasma treatment in a single-layer quantum well structures grown by metal organic chemical vapor deposition (CVD) 300 - 1500 W ICP source power; 1, varying from 760 mTorr RF power to the lower electrode from 50W to 500W Cl 2 A method of manufacturing a light emitting diode having a single layer quantum well structure, wherein the thin film is treated with a / Ar plasma. 제1항에 있어서, MOCVD법으로 성장한 다층 양자우물구조에 플라즈마 처리를 하는 경우 하부전극의 RF 전력 10 - 600W, 반응기 압력 1 - 760 mTorr에서 ICP의 공급 전력을 300 - 1500W로 변화시키면서 상기 박막을 Cl2/Ar 플라즈마로 처리하는 것을 특징으로 하는 다층 양자우물구조를 갖는 발광다이오드의 제조방법.The thin film of claim 1, wherein the plasma is treated in a multi-layer quantum well structure grown by MOCVD, while the ICP supply power is changed to 300-1500 W at an RF power of 10-600 W and a reactor pressure of 1-760 mTorr. A method of manufacturing a light emitting diode having a multilayer quantum well structure, characterized in that the treatment with Cl 2 / Ar plasma. 제1항에 있어서, 상기 P형 질화갈륨은 100nm의 두께로 1050℃에서 성장하는 것을 특징으로 하는 단층 또는 다층 양자우물구조를 갖는 발광다이오드의 제조방법.The method of claim 1, wherein the P-type gallium nitride is grown at 1050 ° C. with a thickness of 100 nm. 질화갈륨계 발광다이오드에 있어서,In a gallium nitride-based light emitting diode, 사파이어 기판에 성장된 질화갈륨 완충층과; 그 위에 N형 질화갈륨 베이스층과; 그위에 단일 또는 다층 양자우물구조를 갖는 박막과; 그 위에 질화갈륨 캡층과; 그 위에 P형 질화갈륨과; 식각 및 금속전극이 형성된 것을 특징으로 하는 단층 또는 다층 양자우물구조를 갖는 질화갈륨계 발광다이오드.A gallium nitride buffer layer grown on the sapphire substrate; An N-type gallium nitride base layer thereon; A thin film having a single or multilayer quantum well structure thereon; A gallium nitride cap layer thereon; P-type gallium nitride thereon; A gallium nitride-based light emitting diode having a single layer or multilayer quantum well structure, characterized in that the etching and the metal electrode is formed.
KR1020010033963A 2001-06-15 2001-06-15 GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF KR20020095769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010033963A KR20020095769A (en) 2001-06-15 2001-06-15 GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010033963A KR20020095769A (en) 2001-06-15 2001-06-15 GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF

Publications (1)

Publication Number Publication Date
KR20020095769A true KR20020095769A (en) 2002-12-28

Family

ID=27709478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010033963A KR20020095769A (en) 2001-06-15 2001-06-15 GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
KR (1) KR20020095769A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769986B1 (en) * 2006-02-08 2007-10-25 전남대학교산학협력단 Method of manufacturing thin film using icp-mocvd method
CN102157650A (en) * 2011-01-31 2011-08-17 浙江大学 Method for manufacturing gallium nitride (GaN)-based light-emitting diode (LED) with vertical structure
US10629772B2 (en) 2018-07-20 2020-04-21 Hongik Univ Industry-Academia Coop. Foundation Optoelectronic device and method for fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769986B1 (en) * 2006-02-08 2007-10-25 전남대학교산학협력단 Method of manufacturing thin film using icp-mocvd method
CN102157650A (en) * 2011-01-31 2011-08-17 浙江大学 Method for manufacturing gallium nitride (GaN)-based light-emitting diode (LED) with vertical structure
CN102157650B (en) * 2011-01-31 2013-06-12 浙江大学 Method for manufacturing gallium nitride (GaN)-based light-emitting diode (LED) with vertical structure
US10629772B2 (en) 2018-07-20 2020-04-21 Hongik Univ Industry-Academia Coop. Foundation Optoelectronic device and method for fabricating the same

Similar Documents

Publication Publication Date Title
CN108091736B (en) A kind of LED epitaxial slice and its manufacturing method
KR101399250B1 (en) Nitrogen compound semiconductor light emitting element and manufacturing method thereof
KR100668351B1 (en) Nitride-based light emitting device and method of manufacturing the same
US20160043275A1 (en) P-type doping layers for use with light emitting devices
CN108493310B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN109119515B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN105552182B (en) A kind of preparation method of high-luminous-efficiency GaN-based LED epitaxial wafer
US10727054B2 (en) Nitride-based semiconductor device and method for preparing the same
CN109860345B (en) LED epitaxial structure growth method
CN111599901A (en) Ultraviolet LED epitaxial wafer grown on Si substrate and preparation method thereof
CN114256394B (en) Light-emitting diode and preparation method thereof
CN111490133B (en) Growth method for coarsening surface of GaN-based LED blue-green light epitaxial wafer
CN109346568B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN113410353B (en) Light emitting diode epitaxial wafer and preparation method thereof
JP2007095745A (en) Semiconductor light-emitting element and manufacturing method thereof, and luminaire using the same
KR20020095769A (en) GaN-BASED QUANTUM WELL LIGHT EMITTING DEVICES ENHANCED BY PLASMA TREATMENT AND DEVICE MANUFACTURING METHOD THEREOF
CN104103727A (en) LED chip capable of improving quantum efficiency, and preparation method thereof
Lee et al. Effects of nanosized Ni particle structure on the enhancement of light extraction from 600 nm AlGaInP light-emitting diodes
CN113571617B (en) Epitaxial wafer of deep ultraviolet light-emitting diode and preparation method thereof
CN113013299B (en) Light emitting diode epitaxial wafer and growth method thereof
CN212542464U (en) Ultraviolet LED epitaxial wafer grown on Si substrate
US20230197896A1 (en) Method to improve the performance of gallium-containing light-emitting devices
KR100722818B1 (en) Method of manufacturing light emitting diode
JP3672585B2 (en) Method for manufacturing group 3 nitride semiconductor
CN109671828B (en) Light emitting diode epitaxial wafer and manufacturing method thereof

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination