KR20020089080A - Silicon-carbon based briquette for rising temperature of melt - Google Patents

Silicon-carbon based briquette for rising temperature of melt Download PDF

Info

Publication number
KR20020089080A
KR20020089080A KR1020010028411A KR20010028411A KR20020089080A KR 20020089080 A KR20020089080 A KR 20020089080A KR 1020010028411 A KR1020010028411 A KR 1020010028411A KR 20010028411 A KR20010028411 A KR 20010028411A KR 20020089080 A KR20020089080 A KR 20020089080A
Authority
KR
South Korea
Prior art keywords
molten metal
silicon
carbon
ferrosilicon
silicon carbide
Prior art date
Application number
KR1020010028411A
Other languages
Korean (ko)
Other versions
KR100554732B1 (en
Inventor
임문석
이경목
이정모
박병곤
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010028411A priority Critical patent/KR100554732B1/en
Publication of KR20020089080A publication Critical patent/KR20020089080A/en
Application granted granted Critical
Publication of KR100554732B1 publication Critical patent/KR100554732B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/005Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using exothermic reaction compositions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • C21C2007/0062Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires with introduction of alloying or treating agents under a compacted form different from a wire, e.g. briquette, pellet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: A silicon-carbon based briquette with high strength is provided to elevate the temperature of melt without dust scattering. CONSTITUTION: The silicon-carbon based briquette used in steelmaking industry comprises carbon 5 to 40 wt.% and 60 to 95 wt.% of ferrosilicon with a diameter of 1 to 10 mm. The silicon-carbon based briquette comprises carbon 5 to 30 wt.% and 70 to 95 wt.% of silicon carbide with a diameter of 1 to 10 mm.

Description

용탕 승온용 실리콘-카본계 발열제{Silicon-carbon Based Briquette for Rising Temperature of Melt}Silicon-carbon Based Briquette for Rising Temperature of Melt}

본 발명은 제강공정에서 용탕의 승열을 위해 사용되는 발열제에 관한 것으로서, 보다 상세하게는 용탕 내에서 승온 효율이 우수한 브리케트 형태의 실리콘-카본계 발열제에 관한 것이다.The present invention relates to a heat generating agent used for heating up a molten metal in a steelmaking process, and more particularly, to a silicon-carbon type heat generating agent having a briquette type having excellent temperature raising efficiency in a molten metal.

제강조업에 사용되는 승온용 발열제로는 Si 함량이 약 75중량% 전후인 훼로실리콘(Fe-Si) 괴나 무연탄 또는 코크스 등이 주로 사용되고 있다. 훼로실리콘은 은 그 융점이 1,350℃ 정도로 용탕의 온도보다는 낮지만 비교적 높은 편이고 비중 또한 용탕 대비 낮다. 따라서, 훼로실리콘 괴를 용탕 내에 투입시 용해속도가 느려 산화반응 속도가 지연되어 빠른 시간 내에 용탕의 승온 효과를 얻기가 어렵다. 또한, 무연탄 괴도 융점이 높아 괴 상태로 용탕 내에 투입시 산화반응속도가 느리고, 비중이 매우 낮아 용탕 위에 뜨게 되어 산화 발열량의 상당 부분이 용탕의 승온에 기여하지 못한다.As a heating element for heating the steelmaking industry, ferro-silicon (Fe-Si) ingots having an Si content of about 75% by weight, anthracite coal or coke are mainly used. Ferrosilicon has a melting point of 1,350 ℃, which is lower than that of the molten metal, but is relatively high and its specific gravity is lower than that of the molten metal. Therefore, when the ferrosilicon ingot is introduced into the molten metal, the dissolution rate is slow and the oxidation reaction rate is delayed, thereby making it difficult to obtain a temperature raising effect of the molten metal within a short time. In addition, when the anthracite coal road melting point is added into the molten state in the ingot state, the oxidation reaction rate is slow, and the specific gravity is very low, so that it floats on the molten metal, and a large part of the oxidative calorific value does not contribute to the temperature rise of the molten metal.

이러한 문제점을 개선하고자 승온용으로 용탕 내에 투입되는 훼로실리콘이나 탄소의 용해 반응속도를 증대시키기 위하여 훼로실리콘과 무연탄 등의 크기를 괴상보다 작은 10mm 이하의 크기로 하거나 분입자 상태의 실리콘카바이드(SiC)를 투입하여 용해속도를 증대시키는 방법을 채택하기도 하였다. 그러나, 이러한 방법들은 사용되는 원료의 입자가 작아져 제조 및 운반과정에서 분 발생이 많아져서 운반 및 용탕 내로 투입되는 작업과정에서 분진 비산으로 인한 환경오염이 발생할 뿐만 아니라 저장용기에서의 엉킴 현상에 의해 작업성이 저하되는 문제가 있다. 또한, 노내에 투입시 미분들이 미반응 상태로 집진되어 투입량 대비 용탕 내에서의 실수율이 낮아지는 문제점이 있다.In order to improve this problem, to increase the dissolution rate of ferrosilicon and carbon injected into the molten metal for the purpose of raising the temperature, the size of the ferrosisilium and anthracite coal is less than 10mm or smaller than the bulk, or silicon carbide (SiC) A method of increasing the dissolution rate by adding a was also adopted. However, these methods reduce the amount of particles used in the raw materials, which increases the amount of dust generated during the manufacturing and conveying process, resulting in environmental pollution due to dust scattering during transport and operation into the molten metal, as well as entanglement in the storage container. There is a problem that workability is degraded. In addition, the fine powder is collected in the unreacted state when put into the furnace, there is a problem that the error rate in the molten metal compared to the input amount is lowered.

본 발명은 이러한 종래의 발열제에 대한 문제를 개선하고자 제안된 것이다.The present invention is proposed to ameliorate the problem with these conventional heating agents.

본 발명의 목적은 발열제의 강도가 우수하여 미분 발생이 적고 용탕에 투입되었을 때 용해 속도가 향상되어 승온 효율이 증대되는 브리케트 형태의 실리콘- 카본계 발열제를 제공함에 있다.An object of the present invention is to provide a briquette-type silicon-carbon-based heat generating agent which is excellent in the strength of the heat generating agent, the generation of fine powder is small and the dissolution rate is improved when the melting rate is added to the molten metal.

상기 목적 달성을 위한 본 발명은 제강공정에서 용탕의 승온을 위해 용탕 내에 첨가되는 발열제에 있어서,The present invention for achieving the above object in the heat generating agent is added in the molten metal for the temperature increase of the molten metal in the steelmaking process,

카본: 5~ 40중량%와 크기가 1~ 10mm인 훼로실리콘: 60~ 95중량%를 포함하고, 브리케트 형태인 용탕 승온용 실리콘-카본계 발열제에 관한 것이다.It is related with the silicon-carbon type heat generating agent for molten metal temperature rising of briquette form which contains carbon: 5-40 weight% and ferrosilicon of 1-10 mm in size: 60-95 weight%.

또한, 본 발명은 제강공정에서 용탕의 승온을 위해 용탕 내에 첨가되는 발열제에 있어서,In addition, the present invention is a heat generating agent which is added in the molten metal to increase the temperature of the molten metal in the steelmaking process,

카본: 5~ 30중량%와 크기가 1~ 10mm인 실리콘카바이드: 70~ 95중량%를 포함하고, 브리케트 형태인 용탕 승온용 실리콘-카본계 발열제에 관한 것이다.It relates to a silicon-carbon-based heat generating agent for molten metal temperature rising in briquette form, comprising carbon: 5 to 30% by weight and silicon carbide having a size of 1 to 10 mm: 70 to 95% by weight.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 발열제는 훼로실리콘 또는 실리콘카바이드에 카본 분말을 배합하여 브리케트 형태로 제조된다. 본 발명에서 훼로실리콘이나 실리콘카바이드 원료는 입자 크기가 1~ 10mm인 것을 사용하는 것이 바람직하다. 만일 원료 입자 크기가 10mm 이상인 경우 브리케트 형태로 성형이 어렵고 성형후 강도가 낮아 쉽게 깨어지고 용탕 중에서의 용해속도가 급격히 저하되어 산화발열 반응을 신속히 이룰 수 없다. 반면 원료 입자 크기가 1mm 미만으로 하는 것은 제조시 분진 발생이 많아질 뿐만아니라 별도의 파쇄공정이 필요하는 등 비용 측면이나 환경 측면을 고려할 때 바람직하지 못하다.The heat generating agent of the present invention is prepared in the form of briquette by blending carbon powder with ferrosilicon or silicon carbide. In the present invention, it is preferable to use a ferrosilicon or silicon carbide raw material having a particle size of 1 ~ 10mm. If the particle size of the raw material is more than 10mm, it is difficult to form into a briquette form and is easily broken due to low strength after molding, and the dissolution rate in the molten metal is sharply lowered, so that the rapid heating reaction cannot be achieved. On the other hand, the raw material particle size is less than 1mm is not preferable in consideration of cost or environmental aspects, such as not only increase the generation of dust during the production, but also requires a separate crushing process.

또한, 상기 카본 분말에 첨가되는 원료가 너무 많으면 결합력이 낮은 카본의 다량 함유로 인해 브리케트 성형이 어렵고 성형후 브리케트의 비중이 슬래그의 비중보다 낮아져 슬래그 위에 뜨게 되어 용탕에 대한 승온 효율이 떨어져 바람직하지 않다. 따라서, 실리콘의 성분으로서, 훼로실리콘을 사용할 경우 카본은 약 5~ 40중량% 정도가 적당하고, 실리콘카바이드를 사용할 경우 카본은 약 5~ 30중량% 정도로 배합함이 적당하다.In addition, if the raw material added to the carbon powder is too large, briquette molding is difficult due to the high content of carbon having a low binding force, and the specific gravity of the briquette after molding is lower than that of the slag, so that it floats on the slag, thereby lowering the temperature raising efficiency for the molten metal. Not. Therefore, as a component of the silicon, when using ferrosilicon, carbon is about 5 to 40% by weight is appropriate, when using silicon carbide is suitable for blending about 5 to 30% by weight of carbon.

상기 훼로실리콘 또는 실리콘카바이드에 카본 분말을 배합하여 브리케트 형태로 제조할 때, 통상적인 방법으로 점결제를 첨가하여 제조한다. 점결제로는 통상 유기계 또는 무기계 점결제이든 상관없으나, 무기계 점결제는 조강에 의한 철강에 무기 물질이 혼힙되어 철강 내의 미량 성분에 영향을 미칠 우려가 있다. 이 경우사전에 정확한 계산에 의하여 조강 조건을 설정해야 한다. 따라서, 이러한 점을 고려할 때 조강 중 노내에서 산화에 의하여 대기중으로 휘산될 수 있는 유기계 점결제를 사용하는 것이 보다 바람직하다.When the carbon powder is blended with the ferrosilicon or silicon carbide to prepare a briquette, the binder is added by a conventional method. As a caking additive, it may be an organic or inorganic caking additive, but an inorganic caking agent may be mixed with an inorganic substance in steel made of crude steel, which may affect trace components in the steel. In this case, the crude steel condition should be set by accurate calculation in advance. Therefore, in consideration of this point, it is more preferable to use an organic type binder which can be volatilized to air by oxidation in a furnace in crude steel.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

발명예(1-6)Inventive Example (1-6)

본 발명에 의한 발열제의 적정 입경을 알아보기 위해 훼로실리콘 및 실리콘카바이드의 입경을 변화시키면서 각각 1mm 정도 크기의 카본 분말을 20중량% 정도와 약간의 전분을 혼합한 후, 브라케트를 제조하고 압축강도 및 용해 속도를 측정하였다. 압축강도는 100g 단위로 제조된 브라케트에 대하여 측정하였으며, 용해속도는 1550℃로 유지되는 100Kg의 탈산된 용탕이 녹아있는 유도용해로에 각각 500g씩 장입하여 시간대별로 용탕중의 Si 양을 측정하여 그 결과를 표1에 나타내었다.In order to determine the proper particle size of the heat generating agent according to the present invention, after mixing the carbon powder having a size of about 1 mm and a little starch while varying the particle diameter of the ferrosisilon and silicon carbide, the bracket was prepared and the compressive strength And dissolution rate was measured. The compressive strength was measured for the brackets manufactured in 100g units, and the dissolution rate was charged into 500g each of the induction furnaces in which 100Kg of deoxidized molten metal maintained at 1550 ° C was dissolved. The results are shown in Table 1.

구분division 훼로실리콘의 입경(mm)Particle diameter of ferrosilicon (mm) 실리콘카바이드의 입경(mm)Silicon carbide particle size (mm) 배합비(중량%)Compounding ratio (% by weight) 압축강도(Kg/㎠)Compressive strength (Kg / ㎠) 투입후 5분후 Si실수율(중량%)Si yield after 5 minutes (weight%) 훼로실리콘Ferrosilicon 실리콘카바이드Silicon carbide 카본Carbon 발명예1Inventive Example 1 1One -- 8080 -- 2020 8282 9797 발명예2Inventive Example 2 55 -- 8080 -- 2020 7676 9797 발명예3Inventive Example 3 1010 -- 8080 -- 2020 5353 9494 발명예4Inventive Example 4 -- 1One -- 8080 2020 8686 9898 발명예5Inventive Example 5 -- 55 -- 8080 2020 7878 9696 발명예6Inventive Example 6 -- 1010 -- 8080 2020 5252 9393

비교예(1-4)Comparative Example (1-4)

훼로실리콘과 실리콘카바이드의 입경을 표2와 같이 변화시킨 것을 제외하고는 발명예와 동일하게 압축강도와 용해속도를 측정하여 그 결과를 표2와 같이 나타내었다.Except that the particle size of the ferrosilicon and silicon carbide was changed as shown in Table 2, the compressive strength and the dissolution rate were measured in the same manner as the invention example, and the results are shown in Table 2.

구분division 훼로실리콘의 입경(mm)Particle diameter of ferrosilicon (mm) 실리콘카바이드의 입경(mm)Silicon carbide particle size (mm) 배합비(중량%)Compounding ratio (% by weight) 압축강도(Kg/㎠)Compressive strength (Kg / ㎠) 투입후 5분후 Si실수율(중량%)Si yield after 5 minutes (weight%) 훼로실리콘Ferrosilicon 실리콘카바이드Silicon carbide 카본Carbon 비교예1Comparative Example 1 1212 -- 8080 -- 2020 3636 8787 비교예2Comparative Example 2 1515 -- 8080 -- 2020 2020 8585 비교예3Comparative Example 3 -- 1212 -- 8080 2020 3434 8888 비교예4Comparative Example 4 -- 1515 -- 8080 2020 1919 8585

표2에 나타난 바와 같이, 원료의 입경 크기가 10mm를 초과하는 비교예(1-4)의 발열제의 경우 발열제의 압축강도가 통상의 제강원료로 사용되는 압축강도(50Kg/㎠)보다 낮아 취급할 때 파손되기 쉽고, 입경이 커서 용해속도가 늦어져 용탕 내에 투입 5분 경과후 Si 실수율이 90중량%에 미치지 못하는 결과를 가져왔다.As shown in Table 2, in the case of the heat generating agent of Comparative Example (1-4) in which the particle size of the raw material exceeded 10 mm, the compressive strength of the heat generating agent was lower than the compressive strength (50 Kg / cm 2) used as a general steelmaking raw material. It was easy to break when the particle size was large, so that the dissolution rate was slowed, resulting in the Si error rate not reaching 90% by weight after 5 minutes in the molten metal.

이에 반하여 표1에 나타난 바와 같이, 입경 크기가 10mm 이하인 원료를 사용하여 제조되는 발명예(1-6)의 발열제의 경우 최소한 압축강도가 50Kg/㎠ 이상이고 용탕 내 투입 5분 경과후의 실리콘 실수율이 적어도 90중량% 이상임을 보이고 있었다.On the contrary, as shown in Table 1, in the case of the heat generating agent of Inventive Example (1-6) manufactured using a raw material having a particle size of 10 mm or less, the silicone error rate after at least 5 kg / cm 2 of compressive strength and 5 minutes in the molten metal was increased. At least 90% by weight.

한편, 입경 크기가 약 1mm 이하인 원료를 사용하는 발열제의 경우 미세 크기로 만들기 위한 파쇄공정이 필요할 뿐만 아니라 분진 발생 등 비용적인 측면과 더불어 환경적인 측면에서도 바람직하지 않다.On the other hand, the heat generating agent using the raw material having a particle size of about 1mm or less is not only necessary for the crushing process to make a fine size, but also in terms of environmental aspects such as cost generation, such as dust generation.

[실시예 2]Example 2

발명예(7-15)Inventive Example (7-15)

원료의 적정한 배합비를 알아보기 위해 입경 크기를 약 3mm로 한 훼로실리콘 및 실리콘카바이드를 사용하여 표3과 같은 배합비로 발열제를 제조하고, 각각의 발열제에 대하여 압축강도, 비중 및 용탕의 승온 정도를 측정하였다. 표3은 그 결과를 보이고 있다. 여기서, 압축강도는 실시예 1과 같이 측정하였다. 그리고, 승온 효율은 100Kg 정도의 탈산되지 않은 용탕을 1550℃로 유지하여 각각의 발열제 약 500g 씩 넣고 5분간 유지후 용탕 온도를 측정하여 Si와 탄소의 산화열에 의한 이론 승온량과 실제 승온량의 비율을 백분율로 표시하였다.In order to find out the proper mixing ratio of raw materials, a heat generating agent was prepared at the mixing ratio as shown in Table 3 using ferrosilicon and silicon carbide having a particle size of about 3 mm, and the compressive strength, specific gravity, and temperature rise of the molten metal were measured for each heating agent. It was. Table 3 shows the results. Here, the compressive strength was measured as in Example 1. In addition, the temperature raising efficiency is about 100g of deoxidized molten metal at 1550 ° C., each about 500g of each heating agent is added, and after 5 minutes, the temperature of the molten metal is measured by the heat of oxidation of Si and carbon. Is expressed as a percentage.

구분division 훼로실리콘의 입경(mm)Particle diameter of ferrosilicon (mm) 실리콘카바이드의 입경(mm)Silicon carbide particle size (mm) 배합비(중량%)Compounding ratio (% by weight) 압축강도(Kg/㎠)Compressive strength (Kg / ㎠) 비중importance 5분후 승온 효율(%)Temperature increase efficiency (%) after 5 minutes 훼로실리콘Ferrosilicon 실리콘카바이드Silicon carbide 카본Carbon 발명예7Inventive Example 7 33 -- 9595 -- 55 9898 3.43.4 6363 발명예8Inventive Example 8 33 -- 9090 -- 1010 9090 3.33.3 6262 발명예9Inventive Example 9 33 -- 8080 -- 2020 8282 3.23.2 6060 발명예10Inventive Example 10 33 -- 7070 -- 3030 7474 3.13.1 5959 발명예11Inventive Example 11 33 -- 6060 -- 4040 5858 2.92.9 5858 발명예12Inventive Example 12 -- 33 -- 9595 55 9696 2.52.5 6262 발명예13Inventive Example 13 -- 33 -- 9090 1010 9191 2.452.45 6060 발명예14Inventive Example 14 -- 33 -- 8080 2020 8686 2.42.4 5656 발명예15Inventive Example 15 -- 33 -- 7070 3030 7373 2.32.3 5656

종래예(1)(2)Conventional example (1) (2)

훼로실리콘(30mm 괴)과 실리콘카바이드(3mm)를 그대로 발열제로 사용한 것을 제외하고는 발명예(7-15)과 동일하게 실험을 행하고, 그 결과를 표4에 나타내었다.Except for using ferrosilicon (30mm ingot) and silicon carbide (3mm) as a heat generating agent, the experiment was conducted in the same manner as in Example (7-15), and the results are shown in Table 4.

비교예(5-7)Comparative Example (5-7)

입경 크기가 1mm인 원료를 사용하여 표4와 같이 배합비를 달리한 것을 제외하고는 발명예(7-15)과 동일하게 실험을 행하였다. 표4에 그 결과를 나타내었다.The experiment was carried out in the same manner as in Inventive Example (7-15), except that the mixing ratio of the raw material having a particle size of 1 mm was changed as shown in Table 4. Table 4 shows the result.

구분division 훼로실리콘의 입경(mm)Particle diameter of ferrosilicon (mm) 실리콘카바이드의 입경(mm)Silicon carbide particle size (mm) 배합비(중량%)Compounding ratio (% by weight) 압축강도(Kg/㎠)Compressive strength (Kg / ㎠) 비중importance 5분후 승온 효율(중량%)Temperature increase efficiency (weight%) after five minutes 훼로실리콘Ferrosilicon 실리콘카바이드Silicon carbide 카본Carbon 종래예1Conventional Example 1 3030 -- 100100 -- -- -- 3.73.7 4848 종래예2Conventional Example 2 33 33 -- 100100 -- -- 2.52.5 4343 비교예5Comparative Example 5 1One -- 5050 -- 5050 2828 2.62.6 5656 비교예6Comparative Example 6 -- 1One -- 6060 4040 4646 2.252.25 5454 비교예7Comparative Example 7 -- 1One -- 5050 5050 2626 2.22.2 5252

표4에 나타난 바와 같이, 훼로실리콘 또는 실리콘카바이드가 조건 범위를 벗어나는 비교예(5-7)의 경우 발열제의 압축강도가 통상 제강원료로 사용되는 강도보다 낮아 취급시 파손되기 쉬워 제강 원료로 사용하기 부적절하였다.As shown in Table 4, in the case of Comparative Example (5-7) in which ferrosilicon or silicon carbide is out of the condition range, the compressive strength of the heat generating agent is lower than the strength normally used as steelmaking raw material, so it is easy to be damaged during handling. It was inappropriate.

또한, 훼로실리콘을 단독으로 사용할 때 입경이 큰 종래예(1)의 경우 쉽게 용해되지 않아 투입후 승온효율이 낮았으며, 입도가 적절하더라도 실리콘카바이드를 단독으로 사용한 종래예(2)의 경우 비중이 작아 대기 중으로 발열량 손실이 많아 승온 효율이 낮음을 알 수 있었다.In addition, in the case of using ferrosilicon alone, the conventional example (1) having a large particle size was not easily dissolved, and thus the temperature raising efficiency was low after the injection.In the case of the conventional example (2) using silicon carbide alone, even if the particle size was appropriate, It was found that the heating efficiency was low due to the large amount of heat generated in the air.

이에 반하여 표3에 나타난 바와 같이, 적절한 조건 범위를 만족하는발명예(7-15)의 경우 브라케트 발열제의 압축강도가 크고 승온 효율도 우수함을 알 수 있었다.On the contrary, as shown in Table 3, in the case of the invention (7-15) that satisfies the appropriate condition range, it was found that the Bracket heating agent had a high compressive strength and an excellent temperature raising efficiency.

상술한 바와 같이, 본 발명에 의한 브라케트 형태의 발열제는 종래의 발열제에 비하여 고강도로 분진 발생이 거의 없고 작업성이 우수할 뿐만 아니라 용탕 내에 투입시 용해 속도가 빨라 승온 효율이 매우 우수하다.As described above, the bracket-type heat generating agent according to the present invention has a high intensity compared to the conventional heat generating agent, has little dust and excellent workability, and has a high dissolution rate when it is added into the molten metal.

Claims (2)

제강공정에서 용탕의 승온을 위해 용탕 내에 첨가되는 발열제에 있어서,In the heat generating agent added in the molten metal to increase the temperature of the molten metal in the steelmaking process, 카본: 5~ 40중량%와 크기가 1~ 10mm인 훼로실리콘: 60~ 95중량%를 포함하고, 브리케트 형태인 용탕 승온용 실리콘-카본계 발열제.Carbon: 5 to 40% by weight of ferrosilicon having a size of 1 to 10mm: 60 to 95% by weight, and a briquette-shaped molten silicon-carbon heating element. 제강공정에서 용탕의 승온을 위해 용탕 내에 첨가되는 발열제에 있어서,In the heat generating agent added in the molten metal to increase the temperature of the molten metal in the steelmaking process, 카본: 5~ 30중량%와 크기가 1~ 10mm인 실리콘카바이드: 70~ 95중량%를 포함하고, 브리케트 형태인 용탕 승온용 실리콘-카본계 발열제.Carbon: Silicon carbide having a temperature of 5 to 30% by weight and silicon carbide having a size of 1 to 10 mm: 70 to 95% by weight, and briquette form.
KR1020010028411A 2001-05-23 2001-05-23 Silicon-carbon Based Briquette for Rising Temperature of Melt KR100554732B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010028411A KR100554732B1 (en) 2001-05-23 2001-05-23 Silicon-carbon Based Briquette for Rising Temperature of Melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010028411A KR100554732B1 (en) 2001-05-23 2001-05-23 Silicon-carbon Based Briquette for Rising Temperature of Melt

Publications (2)

Publication Number Publication Date
KR20020089080A true KR20020089080A (en) 2002-11-29
KR100554732B1 KR100554732B1 (en) 2006-02-24

Family

ID=27706137

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010028411A KR100554732B1 (en) 2001-05-23 2001-05-23 Silicon-carbon Based Briquette for Rising Temperature of Melt

Country Status (1)

Country Link
KR (1) KR100554732B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160090505A (en) 2015-01-22 2016-08-01 이승환 Composition of silicone-silicone carbide based heating agent for iron melt and the manufacturing method thereof
KR20160111092A (en) 2015-03-16 2016-09-26 이승환 Composition of silicone carbide-iron powder and silicone-silicone carbide-iron powder based heating agent for iron melt and the manufacturing methods thereof
KR20240057742A (en) 2022-10-25 2024-05-03 (주)신진기업 iron-containing briquette for heating molten steel using coffee extract residue

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123418B1 (en) * 2009-07-07 2012-03-23 이승환 Silicon-carbon-iron based briquet for iron melt and the method of forming a solid thereof
KR101123494B1 (en) * 2009-07-07 2012-03-23 이승환 Composition of Silicon-carbon-iron based briquet for iron melt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022613A (en) * 1975-08-28 1977-05-10 R. C. Metals, Inc. Metallurgical material and process for treating iron or steel therewith
GB2285061B (en) * 1993-12-21 1997-01-08 Vacmetal Gmbh A method of processing ferrous materials
JPH09235608A (en) * 1996-02-27 1997-09-09 Kobe Steel Ltd Method for discharging residual slag
JP4106724B2 (en) * 1998-01-30 2008-06-25 住友金属工業株式会社 Method for preventing powdered reduced slag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160090505A (en) 2015-01-22 2016-08-01 이승환 Composition of silicone-silicone carbide based heating agent for iron melt and the manufacturing method thereof
KR20160111092A (en) 2015-03-16 2016-09-26 이승환 Composition of silicone carbide-iron powder and silicone-silicone carbide-iron powder based heating agent for iron melt and the manufacturing methods thereof
KR20240057742A (en) 2022-10-25 2024-05-03 (주)신진기업 iron-containing briquette for heating molten steel using coffee extract residue

Also Published As

Publication number Publication date
KR100554732B1 (en) 2006-02-24

Similar Documents

Publication Publication Date Title
FI70199C (en) FREQUENCY REFRIGERATION FOR SILICONUM AND QUARTER OIL COLLECTION
CN102173840A (en) Unburned MgO-Cr3C2-C brick for steelmaking
EP2514269B1 (en) Electrode paste for electrodes in binder-free graphite with hydrocarbon base
KR100554732B1 (en) Silicon-carbon Based Briquette for Rising Temperature of Melt
US4728358A (en) Iron bearing briquet and method of making
KR100406920B1 (en) Silicon-Carbon briquet for increasing temperature of iron melt
KR101123418B1 (en) Silicon-carbon-iron based briquet for iron melt and the method of forming a solid thereof
NL8101195A (en) PROCESS FOR THE MANUFACTURE OF SILICONE AND CARBON-CONTAINING RAW MATERIALS AND USE OF THE RAW MATERIALS.
KR101123494B1 (en) Composition of Silicon-carbon-iron based briquet for iron melt
KR102122009B1 (en) A recarburizing agent for steel manufacture and method for msteelmaking
KR20110124408A (en) Ferroalloy briquette and producing method for the same
RU2710622C1 (en) Briquette for metallurgical production
CN103739290A (en) Silicon carbide product for aluminum electrolysis cell and preparation method thereof
KR20010002349A (en) A substitute for fine coal in copper smelting by CDQ dust
KR970010798B1 (en) Agglomeration method of fine powder using non-coking coal
CN103755347A (en) Preparation method of silicon carbide product for steel pipe heat treatment furnace
Katz et al. Performance of briquetted and lump silicon carbide in cupola operations
KR20230165945A (en) Reducing recarburizing agent for steel manufacturing
KR910006278B1 (en) Insulating materials for laddle-molten steel
SU952820A1 (en) Refractory composition
RU2219450C1 (en) Bed refractory charge for iron-melting gas cupola
RU2241049C1 (en) Batch for producing of metal-cutting briquette
KR19980051191A (en) Manufacturing method of coal using pulverized coal
JPH068452B2 (en) Carburizing material for steelmaking
RU2068000C1 (en) Method of steel heating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130204

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150210

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160215

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170213

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180209

Year of fee payment: 13