KR20020085331A - Process for plating brass-metalloid composite - Google Patents

Process for plating brass-metalloid composite Download PDF

Info

Publication number
KR20020085331A
KR20020085331A KR1020010024798A KR20010024798A KR20020085331A KR 20020085331 A KR20020085331 A KR 20020085331A KR 1020010024798 A KR1020010024798 A KR 1020010024798A KR 20010024798 A KR20010024798 A KR 20010024798A KR 20020085331 A KR20020085331 A KR 20020085331A
Authority
KR
South Korea
Prior art keywords
brass
plating
sic
plating solution
aqueous ammonia
Prior art date
Application number
KR1020010024798A
Other languages
Korean (ko)
Inventor
안재우
구본항
안종관
Original Assignee
안재우
구본항
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안재우, 구본항 filed Critical 안재우
Priority to KR1020010024798A priority Critical patent/KR20020085331A/en
Publication of KR20020085331A publication Critical patent/KR20020085331A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE: A brass-nonmetal composite coating process is provided which not only maintains a unique beautiful color tone, superior electric conductivity and corrosion resistance of brass coating, but also improves mechanical strength and abrasion resistance of a plating layer. CONSTITUTION: The brass-nonmetal composite coating process comprises the process of reacting the plating solution with the aqueous ammonia by adding aqueous ammonia to a plating solution comprising a nonmetallic powder selected from the group consisting of SiC, Al2O3, and a mixture thereof using brass as the anode, wherein concentration of SiC and Al2O3 is 25 to 35 g/L per plating solution, the addition amount of aqueous ammonia is 0.5 to 2 ml/L per plating solution based on 28 % aqueous ammonia, and the brass-nonmetal composite coating process comprises first step in which inactive powder onto which metallic ions are selectively adsorbed is moved to the surface of the cathode by convection current, and the amount of the adsorbed metallic ions determines amount and magnitude of an electric charge to be carried; second step in which the inactive powder is adsorbed onto the surface of the cathode by electrophoresis with the surface of the cathode in a diffusion boundary layer, too fast stirring speed obstructs eutectoid; and third step in which the metallic ions are reduced and occluded into a metal layer that is rapidly grown to the circumference.

Description

황동-비금속 복합도금방법{Process for plating brass-metalloid composite}Process for plating brass-metalloid composite

본 발명은 황동-비금속 복합도금방법에 관한 것으로, 더욱 상세하게는 황동을 양극으로 사용하고, SiC, Al2O3및 이들의 혼합물로 구성된 군에서 선택되는 비금속 분체를 포함하는 도금액에 암모니아수를 첨가하여 반응시키는 것이 특징인 황동-비금속 복합도금방법에 관한 것이다.The present invention relates to a brass-non-metal composite plating method, and more particularly, using a brass as an anode, and adding ammonia water to a plating solution containing a non-metal powder selected from the group consisting of SiC, Al 2 O 3 and mixtures thereof. It relates to a brass-non-metal composite plating method characterized by reacting by.

금속이온과 비금속분체의 복합도금은 금속모재의 표면에 물리적 및 화학적으로 새로운 기능을 부여하는 방법으로, 근래에 들어 그 산업적인 응용에 관심이 집중되고 있다.Composite plating of metal ions and non-metal powders is a method of imparting physically and chemically new functions to the surface of a metal base material. In recent years, attention has been focused on industrial applications.

한편 동도금은 특유의 미려한 색상, 우수한 전기전도성 및 내식성으로 많이 이용되어 왔으나, 기계적 강도 및 내마모성이 낮아 산업적인 응용에 제한이 있었다. 또한, 황동도금은 금과 흡사한 미려한 색상으로 인해 금도금 대용으로 널리 이용되어 왔으나, 밀착성의 문제 및 쉽게 마모가 되는 문제 등으로 개선이 요구되어 왔다.Meanwhile, copper plating has been widely used for its unique beautiful color, excellent electrical conductivity and corrosion resistance, but its mechanical strength and abrasion resistance have limited industrial applications. In addition, brass plating has been widely used as a substitute for gold plating due to the beautiful color similar to gold, but has been required to improve due to problems such as adhesion and easy wear.

최근에는 금속 도금층의 강도 및 내마모성 개선을 위하여 SiC, WC, Al2O3및 SiO2등의 비금속 분체를 함께 도금시켜 일종의 분산강화 효과방법을 통한 연구가 주로 이루어져 왔으며, 이러한 방법은 기존의 분체 제조공정보다 간단하며 경제적인 장점이 있다.Recently, in order to improve the strength and abrasion resistance of the metal plating layer, research has been mainly conducted through a kind of dispersion strengthening effect method by plating non-metal powders such as SiC, WC, Al 2 O 3 and SiO 2 together. It is simpler and more economical than the process.

복합도금의 주요 인자는 사용되는 비금속 분체의 특성과 도금조건 등이다. 비금속 분체의 특성은 크기, 제타포텐셜(zeta potential) 및 표면전압 등이고, 도금조건은 분체의 농도 및 황동도금에서 특히 중요한 첨가제의 특성 등이다. 그러나, 복합도금에 미치는 인자가 너무 많아 전착기구는 아직 확실히 밝혀지지 않은 실정이다. 1972년 Guglielmi는 약한 흡착에 따른 전기장에 의한 강한 흡착으로 비활성 분체가 2단계로 흡착되는 기구를 보고하였고, 1987년 Celis 등이 분체표면에 흡착되어 있는 금속이온이 환원되어 분체가 성장 흡장(occlussion)되는 이론을 제시하였다.The main factors of composite plating are the characteristics of the nonmetallic powder used and the plating conditions. The characteristics of the nonmetallic powders are size, zeta potential and surface voltage, and the plating conditions are the concentration of the powder and the properties of additives which are particularly important in brass plating. However, due to the large number of factors affecting the complex plating, the electrodeposition mechanism is not yet clear. In 1972, Guglielmi reported a mechanism in which inert powder was adsorbed in two stages due to strong adsorption by electric field due to weak adsorption. Presented the theory.

이러한 전착기구에 대한 연구가 수행되었음에도 불구하고, 내마모성에 대한 연구 및 첨가제의 영향에 대한 연구는 거의 수행되지 않아 실제 산업에 응용시 많은 문제점이 있다.Although the research on the electrodeposition mechanism has been carried out, the research on the wear resistance and the effect of the additives are hardly performed, so there are many problems in the practical application.

따라서, 본 발명의 목적은 산업에 응용할 수 있도록 황동도금 특유의 미려한 색상, 우수한 전기전도성 및 내식성을 유지하면서도 도금층의 기계적 강도 및 내마모성을 개선한 황동-비금속의 복합도금방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a brass-nonmetal composite plating method which improves the mechanical strength and wear resistance of the plating layer while maintaining the beautiful color, excellent electrical conductivity and corrosion resistance peculiar to brass plating for industrial application.

도 1은 본 발명의 실시예에 따른 황동-비금속 복합도금의 장치구성도,1 is a device configuration of the brass-non-metal composite plating according to an embodiment of the present invention,

도 2는 비금속 분체의 농도에 따른 표면적 분율을 나타낸 그래프,2 is a graph showing the surface area fraction according to the concentration of nonmetallic powder,

도 3은 Al2O3의 농도에 따른 황동-알루미나 복합도금층을 전자현미경(SEM)으로 촬영한 사진,3 is a photograph taken with an electron microscope (SEM) of the brass-alumina composite plating layer according to the concentration of Al 2 O 3 ,

도 4는 첨가제에 따른 Al2O3의 표면적 분율을 나타낸 그래프,4 is a graph showing the surface area fraction of Al 2 O 3 according to the additive;

도 5는 암모니아수의 첨가에 따른 황동-알루미나 복합도금층을 전자현미경 (SEM)으로 촬영한 사진(a: Al2O340 g/L, b: Al2O340 g/L + NH4OH 1 mL)5 is a photograph taken with an electron microscope (SEM) of a brass-alumina composite plating layer according to the addition of ammonia water (a: Al 2 O 3 40 g / L, b: Al 2 O 3 40 g / L + NH 4 OH 1 mL)

도 6은 비금속 분체의 농도에 따른 마모도를 나타낸 그래프이다.6 is a graph showing the degree of wear according to the concentration of nonmetallic powder.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1: 순환장치2: 교반기1: circulator 2: stirrer

3: 마그네틱바4: 황동양극3: magnetic bar 4: brass anode

5: 음극6: 전원공급장치5: cathode 6: power supply

상기한 목적을 달성하기 위하여, 본 발명은 황동을 양극으로 사용하고, SiC, Al2O3및 이들의 혼합물로 구성된 군에서 선택되는 비금속 분체를 포함하는 도금액에 암모니아수를 첨가하여 반응시키는 것이 특징인 황동-비금속 복합도금방법을 제공한다.In order to achieve the above object, the present invention is characterized in that by using a brass as an anode, by adding ammonia water to the plating solution containing a non-metal powder selected from the group consisting of SiC, Al 2 O 3 and mixtures thereof. Provides a brass-nonmetal composite plating method.

상기 SiC와 Al2O3의 농도는 도금액 1 L에 대하여 25∼35 g/L이며, 상기 암모니아수의 첨가량은 도금액 1 L에 대하여 28% 암모니아수를 기준으로 0.5∼2 mL/L이다. 암모니아수를 첨가하면 도금층의 색상을 미려하게 하지만 과잉(2 mL/L 이상)으로 첨가되면 두가지 색의 도금층(two-toned plate)이 형성되는 등의 문제점이 발생하므로 2 mL/L 이하로 첨가하는 것이 바람직하다.The concentration of SiC and Al 2 O 3 is 25 to 35 g / L with respect to 1 L of the plating liquid, and the amount of the ammonia water added is 0.5 to 2 mL / L based on 28% ammonia with respect to 1 L of the plating liquid. When ammonia water is added, the color of the plating layer is beautiful, but when it is added in excess (more than 2 mL / L), problems such as the formation of two-toned plates are generated. desirable.

우선, 본 발명에 적용되는 복합도금(composite coating)의 원리를 간단하게 설명하면 다음과 같다.First, the principle of composite coating applied to the present invention will be briefly described as follows.

전해액에 현탁되어 있는 분체에 전기장이 가해지면, 분체는 가속되며 이때의 이동속도는 다음의 수학식 1과 같다.When an electric field is applied to the powder suspended in the electrolyte, the powder is accelerated, and the moving speed at this time is expressed by Equation 1 below.

U = v/EU = v / E

여기서, U: 전기영동속도(eletrophoretic mobility, ㎛·㎝/V·s)Where U: eletrophoretic mobility (μm · cm / V · s)

v: 종말 속도(terminal velocity, ㎛/s)v: terminal velocity (μm / s)

E: 전기장(electric field, V/㎝)E: electric field (V / cm)

이때의 구동력은 용매와 입자주변의 전단면(shear plane)과의 전압차이며, 이 전압차를 제타포텐셜(zeta potential)이라고 한다. 상기 제타포텐셜은 전기영동의 구동력으로서, 다음의 수학식 2로 표현된다.The driving force at this time is the voltage difference between the solvent and the shear plane around the particles, and this voltage difference is called zeta potential. The zeta potential is a driving force of electrophoresis and is represented by the following Equation 2.

ζ= ε·E/(v·η)ζ = εE / (vη)

여기서, ζ: 제타 포텐셜(mV)Where ζ: zeta potential (mV)

ε: 유전체 상수(dielectric constant)ε: dielectric constant

E : 전기장(electric field, V/cm)E: electric field (V / cm)

η: 점도(viscosity)η: viscosity

또한, 복합도금되는 과정은 Guglielmi와 Celis등이 제시한 3단계에 의해 비금속 분체가 공석된다고 알려져 있다. 1단계에서 금속이온이 선택흡착된 비활성분체가 대류에 의해 음극 표면으로 이동하며, 흡착된 금속이온의 양이 운반될 전하의 양과 크기를 결정한다. 2단계에서 비활성분체가 확산경계층에서 음극표면과 전기영동에 의해 음극표면에 흡착하게 된다. 이 단계에서 너무 빠른 교반속도는 공석을 방해한다고 보고되고 있다. 3단계에서는 금속이온이 환원되며, 주변으로 빠르게 성장하는 금속층에 흡장되는 단계이다.In addition, the process of complex plating is known to be the vacancy of the non-metal powder by the three steps proposed by Guglielmi and Celis. In the first step, the inert powder in which metal ions are selectively adsorbed is moved to the surface of the cathode by convection, and the amount of adsorbed metal ions determines the amount and size of charge to be carried. In the second step, the inert powder is adsorbed on the cathode surface by electrophoresis and the cathode surface in the diffusion boundary layer. Too fast agitation at this stage is reported to impede vacancies. In the third step, metal ions are reduced and occluded in a metal layer growing rapidly around.

이하, 본 발명의 구체적인 구성을 실시예를 들어 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the specific structure of this invention is described in detail using an Example.

실시예 1: 장치 및 방법Example 1: Apparatus and Method

황동-실리카(brass-SiC) 또는 황동-알루미나(brass-Al2O3) 복합도금 실험은 전형적인 수직 셀(vertical cell)에서 수행되었으며, 그 구성은 도 1과 같다. 본 발명의 실시예에서 사용된 SiC 및 Al2O3의 분체 특성은 각각 표 1 및 2와 같다.Brass-SiC or brass-Al 2 O 3 composite plating experiments were performed in a typical vertical cell, the configuration of which is shown in FIG. 1. The powder characteristics of SiC and Al 2 O 3 used in the examples of the present invention are shown in Tables 1 and 2, respectively.

알루미나의 분체 특성Powder Characteristics of Alumina 결정형Crystalline form 평균크기Average size 순도water α-Al2O3 α-Al 2 O 3 2∼3 ㎛2-3 μm 99.9%99.9%

실리카의 분체 특성Powder Characteristics of Silica 결정형Crystalline form 평균크기Average size 순도water 비면적(BET)Specific Area (BET) α-SiCα-SiC 2∼3 ㎛2-3 μm 〉99.99%〉 99.99%

음극은 6 cm × 5 cm 크기의 구리판을 사용하였고, 전류는 전원공급장치 (HP6642A, Hewlett Packard)로 조절하였다. 온도는 순환장치(DTRC-620, JEIO TECH)로 일정하게 유지하였다.The negative electrode used a copper plate of 6 cm × 5 cm size, the current was controlled by a power supply (HP6642A, Hewlett Packard). The temperature was kept constant with a circulation device (DTRC-620, JEIO TECH).

음극판을 상온에서 1.5 A 정전류로 30초간 음극 탈지를 행한 다음 증류수로 수세한 뒤 55℃, 1.5 A 정전류로 5분간 광택니켈도금을 행하였다. 음극탈지시 SUS 304를, 광택니켈 도금시에 니켈을 양극으로 사용하였다. 실험에 사용된 황동도금욕은 시판되고 있는 황동염(brass salt)을 증류수에 넣어 150 g/L의 농도로 만들어 사용하였다. 황동-실리카, 황동-알루미나 복합도금은 45℃에서 1 A 정전류로 3분간 수행하였고, 양극으로는 황동을 사용하였다. 분체를 균일하게 현탁시키고 침강을 방지하기 위하여 전해액을 마그네틱바를 이용하여 360 rpm의 속도로 교반하였다. 도 1은 본 발명의 실시예에 따른 황동-비금속 복합도금의 장치구성도를 도시한 것이다.The negative electrode plate was subjected to negative electrode degreasing for 30 seconds at 1.5 A constant current at room temperature, washed with distilled water, and then polished nickel plated at 55 ° C. and 1.5 A constant current for 5 minutes. SUS 304 was used as the cathode degreasing and nickel was used as the anode during the nickel plating. The brass plating bath used in the experiment was used to make a commercially available brass salt (brass salt) in distilled water to a concentration of 150 g / L. Brass-silica, brass-alumina composite plating was performed for 3 minutes at 1 A constant current at 45 ℃, brass was used as the anode. In order to uniformly suspend the powder and prevent sedimentation, the electrolyte was stirred at a speed of 360 rpm using a magnetic bar. Figure 1 shows the device configuration of the brass-non-metal composite plating according to an embodiment of the present invention.

도금층내에 공석된 SiC, Al2O3분체의 분포는 전자현미경(SEM, JEOL-5310)으로 관찰하였으며, 표면에 공석된 양은 영상분석기(image analyzer)를 통하여 분석하였다. 복합도금층의 기계적 물성을 조사하기 위하여 왕복마모시험기를 이용하여내마모시험을 수행하였다. 본 발명 실시예에 사용된 내마모시험기의 시험조건은 표 3과 같다. 복합도금층의 내마모성은 시험 전후의 중량변화를 측정하여 확인하였다.The distribution of SiC and Al 2 O 3 powders in the plating layer was observed by an electron microscope (SEM, JEOL-5310), and the amount of vacancy on the surface was analyzed by an image analyzer. In order to investigate the mechanical properties of the composite plating layer, abrasion resistance test was performed using a reciprocating wear tester. Test conditions of the wear tester used in the Examples of the present invention are shown in Table 3. The wear resistance of the composite plating layer was confirmed by measuring the weight change before and after the test.

내마모 시험조건Wear test condition 주기속도Cycle speed 60 DS/min60 DS / min 부하Load 3 kg3 kg 마모종이Wear paper 15 ㎛ Al2O3 15 μm Al 2 O 3 마모면적Wear area 30 ×21 mm30 × 21 mm 주기수Frequency 100100

실시예 2: 도금액 중의 SiC 및 AlExample 2: SiC and Al in Plating Solution 22 OO 33 농도의 영향Influence of concentration

도금액 중의 SiC와 Al2O3분체농도의 영향을 조사하기 위하여 SiC와 Al2O3농도를 10∼40 g/L 까지 변화시키면서 도금을 수행한 후에 도금층 내의 공석된 SiC와 Al2O3의 양을 측정하였다. 도 2는 비금속 분체의 농도에 따른 표면적 분율을 나타낸 그래프로서, SiC의 경우 농도가 증가함에 따라 공석되는 SiC의 양이 증가하였고, 도금액 중의 농도가 30 g/L 일때 표면적 분율로 약 9.8%까지 증가하여 최대 공석량을 기록하였다. 이러한 이유는 SiC 농도가 증가하면 확산 경계층에 도달하는 분체의 양이 증가하여 더 많은 양의 SiC가 공석되기 때문이다. 도금액 중의 농도가 30 g/L 이상에서는 공석량이 더이상 증가하지 않았으며, 이러한 이유는 농도가 높아질수록 현탁액의 점도가 증가하여 전해액 중의 분체들이 충분한 교반되지 않았기 때문인 것으로 사료되었다.The amount of SiC and Al 2 O 3 concentration of 10~40 g / L while changing the vacancy in the plated layer after performing a plating SiC and Al 2 O 3 up to investigate the effects of SiC and Al 2 O 3 powder concentration in the plating solution Was measured. Figure 2 is a graph showing the surface area fraction according to the concentration of non-metallic powder, in the case of SiC the amount of vaccinated SiC increased as the concentration was increased, the surface area fraction is increased to about 9.8% when the concentration in the plating solution is 30 g / L The maximum vacancy was recorded. This is because as the SiC concentration increases, the amount of powder reaching the diffusion boundary layer increases and more SiC is vacant. The amount of vacancies did not increase any more at the concentration of 30 g / L or more. This was because the viscosity of the suspension increased with increasing concentration, and the powders in the electrolyte were not sufficiently stirred.

Al2O3의 경우 농도가 증가함에 따라 공석되는 Al2O3의 양이 표면적 분율로 약 2%까지 증가하였고, 30 g/L 이상에서는 증가하지 않았다. 도금액 중의 농도가 30 g/L 일때 최대 공석량을 기록하였다. Al2O3가 SiC보다 더 적은 양이 공석되는 이유는 SiC의 PZC(point of zero charge)가 Al2O3보다 pH로 약 2 정도 낮아 더 음의 값을 띄며, 이러한 영향으로 분체 표면에 흡착되는 금속이온의 양이 증가하면서 음극으로 더 많이 이동되기 때문인 것으로 사료되며, 이러한 결과는 Song 및 Celis의 연구에서도 확인할 수 있다.In the case of Al 2 O 3 , as the concentration increased, the amount of vaccinated Al 2 O 3 increased to about 2% by surface area fraction, but did not increase above 30 g / L. The maximum amount of vacancy was recorded when the concentration in the plating liquid was 30 g / L. The reason why Al 2 O 3 is less vacant than SiC is because the point of zero charge (PZC) of SiC is lower by about 2 to pH than Al 2 O 3, which is more negative. This may be due to the increase in the amount of metal ions to be moved to the cathode, which can be confirmed by the work of Song and Celis.

도 3은 Al2O3의 농도에 따른 황동-알루미나 복합도금층을 전자현미경(SEM)으로 촬영한 사진으로, Al2O3의 농도 변화에 따른 공석된 Al2O3양의 변화를 SEM 사진으로 도시한 것이다. 도 3에서 확인할 수 있는 바와 같이, Al2O3의 농도가 10 g/L에서 30 g/L까지는 공석된 Al2O3의 양이 증가된 것을 확인할 수 있으나, 40 g/L에서는 약간 감소되었음을 확인할 수 있다.Brass according to the concentration of 3 is Al 2 O 3 - alumina composite plated layer as a picture taken by an electron microscope (SEM), the vacancy of Al 2 O 3 amount of change with the concentration of Al 2 O 3 by SEM photograph It is shown. As can be seen from Figure 3, that the concentration of Al 2 O 3 10 g / in L by 30 g / L, the amount of vacancies Al 2 O 3 can confirm that the increased. However, 40 g / L in a slight decrease You can check it.

실시예 3: 첨가제의 영향Example 3: Influence of Additives

복합도금에 미치는 첨가제의 영향을 조사하기 위하여 전해액 중 40 g/L Al2O3이외에 암모니아수(28%)를 1 mL/L의 농도가 되게 첨가한 경우를 비교하여 도금층내의 공석된 Al2O3의 양을 확인하였다.To investigate the effect of additives on the composite plating, compared to the case of adding 40 g / L Al 2 O 3 to the ammonia solution (28%) in a concentration of 1 mL / L, the vaccinated Al 2 O 3 in the plating layer The amount of was confirmed.

도 4는 첨가제에 따른 Al2O3의 표면적 분율을 나타낸 그래프로서, 암모니아수 1 mL/L를 첨가한 경우에는 도금층 내에 Al2O3의 양이 5%까지 공석되어 Al2O3단독일 때와 비교하면 Al2O3의 공석량이 2∼3배 증가한 것이었다. 황동도금욕에 암모니아수를 첨가할 경우 음극전류 효율이 증가하여 음극에 도금되는 금속이온이 증가하므로 보다 많은 양의 분체가 도금됨을 확인하였다.4 is a graph showing the surface area fraction of Al 2 O 3 according to the additive, when 1 mL / L of ammonia water is added, the amount of Al 2 O 3 in the plating layer is vacancy up to 5% and when Al 2 O 3 alone In comparison, the amount of vacancy in Al 2 O 3 was increased 2-3 times. When the ammonia water was added to the brass plating bath, the cathode current efficiency was increased, so that the metal ion plated on the cathode was increased, so that a larger amount of powder was plated.

도 5는 암모니아수의 첨가에 따른 황동-알루미나 복합도금층을 전자현미경 (SEM)으로 촬영한 사진으로서, 전해액 중 Al2O3이외에 암모니아수(1 mL/L)를 첨가하지 않은 경우와 첨가한 경우에 대한 결과를 SEM 사진으로 도시한 것이다. Al2O3단독의 복합도금보다 암모니아를 첨가한 경우에서 Al2O3이 더 많이 공석되었음을 확인하였다.5 is a photograph taken with an electron microscope (SEM) of the brass-alumina composite plated layer according to the addition of ammonia water, and the case where the ammonia water (1 mL / L) was not added in addition to Al 2 O 3 in the electrolyte and the case where it was added The results are shown in SEM photographs. It was confirmed that Al 2 O 3 was more vaccinated when ammonia was added than Al 2 O 3 alone.

한편 황동-실리카 복합도금의 경우에도 도금액에 암모니아를 첨가할 경우 SiC의 공석량이 증가함을 확인하였다.On the other hand, even in the case of brass-silica composite plating, it was confirmed that the amount of vacancy in SiC increased when ammonia was added to the plating solution.

실시예 4: 도금층의 내마모 시험Example 4: Wear Resistance Test of Plating Layer

도 6은 비금속 분체의 농도에 따른 마모도를 나타낸 그래프로서, 도금액 중의 SiC 및 Al2O3의농도를 0∼40 g/L로 변화시키면서 도금한 시편을 왕복마모시험기를 이용하여 시편의 전후 중량변화를 측정한 결과를 나타낸다. 여기서, 중량변화가 클수록 마모성이 커짐을 의미한다.6 is a graph showing the degree of wear according to the concentration of the non-metal powder, the weight of the specimen before and after the plated while changing the concentration of SiC and Al 2 O 3 in the plating solution from 0 to 40 g / L using a reciprocating wear tester The result of the measurement is shown. Here, the greater the weight change, the greater the wearability.

황동도금층에 SiC를 복합도금한 경우에 SiC의 높은 경도로 인하여 도금층의 내마모성이 증가하며, 도금층의 SiC의 농도가 증가할수록 내마모성이 더욱 증가함을 확인하였다. 본 실시예의 조건에서는 40 g/L SiC의 경우 내마모 시험 후 17% 정도의 중량 변화가 감소하여 내마모성이 향상되었다.In the case of SiC composite plating on the brass plated layer, the wear resistance of the plated layer was increased due to the high hardness of SiC, and the wear resistance was further increased as the concentration of SiC in the plated layer was increased. Under the conditions of the present example, the weight change of about 17% was reduced after the abrasion resistance test in the case of 40 g / L SiC to improve wear resistance.

또한, 황동도금층에 Al2O3을 복합도금한 경우에도 역시 SiC와 마찬가지로 도금액 중의 Al2O3의 농도가 증가할수록 내마모성이 증가함을 확인하였다. 본 실시예의 조건에서는 40 g/L Al2O3의 경우 내마모 시험 전후 중량 변화가 약 29% 감소하여 내마모성이 최대로 향상되는 효과를 얻었다.In addition, even when Al 2 O 3 composite plating on the brass plating layer, it was also confirmed that the wear resistance increased as the concentration of Al 2 O 3 in the plating solution increased, similarly to SiC. Under the conditions of the present example, in the case of 40 g / L Al 2 O 3, the weight change before and after the abrasion test was reduced by about 29%, thereby obtaining the effect of maximally improving wear resistance.

이상 상세하게 설명한 바와 같이, 본 발명은 황동-비금속의 복합도금방법을 제공함으로써 황동도금 특유의 미려한 색상, 우수한 전기전도성 및 내식성을 유지하면서도 도금층의 기계적 강도 및 내마모성을 개선할 수 있는 효과가 있으며, 따라서 실제 도금산업에 있어 매우 유용한 특징이 있다.As described in detail above, the present invention has the effect of improving the mechanical strength and wear resistance of the plating layer while maintaining the beautiful color, excellent electrical conductivity and corrosion resistance unique to brass plating by providing a composite plating method of brass-nonmetal, Therefore, there is a very useful feature in the actual plating industry.

Claims (3)

황동을 양극으로 사용하고, SiC, Al2O3및 이들의 혼합물로 구성된 군에서 선택되는 비금속 분체를 포함하는 도금액에 암모니아수를 첨가하여 반응시키는 것을 특징으로 하는 황동-비금속 복합도금방법.A brass-nonmetal composite plating method comprising using brass as an anode and adding ammonia water to a plating solution containing a nonmetal powder selected from the group consisting of SiC, Al 2 O 3, and mixtures thereof. 제 1항에 있어서, 상기 SiC와 Al2O3의 농도는 25∼35 g/L인 것을 특징으로 하는 방법.The method of claim 1, wherein the concentration of SiC and Al 2 O 3 is 25 to 35 g / L. 제 1항에 있어서, 상기 암모니아수의 첨가량은 28% 암모니아수를 기준으로 0.5∼2 mL/L인 것을 특징으로 하는 방법.The method of claim 1, wherein the amount of the ammonia water added is 0.5 to 2 mL / L based on 28% ammonia water.
KR1020010024798A 2001-05-08 2001-05-08 Process for plating brass-metalloid composite KR20020085331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010024798A KR20020085331A (en) 2001-05-08 2001-05-08 Process for plating brass-metalloid composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010024798A KR20020085331A (en) 2001-05-08 2001-05-08 Process for plating brass-metalloid composite

Publications (1)

Publication Number Publication Date
KR20020085331A true KR20020085331A (en) 2002-11-16

Family

ID=27703990

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010024798A KR20020085331A (en) 2001-05-08 2001-05-08 Process for plating brass-metalloid composite

Country Status (1)

Country Link
KR (1) KR20020085331A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486513A (en) * 1981-03-30 1984-12-04 Nippon Mining Co., Ltd. Process for producing rhodium-plated article with black color and wear resistance
JPH02115396A (en) * 1988-10-21 1990-04-27 Heijiro Tarumoto Composite plating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486513A (en) * 1981-03-30 1984-12-04 Nippon Mining Co., Ltd. Process for producing rhodium-plated article with black color and wear resistance
JPH02115396A (en) * 1988-10-21 1990-04-27 Heijiro Tarumoto Composite plating method

Similar Documents

Publication Publication Date Title
Li et al. Preparation of Ni-W/SiC nanocomposite coatings by electrochemical deposition
Stankovic et al. Electrodeposited composite coatings of copper with inert, semiconductive and conductive particles
Atapour et al. The wear characteristics of CeO2 containing nanocomposite coating made by aluminate-based PEO on AM 50 magnesium alloy
Shrestha et al. Composite coatings of nickel and ceramic particles prepared in two steps
JP4806808B2 (en) Composite plating material and method for producing the same
JP4862192B2 (en) Manufacturing method of composite plating material
EP1609888B1 (en) Method for producing a composite plated product
Sabri et al. The effect of sodium dodecyl sulfate surfactant on the electrodeposition of Ni-alumina composite coatings
Feng et al. Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field
CN112368422A (en) Silver electrolyte for depositing a silver dispersion layer and a contact surface with a silver dispersion layer
CN106702464A (en) Electrolyte for preparing black ceramic film layer through micro-arc oxidation for magnesium alloy, and method
CN107815720B (en) Self-supporting reduced graphene oxide coating and preparation method and application thereof
JP5625166B2 (en) Composite plating material and method for producing the same
RU2569259C1 (en) Method for obtaining protective polymer-containing coatings on metals and alloys
Datta et al. Transpassive dissolution of 420 stainless steel in concentrated acids under electropolishing conditions
Medelien et al. The influence of artificial diamond additions on the formation and properties of an electroplated copper metal matrix coating
KR20020085331A (en) Process for plating brass-metalloid composite
JP2008088491A (en) Composite plating material and method of manufacturing the same
KR100709290B1 (en) Composite layer including metal and inorganic powders and method for manufacturing the same
SU398046A1 (en)
Lau et al. Effect of charging agents on electrophoretic deposition of titanium particles
KR20140128061A (en) Composition for metal surface treatment comprising ceramic powerand metal surface treatment method using the same
CN108251871B (en) Method for electrodepositing Al-Pt alloy in imidazole type ionic liquid
US3506555A (en) Electrodeposition of polytetrafluoroethylene on metals
Wei et al. Influence of Al 2 O 3 sol concentration on the microstructure and mechanical properties of Cu–Al 2 O 3 composite coatings

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application