JP4862192B2 - Manufacturing method of composite plating material - Google Patents
Manufacturing method of composite plating material Download PDFInfo
- Publication number
- JP4862192B2 JP4862192B2 JP2005284303A JP2005284303A JP4862192B2 JP 4862192 B2 JP4862192 B2 JP 4862192B2 JP 2005284303 A JP2005284303 A JP 2005284303A JP 2005284303 A JP2005284303 A JP 2005284303A JP 4862192 B2 JP4862192 B2 JP 4862192B2
- Authority
- JP
- Japan
- Prior art keywords
- silver
- carbon particles
- composite plating
- composite
- plating solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
- C25D15/02—Combined electrolytic and electrophoretic processes with charged materials
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/46—Electroplating: Baths therefor from solutions of silver
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
本発明は、複合めっき材の製造方法に関し、特に、銀層中に炭素粒子を含有する複合材からなる皮膜が素材上に形成され、スイッチやコネクタなどの接点や端子部品などの材料として使用される複合めっき材の製造方法に関する。 The present invention relates to a method for producing a composite plating material, and in particular, a film made of a composite material containing carbon particles in a silver layer is formed on the material and used as a material for contacts such as switches and connectors and terminal parts. The present invention relates to a method for producing a composite plating material.
従来、スイッチやコネクタなどの接点や端子部品などの材料として、摺動過程における加熱による銅や銅合金などの導体素材の酸化を防止するために、導体素材に銀めっきを施した銀めっき材が使用されている。 Conventionally, as a material for contacts and terminal parts such as switches and connectors, a silver plating material in which the conductor material is silver-plated to prevent oxidation of the conductor material such as copper and copper alloy due to heating in the sliding process has been used. in use.
しかし、銀めっきは、軟質で摩耗し易く、一般に摩擦係数が高いため、摺動により剥離し易いという問題がある。この問題を解消するため、黒鉛粒子を銀マトリックス中に分散させた複合材の皮膜を電気めっきにより導体素材上に形成して耐摩耗性を向上させる方法が提案されている(例えば、特許文献1参照)。また、黒鉛粒子の分散に適した湿潤剤が添加されためっき浴を使用することにより、黒鉛粒子を含む銀めっき皮膜を製造する方法が提案されている(例えば、特許文献2参照)。さらに、ゾル−ゲル法によって炭素粒子を金属酸化物などでコーティングして、銀と炭素粒子の複合めっき液中における炭素粒子の分散性を高め、めっき皮膜中に複合化する炭素粒子の量を増大する方法が提案されている(例えば、特許文献3参照)。 However, silver plating is soft and easy to wear, and generally has a high coefficient of friction, and therefore has a problem that it is easily peeled off by sliding. In order to solve this problem, a method of improving wear resistance by forming a composite film in which graphite particles are dispersed in a silver matrix on a conductor material by electroplating has been proposed (for example, Patent Document 1). reference). In addition, a method for producing a silver plating film containing graphite particles by using a plating bath to which a wetting agent suitable for the dispersion of graphite particles is added has been proposed (for example, see Patent Document 2). Furthermore, the carbon particles are coated with a metal oxide or the like by a sol-gel method to increase the dispersibility of the carbon particles in the composite plating solution of silver and carbon particles, and increase the amount of carbon particles to be combined in the plating film. A method has been proposed (see, for example, Patent Document 3).
しかし、特許文献1〜3の方法により製造された複合めっき材は、摩擦係数が比較的高く、耐摩耗性が比較的低いため、接点や端子の高寿命化に対応することができないという問題があり、特許文献1〜3の方法により製造された複合めっき材よりも炭素粒子の含有量や表面の炭素粒子の量を増大させて、さらに優れた耐摩耗性の複合めっき材を提供することが望まれている。 However, the composite plating material manufactured by the methods of Patent Documents 1 to 3 has a relatively high coefficient of friction and a relatively low wear resistance, and therefore cannot cope with a long life of contacts and terminals. Yes, it is possible to increase the content of carbon particles and the amount of carbon particles on the surface of the composite plating material produced by the methods of Patent Documents 1 to 3, and to provide a further excellent wear-resistant composite plating material It is desired.
そのため、本発明者らは、酸化処理を行った炭素粒子と銀マトリックス配向調整剤とを添加した銀めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる皮膜が素材上に形成され、炭素粒子の含有量および表面の炭素粒子の量が多く、摩擦係数が低く且つ耐摩耗性に優れた複合めっき材を製造する方法を提案している(特願2005−195678号)。 Therefore, the present inventors have carried out electroplating using a silver plating solution to which oxidized carbon particles and a silver matrix alignment regulator are added, whereby a composite material containing carbon particles in a silver layer. We propose a method for producing a composite plating material in which a coating film made of is formed on a material, has a high carbon particle content and a large amount of carbon particles on the surface, has a low coefficient of friction, and is excellent in wear resistance (special Application 2005-195678).
しかし、特願2005−195678号に提案された方法では、複合めっき材の生産性を向上させるためにめっきの際の電流密度を高くすると、複合めっき材の耐摩耗性が低下するという問題がある。 However, in the method proposed in Japanese Patent Application No. 2005-195678, if the current density during plating is increased in order to improve the productivity of the composite plating material, there is a problem that the wear resistance of the composite plating material decreases. .
したがって、本発明は、このような従来の問題点に鑑み、銀めっき液に酸化処理を行った炭素粒子と銀マトリックス配向調整剤とを添加した複合めっき液を使用して、銀層中に炭素粒子を含有する複合材からなる皮膜が素材上に形成された複合めっき材を製造する方法において、めっきの際の電流密度を高くしても複合めっき材の耐摩耗性の低下を防止することができる、複合めっき材の製造方法を提供することを目的とする。 Therefore, in view of such a conventional problem, the present invention uses a composite plating solution in which carbon particles oxidized with a silver plating solution and a silver matrix alignment modifier are used, and carbon is contained in the silver layer. In a method of manufacturing a composite plating material in which a film made of a composite material containing particles is formed on a material, it is possible to prevent a decrease in wear resistance of the composite plating material even if the current density during plating is increased. An object of the present invention is to provide a method for producing a composite plating material.
本発明者らは、上記課題を解決するために鋭意研究した結果、銀めっき液に酸化処理を行った炭素粒子と銀マトリックス配向調整剤とを添加した複合めっき液を使用して、銀層中に炭素粒子を含有する複合材からなる皮膜が素材上に形成された複合めっき材を製造する方法において、複合めっき液中の遊離シアンに対する銀のモル比を調整することにより、めっきの際の電流密度を高くしても複合めっき材の耐摩耗性の低下を防止することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the inventors of the present invention have used a composite plating solution obtained by adding carbon particles that have been subjected to an oxidation treatment to a silver plating solution and a silver matrix alignment regulator, in a silver layer. In the method of manufacturing a composite plating material in which a coating made of a composite material containing carbon particles is formed on the material, the current during plating is adjusted by adjusting the molar ratio of silver to free cyan in the composite plating solution. It has been found that even if the density is increased, the wear resistance of the composite plating material can be prevented from being lowered, and the present invention has been completed.
すなわち、本発明による複合めっき材の製造方法は、銀めっき液に酸化処理を行った炭素粒子と銀マトリックス配向調整剤とを添加した複合めっき液を使用して、銀層中に炭素粒子を含有する複合材からなる皮膜が素材上に形成された複合めっき材を製造する方法において、複合めっき液中の遊離シアンに対する銀のモル比を0.7以上、好ましくは0.7〜1.3に調整することを特徴とする。この複合めっき材の製造方法において、銀マトリックス配向調整剤が、セレンイオンを含むのが好ましく、セレノシアン酸カリウムであるのがさらに好ましい。また、複合めっき液中の銀マトリックス配向調整剤の濃度を5〜20mg/Lに調整するのが好ましい。さらに、電流密度1〜3A/dm2でめっきを行うことにより皮膜を形成するのが好ましい。 That is, the method for producing a composite plating material according to the present invention uses a composite plating solution obtained by adding carbon particles oxidized to a silver plating solution and a silver matrix alignment modifier, and contains carbon particles in the silver layer. In the method for producing a composite plating material in which a film made of a composite material is formed on the material, the molar ratio of silver to free cyan in the composite plating solution is 0.7 or more, preferably 0.7 to 1.3. It is characterized by adjusting. In this method for producing a composite plating material, the silver matrix alignment regulator preferably contains selenium ions, and more preferably potassium selenocyanate. Moreover, it is preferable to adjust the density | concentration of the silver matrix orientation regulator in a composite plating solution to 5-20 mg / L. Further, it is preferable to form a film by performing plating at a current density. 1-3A / dm 2.
また、本発明による複合めっき液は、素材を銀めっきするための銀めっき液と、この銀めっき液に添加された炭素粒子および銀マトリックス配向調整剤とからなる複合めっき液であって、炭素粒子が酸化処理を行った炭素粒子であり、複合めっき液中の遊離シアンに対する銀のモル比が0.7以上であることを特徴とする。 The composite plating solution according to the present invention is a composite plating solution comprising a silver plating solution for silver plating of a material, carbon particles added to the silver plating solution, and a silver matrix alignment modifier, and the carbon particles Are oxidized carbon particles, and the molar ratio of silver to free cyan in the composite plating solution is 0.7 or more.
本発明によれば、銀めっき液に酸化処理を行った炭素粒子と銀マトリックス配向調整剤とを添加した複合めっき液を使用して、銀層中に炭素粒子を含有する複合材からなる皮膜が素材上に形成された複合めっき材を製造する方法において、めっきの際の電流密度を高くしても複合めっき材の耐摩耗性の低下を防止することができるので、生産性を向上させることができる。また、この複合めっき材は、スイッチやコネクタなどの端子の高寿命化に十分に対応可能な材料として使用することができる。 According to the present invention, a coating composed of a composite material containing carbon particles in a silver layer is obtained using a composite plating solution in which carbon particles subjected to oxidation treatment in a silver plating solution and a silver matrix alignment regulator are added. In the method of manufacturing the composite plating material formed on the material, it is possible to prevent the deterioration of the wear resistance of the composite plating material even if the current density at the time of plating is increased. it can. Moreover, this composite plating material can be used as a material that can sufficiently cope with the extension of the service life of terminals such as switches and connectors.
本発明による複合めっき材の製造方法の実施の形態では、銀めっき液に酸化処理を行った炭素粒子と銀マトリックス配向調整剤とを添加した複合めっき液中の遊離シアンに対する銀のモル比(銀/遊離シアンのモル比)を0.7以上、好ましくは0.7〜1.3に調整するとともに、好ましくは、複合めっき液中の銀マトリックス配向調整剤の量を5〜20mg/Lに調整し、この複合めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる皮膜を素材上に形成する。 In the embodiment of the method for producing a composite plating material according to the present invention, the molar ratio of silver to free cyan in the composite plating solution in which carbon particles subjected to oxidation treatment and a silver matrix alignment modifier are added to the silver plating solution (silver / Molar ratio of free cyan) is adjusted to 0.7 or more, preferably 0.7 to 1.3, and preferably the amount of the silver matrix alignment regulator in the composite plating solution is adjusted to 5 to 20 mg / L. Then, by performing electroplating using this composite plating solution, a film made of a composite material containing carbon particles in the silver layer is formed on the material.
本発明による複合めっき材の製造方法の実施の形態では、炭素粒子を銀めっき液に添加する前に、酸化処理により炭素粒子の表面に吸着している親油性有機物を除去する。このような親油性有機物として、アルカンやアルケンなどの脂肪酸炭化水素や、アルキルベンゼンなどの芳香族炭化水素が含まれる。 In the embodiment of the method for producing a composite plating material according to the present invention, before adding the carbon particles to the silver plating solution, the lipophilic organic substance adsorbed on the surface of the carbon particles is removed by oxidation treatment. Such lipophilic organic substances include fatty acid hydrocarbons such as alkanes and alkenes, and aromatic hydrocarbons such as alkylbenzenes.
炭素粒子の酸化処理として、湿式酸化処理の他、O2ガスなどによる乾式酸化処理を使用することができるが、量産性の観点から湿式酸化処理を使用するのが好ましく、湿式酸化処理によって表面積が大きい炭素粒子を均一に処理することができる。 As the oxidation treatment of the carbon particles, a dry oxidation treatment using O 2 gas or the like can be used in addition to the wet oxidation treatment, but it is preferable to use the wet oxidation treatment from the viewpoint of mass productivity, and the surface area is increased by the wet oxidation treatment. Large carbon particles can be treated uniformly.
湿式酸化処理の方法としては、導電塩を含む水中に炭素粒子を懸濁させた後に陰極や陽極となる白金電極などを挿入して電気分解を行う方法や、炭素粒子を水中に懸濁させた後に適量の酸化剤を添加する方法などを使用することができるが、生産性を考慮すると後者の方法を使用するのが好ましく、水中に添加する炭素粒子の量を1〜20重量%にするのが好ましい。酸化剤としては、硝酸、過酸化水素、過マンガン酸カリウム、過硫酸カリウム、次亜塩素酸ナトリウムなどの酸化剤を使用することができる。炭素粒子に付着している親油性有機物は、添加された酸化剤により酸化されて水に溶けやすい形態になり、炭素粒子の表面から適宜除去されると考えられる。また、この湿式酸化処理を行った後、ろ過を行い、さらに炭素粒子を水洗することにより、炭素粒子の表面から親油性有機物を除去する効果をさらに高めることができる。 As a wet oxidation method, carbon particles are suspended in water containing a conductive salt and then electrolysis is performed by inserting a platinum electrode serving as a cathode or an anode, or carbon particles are suspended in water. Although a method of adding an appropriate amount of an oxidizing agent later can be used, it is preferable to use the latter method in consideration of productivity, and the amount of carbon particles added to water is 1 to 20% by weight. Is preferred. As the oxidizing agent, oxidizing agents such as nitric acid, hydrogen peroxide, potassium permanganate, potassium persulfate, and sodium hypochlorite can be used. It is considered that the lipophilic organic substance adhering to the carbon particles is oxidized by the added oxidizing agent to be easily dissolved in water, and is appropriately removed from the surface of the carbon particles. Moreover, after performing this wet oxidation process, the effect which removes lipophilic organic substance from the surface of a carbon particle can be further heightened by filtering, and also washing | cleaning a carbon particle with water.
上記の酸化処理により炭素粒子の表面から脂肪族炭化水素や芳香族炭化水素などの親油性有機物を除去することができ、300℃加熱ガスによる分析によれば、酸化処理後の炭素粒子を300℃で加熱して発生したガス中には、アルカンやアルケンなどの親油性脂肪族炭化水素や、アルキルベンゼンなどの親油性芳香族炭化水素が殆ど含まれてない。酸化処理後の炭素粒子中に脂肪族炭化水素や芳香族炭化水素が若干含まれていても、炭素粒子を銀めっき液に分散させることができるが、炭素粒子中に分子量160以上の炭化水素が含まれず且つ炭素粒子中の分子量160未満の炭化水素の300℃加熱発生ガス強度(パージ・アンド・トラップ・ガスクロマトグラフ質量分析強度)が5,000,000以下になるのが好ましい。炭素粒子中に分子量の大きな炭化水素が含まれると、炭素粒子の表面が強い親油性の炭化水素で被覆され、水溶液である銀めっき溶液中で炭素粒子が互い凝集し、めっき皮膜中に炭素粒子が複合化しなくなると考えられる。 Lipophilic organic substances such as aliphatic hydrocarbons and aromatic hydrocarbons can be removed from the surface of the carbon particles by the above oxidation treatment, and according to the analysis with 300 ° C. heating gas, the carbon particles after the oxidation treatment are converted to 300 ° C. The gas generated by heating in step 3 hardly contains lipophilic aliphatic hydrocarbons such as alkanes and alkenes and lipophilic aromatic hydrocarbons such as alkylbenzenes. Even if aliphatic hydrocarbons and aromatic hydrocarbons are slightly contained in the oxidized carbon particles, the carbon particles can be dispersed in the silver plating solution. However, hydrocarbons having a molecular weight of 160 or more are contained in the carbon particles. It is preferred that the hydrocarbons not contained and having a molecular weight of less than 160 in the carbon particles have a 300 ° C. heat generation gas intensity (purge and trap gas chromatograph mass spectrometry intensity) of 5,000,000 or less. When hydrocarbons with a large molecular weight are contained in the carbon particles, the surfaces of the carbon particles are coated with strong lipophilic hydrocarbons, and the carbon particles aggregate together in the silver plating solution, which is an aqueous solution, and the carbon particles in the plating film Will not be combined.
このような酸化処理により脂肪酸炭化水素と芳香族炭化水素を除去した炭素粒子を銀めっき液に懸濁させて電気めっきを行う際に、銀めっき液としてシアン系銀めっき液を使用するのが好ましい。従来の方法では、シアン系銀めっきを使用する場合には、界面活性剤を添加する必要があったが、本発明による複合めっき材の製造方法の実施の形態では、界面活性剤を添加しなくても銀めっき液中に炭素粒子が均一に分散した複合めっき液を得ることができるので、界面活性剤を添加する必要はない。なお、複合めっき液中の炭素粒子の濃度は40〜200g/Lであるのが好ましい。40g/L未満では、炭素粒子が複合化する量が著しく低下し、一方、200g/Lを超えると、複合めっき液の粘度が増大して撹拌が困難になるからである。 When performing electroplating by suspending carbon particles from which fatty acid hydrocarbons and aromatic hydrocarbons have been removed by such an oxidation treatment in a silver plating solution, it is preferable to use a cyan silver plating solution as the silver plating solution. . In the conventional method, when cyan silver plating is used, it is necessary to add a surfactant. However, in the embodiment of the method for producing a composite plating material according to the present invention, no surfactant is added. However, since a composite plating solution in which carbon particles are uniformly dispersed in the silver plating solution can be obtained, it is not necessary to add a surfactant. In addition, it is preferable that the density | concentration of the carbon particle in a composite plating solution is 40-200 g / L. This is because if the amount is less than 40 g / L, the amount of carbon particles to be combined is significantly reduced. On the other hand, if it exceeds 200 g / L, the viscosity of the composite plating solution increases and stirring becomes difficult.
また、シアン系銀めっき液を使用すると、炭素粒子の含有量および表面の炭素粒子の量が多いめっき皮膜を得ることができる。めっき皮膜中の炭素粒子の含有量が多くなるのは、銀めっき液に界面活性剤を添加しないことにより、銀めっき結晶の成長過程において界面活性剤が成長面に吸着しないので、銀マトリックス中に炭素粒子が取り込まれ易くなるためであると考えられる。また、めっき皮膜の表面の炭素粒子の量が多くなるのは、銀めっき液に界面活性剤を添加しないことにより、めっき後の水洗の際に、(洗剤が汚れを落とす働きと同様に)炭素粒子が表面から脱落または除去され難くなるためであると考えられる。 When a cyan silver plating solution is used, a plating film having a large carbon particle content and a large amount of carbon particles on the surface can be obtained. The content of carbon particles in the plating film increases because the surfactant is not adsorbed on the growth surface during the growth process of the silver plating crystal because the surfactant is not added to the silver plating solution. This is probably because carbon particles are easily taken up. Also, the amount of carbon particles on the surface of the plating film increases because the surfactant is not added to the silver plating solution, so that when washing with water after plating (as the detergent removes dirt) This is thought to be because the particles are less likely to fall off or be removed from the surface.
このように炭素粒子を酸化処理した後に銀めっき液に添加することにより、分散剤などの添加物を使用することなく且つ炭素粒子の表面をコーティングすることなく、複合めっき液中に炭素粒子を良好に分散させることができ、この複合めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる皮膜が素材上に形成され、炭素粒子の含有量および表面の炭素粒子の量が多く、耐摩耗性に優れた複合めっき材を製造することができる。 By adding carbon particles to the silver plating solution after oxidizing the carbon particles in this way, it is possible to improve the carbon particles in the composite plating solution without using an additive such as a dispersant and without coating the surface of the carbon particles. By performing electroplating using this composite plating solution, a film made of a composite material containing carbon particles in the silver layer is formed on the material, and the content and surface of the carbon particles Therefore, a composite plating material having a large amount of carbon particles and having excellent wear resistance can be produced.
本発明による複合めっき材の製造方法の実施の形態では、シアン系銀めっき液としては、銀シアン化カリウム(K[Ag(CN)2])とシアン化カリウム(KCN)とからなるシアン系銀めっき液を使用するのが好ましい。銀シアン化カリウムの濃度(X)が250〜300g/L程度、シアン化カリウムの濃度(Y)が80〜120g/L程度であるのが好ましく、したがって、銀シアン化カリウムの分子量199、シアン化カリウムの分子量65.1であるので、遊離シアンに対する銀のモル比(銀/遊離シアンのモル比)(Z)は、Z=(X/199)/(Y/65.1)から、0.7〜1.3であるのが好ましい。この比が0.7未満であると、電流密度を高くしてめっきを行った場合に銀マトリックスが111面に配向して耐摩耗性が低下し、1.3を超えると、銀の供給源である銀シアン化カリウムの溶解が困難になるからである。 In the embodiment of the method for producing a composite plating material according to the present invention, a cyan silver plating solution comprising silver potassium cyanide (K [Ag (CN) 2 ]) and potassium cyanide (KCN) is used as the cyan silver plating solution. It is preferable to do this. The concentration (X) of silver potassium cyanide is preferably about 250 to 300 g / L, and the concentration (Y) of potassium cyanide is preferably about 80 to 120 g / L. Therefore, the molecular weight of silver potassium cyanide is 199 and the molecular weight of potassium cyanide is 65.1. Therefore, the molar ratio of silver to free cyan (silver / free cyan molar ratio) (Z) is 0.7 to 1.3 from Z = (X / 199) / (Y / 65.1). Is preferred. When this ratio is less than 0.7, the silver matrix is oriented in the 111 plane when plating is performed at a high current density, and wear resistance is reduced. This is because it becomes difficult to dissolve silver potassium cyanide.
また、本発明による複合めっき材の製造方法の実施の形態では、銀めっき液に酸化処理を行った炭素粒子に加えて銀マトリックス配向調整剤を添加した複合めっき液を使用する。この銀マトリックス配向調整剤は、セレン(Se)イオンを含むのが好ましく、セレノシアン酸カリウム(KSeCN)であるのがさらに好ましい。また、複合めっき液中の銀マトリックス配向調整剤の濃度を5〜20mg/Lにするのが好ましい。このような銀マトリックス配向調整剤を銀めっき液に添加すると、Seイオン濃度によって銀マトリックスの配向方向が著しく変化する。すなわち、従来の銀と黒鉛粒子の複合めっき材では、銀マトリックスが111面に配向しているが、銀マトリックス配向調整剤を銀めっき液に添加すると、銀マトリックスが220面に配向する。めっき皮膜は微細な結晶粒子からなり、その結晶粒子の成長方向によってその特性が大きく変化すると考えられ、複合化される炭素粒子の結晶方位と銀マトリックスの結晶粒子の配向が最適な場合に、摩擦や摺動に伴う銀マトリックスの変形が容易になり、炭素粒子の潤滑性と相まって摩擦係数が大幅に低下し、耐摩耗性が向上すると考えられる。 Moreover, in embodiment of the manufacturing method of the composite plating material by this invention, the composite plating solution which added the silver matrix orientation regulator in addition to the carbon particle which oxidized to the silver plating solution is used. The silver matrix alignment modifier preferably contains selenium (Se) ions, and more preferably potassium selenocyanate (KSeCN). Moreover, it is preferable that the density | concentration of the silver matrix orientation regulator in a composite plating solution shall be 5-20 mg / L. When such a silver matrix alignment regulator is added to the silver plating solution, the alignment direction of the silver matrix changes significantly depending on the Se ion concentration. That is, in the conventional composite plating material of silver and graphite particles, the silver matrix is oriented in the 111 plane. However, when a silver matrix orientation modifier is added to the silver plating solution, the silver matrix is oriented in the 220 plane. The plating film is composed of fine crystal particles, and its characteristics are considered to vary greatly depending on the growth direction of the crystal particles. When the crystal orientation of the composite carbon particles and the orientation of the silver matrix crystal particles are optimal, friction It is considered that the silver matrix is easily deformed due to sliding and the friction coefficient of carbon particles is greatly reduced and the wear resistance is improved in combination with the lubricity of carbon particles.
銀マトリックスが220面に配向した銀と炭素粒子の複合めっき皮膜は、界面活性剤を添加することなく炭素粒子が分散した複合めっき液にSeイオンを添加することにより形成されると考えられる。すなわち、従来の銀層中に黒鉛粒子が複合化した複合めっき皮膜では、炭素粒子を十分に分散させるために銀めっき液に界面活性剤を添加しているが、界面活性剤が複合めっき皮膜にも吸着されることにより、銀マトリックスの成長方向に影響を及ぼすため、銀マトリックスが220面に配向した複合めっき皮膜を得るのが難しいと考えられる。 A composite plating film of silver and carbon particles having a silver matrix oriented on the 220 plane is considered to be formed by adding Se ions to a composite plating solution in which carbon particles are dispersed without adding a surfactant. That is, in the conventional composite plating film in which graphite particles are combined in a silver layer, a surfactant is added to the silver plating solution in order to sufficiently disperse the carbon particles, but the surfactant is added to the composite plating film. Adsorption also affects the growth direction of the silver matrix, so it is considered difficult to obtain a composite plating film in which the silver matrix is oriented on the 220 plane.
このように銀マトリックスが220面に配向した複合めっき皮膜を形成することにより、さらに摩擦係数が低い複合めっき皮膜を形成することができる。すなわち、従来のように界面活性剤を添加した銀めっき液を使用した場合には、銀マトリックスが220面に配向した複合めっき皮膜を得ることができないので、本発明による複合めっき材の実施の形態と比べて摩擦係数が高くなり、耐摩耗性も悪くなる。 Thus, by forming a composite plating film in which the silver matrix is oriented on the 220 plane, a composite plating film having a lower friction coefficient can be formed. That is, when a silver plating solution to which a surfactant is added as in the prior art is used, a composite plating film in which the silver matrix is oriented on the 220 plane cannot be obtained, so the embodiment of the composite plating material according to the present invention The friction coefficient becomes higher and the wear resistance becomes worse.
上述した本発明による複合めっき材の製造方法の実施の形態により、銀層中に1.7〜2.5重量%の炭素粒子を含有する複合材からなる皮膜が素材上に形成され、表面の炭素粒子の量(炭素粒子による被覆率)が25面積%以上であり、銀マトリックスが220面に配向している複合めっき材を製造することができる。なお、複合めっき皮膜中の炭素粒子の含有量が多いほど複合めっき材の耐摩耗性が向上するが、上述した複合めっき材の製造方法の実施の形態により製造された複合めっき材では、皮膜中の炭素粒子の含有量を1.7〜2.5重量%にすることができ、また、従来の銀と黒鉛の複合めっき材では5面積%程度であった皮膜の表面の炭素粒子の量を25面積%以上にすることができるので、耐摩耗性に優れた複合めっき材を得ることができる。また、銀マトリックスが220面に配向しているので、炭素粒子の潤滑性と相まって摩擦係数が大幅に低下し且つ耐摩耗性に優れた複合めっき材を得ることができる。 According to the embodiment of the method for producing a composite plating material according to the present invention described above, a film made of the composite material containing 1.7 to 2.5% by weight of carbon particles in the silver layer is formed on the material, and the surface A composite plating material in which the amount of carbon particles (coverage with carbon particles) is 25 area% or more and the silver matrix is oriented on the 220 plane can be produced. The higher the carbon particle content in the composite plating film, the better the wear resistance of the composite plating material. However, in the composite plating material manufactured according to the embodiment of the composite plating material manufacturing method described above, The amount of carbon particles on the surface of the coating, which was about 5 area% in the conventional silver / graphite composite plating material, can be reduced to 1.7 to 2.5% by weight. Since it can be 25 area% or more, the composite plating material excellent in abrasion resistance can be obtained. In addition, since the silver matrix is oriented on the 220 plane, a composite plating material having a friction coefficient greatly reduced and excellent wear resistance coupled with the lubricity of the carbon particles can be obtained.
また、複合めっき皮膜の厚さは2〜10μmであるのが好ましい。複合めっき皮膜の厚さが2μm未満では耐摩耗性が不十分であり、一方、10μmを越えると生産効率が悪くなる。 Moreover, it is preferable that the thickness of a composite plating film is 2-10 micrometers. When the thickness of the composite plating film is less than 2 μm, the wear resistance is insufficient, while when it exceeds 10 μm, the production efficiency is deteriorated.
また、図1に示すように、固定接点10とこの固定接点10上を矢印Aの方向に摺動する可動接点12とからなる電気接点において、固定接点10と可動接点12の少なくとも一方の接点を本発明による複合めっき材により形成すれば、耐磨耗性に優れた電気接点を提供することができる。この場合、固定接点10と可動接点12の少なくとも一方の接点の他方の接点と接触する部分のみを本発明による複合めっき材により形成してもよい。
In addition, as shown in FIG. 1, in an electrical contact comprising a fixed
以下、本発明による複合めっき材の製造方法の実施例について詳細に説明する。 Hereinafter, the Example of the manufacturing method of the composite plating material by this invention is described in detail.
[実施例1、2]
炭素粒子として平均粒径5μmの鱗片状黒鉛粒子(エスイーシー社製のカーボンSN−5)を用意し、この黒鉛粒子6重量%を3Lの純水中に添加し、この混合溶液を攪拌しながら50℃に昇温させた。次に、この混合溶液に酸化剤として0.1モル/Lの過硫酸カリウム水溶液1.2Lを徐々に滴下した後、2時間攪拌して酸化処理を行い、その後、ろ紙によりろ別を行ない、水洗を行った。
[Examples 1 and 2]
As the carbon particles, scaly graphite particles having an average particle diameter of 5 μm (carbon SN-5 manufactured by ESC) were prepared, 6% by weight of the graphite particles were added to 3 L of pure water, and the mixed solution was stirred while stirring. The temperature was raised to ° C. Next, 1.2 L of a 0.1 mol / L potassium persulfate aqueous solution as an oxidizing agent was gradually added dropwise to the mixed solution, and then the mixture was stirred for 2 hours for oxidation treatment, and then filtered with a filter paper. Washed with water.
この酸化処理の前後の炭素粒子について、パージ・アンド・トラップ・ガスクロマトグラフ質量分析装置(日本分析工業JHS−100)(島津製作所製のGCMAS QP−5050A)を使用して、300℃加熱発生ガスの分析を行ったところ、上記の酸化処理により、炭素粒子に付着していたノナン、デカン、3−メチル−2−ヘプテンなどの親油性脂肪族炭化水素や、キシレンなどの親油性芳香族炭化水素が除去されているのがわかった。 About the carbon particles before and after this oxidation treatment, a purge and trap gas chromatograph mass spectrometer (Nippon Analytical Industries JHS-100) (GCMAS QP-5050A manufactured by Shimadzu Corporation) As a result of the analysis, lipophilic aliphatic hydrocarbons such as nonane, decane and 3-methyl-2-heptene and lipophilic aromatic hydrocarbons such as xylene adhering to the carbon particles by the oxidation treatment described above were obtained. I found it removed.
次に、上記の酸化処理を行った炭素粒子80g/Lを、280g/Lの銀シアン化カリウムと90g/Lのシアン化カリウムとからなる、銀/遊離シアンのモル比が1.01のシアン銀めっき液中に添加して、分散および懸濁させた後、銀マトリックス配向調整剤として12mg/Lのセレノシアン酸カリウムを添加することにより、銀と炭素粒子の複合めっき液を作製した。この複合めっき液を使用して、それぞれ液温25℃、電流密度1A/dm2(実施例1)および3A/dm2(実施例2)で電気めっきを行い、素材としての厚さ0.3mmの銅板上に膜厚5μmの銀と炭素粒子の複合めっき皮膜が形成された複合めっき材を作製した。なお、めっき膜の密着性を向上させるために、下地めっきとして、3g/Lの銀シアン化カリウムと100g/Lのシアン化カリウムとからなる組成のAgストライクめっき浴中において、液温25℃、電流密度3A/dm2でAgストライクめっきを行った。 Next, 80 g / L of the carbon particles subjected to the above-described oxidation treatment are contained in a cyan silver plating solution composed of 280 g / L of silver potassium cyanide and 90 g / L of potassium cyanide and having a silver / free cyan molar ratio of 1.01. Then, 12 mg / L potassium selenocyanate was added as a silver matrix alignment modifier to prepare a composite plating solution of silver and carbon particles. Using this composite plating solution, electroplating was performed at a liquid temperature of 25 ° C. and current densities of 1 A / dm 2 (Example 1) and 3 A / dm 2 (Example 2), respectively, and the thickness as a material was 0.3 mm. A composite plating material in which a composite plating film of silver and carbon particles having a film thickness of 5 μm was formed on a copper plate was prepared. In order to improve the adhesion of the plating film, in an Ag strike plating bath having a composition of 3 g / L silver potassium cyanide and 100 g / L potassium cyanide as the base plating, the liquid temperature is 25 ° C., the current density is 3 A / It was Ag strike plating in dm 2.
得られた複合めっき材(素材を含む)から切り出した試料をAgおよびCの分析用にそれぞれ用意し、試料中のAgの含有量(X重量%)をICP装置(ジャーレル・アッシュ社製のIRIS/AR)を用いてプラズマ分光分析法によって求めるとともに、試料中のCの含有量(Y重量%)を微量炭素・硫黄分析装置(堀場製作所製のEMIA−U510)を用いて赤外線吸収法によって求め、めっき皮膜中のCの含有量をY/(X+Y)として算出したところ、めっき皮膜中のCの含有量は、それぞれ2.1重量%(実施例1)および2.5重量%(実施例2)であった。 Samples cut out from the obtained composite plating materials (including raw materials) were prepared for analysis of Ag and C, respectively, and the content (X wt%) of Ag in the samples was determined using an ICP device (IRIS made by Jarrel Ash). / AR), and the C content (Y wt%) in the sample is determined by an infrared absorption method using a trace carbon / sulfur analyzer (EMIA-U510 manufactured by Horiba, Ltd.). When the content of C in the plating film was calculated as Y / (X + Y), the content of C in the plating film was 2.1% by weight (Example 1) and 2.5% by weight (Example), respectively. 2).
また、得られた複合めっき材から切り出した試験片の表面を観察することにより、めっき皮膜の表面の炭素粒子の量(面積%)を算出した。このめっき皮膜の表面の炭素粒子の量は、試験片の表面を超深度形状顕微鏡(キーエンス社製のVK−8500)により対物レンズ倍率100倍で超深度画像として撮影した画像を、PC上で画像解析アプリケーション(SCION CORPORATION社製のSCION IMAGE)を使用して、白黒で取り込んで階調を二値化し、銀の部分と炭素粒子の部分に分離して、画像全体のピクセル数Xに対する炭素粒子の部分のピクセル数Yの比Y/Xとして算出した。その結果、めっき皮膜の表面の炭素粒子の量は、それぞれ32面積%(実施例1)および34面積%(実施例2)であった。 Moreover, the quantity (area%) of the carbon particle on the surface of a plating film was computed by observing the surface of the test piece cut out from the obtained composite plating material. The amount of carbon particles on the surface of the plating film is determined by measuring the surface of the test piece as an ultra-deep image at an objective lens magnification of 100 times with an ultra-deep shape microscope (VK-8500 manufactured by Keyence Corporation) on a PC. Using an analysis application (SCION IMAGE manufactured by SCION CORPORATION), the gradation is binarized by taking it in black and white, separating it into a silver part and a carbon particle part. It calculated as ratio Y / X of the pixel number Y of the part. As a result, the amount of carbon particles on the surface of the plating film was 32 area% (Example 1) and 34 area% (Example 2), respectively.
また、得られた複合めっき材から切り出した試験片の銀マトリックスの配向の評価を行った。 銀マトリックスの配向は、X線回折装置(XRD)(リガク社製のRAF−rB)を使用して、X線回折ピークを測定し、銀マトリックスの最も強いピークの面方位を、めっき皮膜の結晶の配向の方向として評価した。なお、管球としてCu−Kαを使用し、50kV、100mAで測定した。また、シンチレーションカウンターと、広角ゴニオメーターと、湾曲結晶モノクロメーターを使用し、走査範囲2θ/θを10〜90°、ステップ幅を0.05°、走査モードをFT、サンプリング時間を1.00秒とした。その結果、実施例1および2では、銀マトリックスは220面に配向していた。 Moreover, the silver matrix orientation of the test piece cut out from the obtained composite plating material was evaluated. For the orientation of the silver matrix, the X-ray diffraction peak is measured using an X-ray diffractometer (XRD) (RAF-rB manufactured by Rigaku Corporation), and the plane orientation of the strongest peak of the silver matrix is determined by the crystal of the plating film. The orientation direction was evaluated. In addition, Cu-K (alpha) was used as a tube and it measured by 50 kV and 100 mA. In addition, a scintillation counter, a wide-angle goniometer, and a curved crystal monochromator are used, the scanning range 2θ / θ is 10 to 90 °, the step width is 0.05 °, the scanning mode is FT, and the sampling time is 1.00 seconds. It was. As a result, in Examples 1 and 2, the silver matrix was oriented in the 220 plane.
また、得られた複合めっき材から切り出した2つの試験片の一方をインデント加工(R3mm)して圧子とするとともに、他方を評価試料とし、圧子を一定の荷重(0.5N)で評価試料に押し当てながら、素材が露出するまで往復摺動動作(摺動距離10mm、摺動速度2.5Hz)を続けて、複合めっき材の摩耗状態を確認することにより、耐摩耗性の評価を行った。その結果、実施例1および2では、50万回以上の往復摺動動作後でも素材が露出することはなかった。
In addition, one of the two test pieces cut out from the obtained composite plating material is indented (R3 mm) to form an indenter, the other is used as an evaluation sample, and the indenter is used as an evaluation sample with a constant load (0.5 N). While pressing, the reciprocating sliding operation (sliding
[実施例3、4]
銀マトリックス配向調整剤として添加したセレノシアン酸カリウムの量を16mg/Lにした以外は実施例1および2と同様の方法により、複合めっき材を作製した。得られた複合めっき材について、実施例1および2と同様の方法により、めっき皮膜中の炭素粒子の含有量、めっき皮膜の表面の炭素粒子の量(面積%)を算出し、銀マトリックスの配向および耐摩耗性の評価を行った。その結果、実施例3および4では、それぞれ炭素粒子の含有量が1.6重量%および2.4重量%、表面の炭素粒子の量が33面積%および35面積%であり、銀マトリックスが220面に配向していた。また、50万回以上の往復摺動動作後でも素材が露出することはなかった。
[Examples 3 and 4]
A composite plating material was produced in the same manner as in Examples 1 and 2, except that the amount of potassium selenocyanate added as a silver matrix alignment modifier was 16 mg / L. For the obtained composite plating material, the content of carbon particles in the plating film and the amount (area%) of carbon particles on the surface of the plating film were calculated by the same method as in Examples 1 and 2, and the orientation of the silver matrix And the wear resistance was evaluated. As a result, in Examples 3 and 4, the carbon particle content was 1.6% by weight and 2.4% by weight, the amount of carbon particles on the surface was 33% by area and 35% by area, respectively, and the silver matrix was 220%. Oriented to the plane. Further, the material was not exposed even after 500,000 or more reciprocating sliding operations.
[実施例5、6]
240g/Lの銀シアン化カリウムと90g/Lのシアン化カリウムとからなる、銀/遊離シアンのモル比が0.87のシアン銀めっき液を使用し、銀マトリックス配向調整剤として添加したセレノシアン酸カリウムの量を8mg/Lにした以外は実施例1および2と同様の方法により、複合めっき材を作製した。得られた複合めっき材について、実施例1および2と同様の方法により、めっき皮膜中の炭素粒子の含有量、めっき皮膜の表面の炭素粒子の量(面積%)を算出し、銀マトリックスの配向および耐摩耗性の評価を行った。その結果、実施例5および6では、それぞれ炭素粒子の含有量が2.0重量%および1.8重量%、表面の炭素粒子の量が32面積%および31面積%であり、銀マトリックスが220面に配向していた。また、50万回以上の往復摺動動作後でも素材が露出することはなかった。
[Examples 5 and 6]
A cyan silver plating solution having a silver / free cyan molar ratio of 0.87 consisting of 240 g / L silver potassium cyanide and 90 g / L potassium cyanide was used, and the amount of potassium selenocyanate added as a silver matrix alignment modifier was A composite plating material was produced in the same manner as in Examples 1 and 2 except that the amount was 8 mg / L. For the obtained composite plating material, the content of carbon particles in the plating film and the amount (area%) of carbon particles on the surface of the plating film were calculated by the same method as in Examples 1 and 2, and the orientation of the silver matrix And the wear resistance was evaluated. As a result, in Examples 5 and 6, the carbon particle content was 2.0% by weight and 1.8% by weight, the amount of carbon particles on the surface was 32% by area and 31% by area, respectively, and the silver matrix was 220% by weight. Oriented to the plane. Further, the material was not exposed even after 500,000 or more reciprocating sliding operations.
[実施例7、8]
240g/Lの銀シアン化カリウムと90g/Lのシアン化カリウムとからなる、銀/遊離シアンのモル比が0.87のシアン銀めっき液を使用した以外は実施例1および2と同様の方法により、複合めっき材を作製した。得られた複合めっき材について、実施例1および2と同様の方法により、めっき皮膜中の炭素粒子の含有量、めっき皮膜の表面の炭素粒子の量(面積%)を算出し、銀マトリックスの配向および耐摩耗性の評価を行った。その結果、実施例7および8では、それぞれ炭素粒子の含有量が1.9重量%および2.3重量%、表面の炭素粒子の量が31面積%および33面積%であり、銀マトリックスが220面に配向していた。また、50万回以上の往復摺動動作後でも素材が露出することはなかった。
[Examples 7 and 8]
Composite plating was carried out in the same manner as in Examples 1 and 2, except that a cyan silver plating solution comprising 240 g / L silver potassium cyanide and 90 g / L potassium cyanide and having a silver / free cyan molar ratio of 0.87 was used. A material was prepared. For the obtained composite plating material, the content of carbon particles in the plating film and the amount (area%) of carbon particles on the surface of the plating film were calculated by the same method as in Examples 1 and 2, and the orientation of the silver matrix And the wear resistance was evaluated. As a result, in Examples 7 and 8, the carbon particle content was 1.9% by weight and 2.3% by weight, the amount of carbon particles on the surface was 31% by area and 33% by area, respectively, and the silver matrix was 220%. Oriented to the plane. Further, the material was not exposed even after 500,000 or more reciprocating sliding operations.
[比較例1、2]
100g/Lの銀シアン化カリウムと120g/Lのシアン化カリウムとからなる、銀/遊離シアンのモル比が0.27のシアン銀めっき液を使用し、銀マトリックス配向調整剤として添加したセレノシアン酸カリウムの量を4mg/Lにした以外は実施例1および2と同様の方法により、複合めっき材を作製した。得られた複合めっき材について、実施例1および2と同様の方法により、めっき皮膜中の炭素粒子の含有量、めっき皮膜の表面の炭素粒子の量(面積%)を算出し、銀マトリックスの配向および耐摩耗性の評価を行った。その結果、比較例1および2では、それぞれ炭素粒子の含有量が2.2重量%および1.7重量%、表面の炭素粒子の量が34面積%および22面積%であった。また、電流密度1A/dm2でめっきした比較例1では、銀マトリックスが220面に配向していたが、電流密度3A/dm2でめっきした比較例2では、銀マトリックスが111面に配向していた。また、電流密度1A/dm2でめっきした比較例1では、50万回以上の往復摺動動作後でも素材が露出することはなかったが、電流密度3A/dm2でめっきした比較例2では、48万回程度の往復摺動動作後に素材が露出した。
[Comparative Examples 1 and 2]
Using a cyan silver plating solution having a silver / free cyan molar ratio of 0.27 consisting of 100 g / L of silver potassium cyanide and 120 g / L of potassium cyanide, the amount of potassium selenocyanate added as a silver matrix alignment regulator A composite plating material was produced in the same manner as in Examples 1 and 2 except that the amount was 4 mg / L. For the obtained composite plating material, the content of carbon particles in the plating film and the amount (area%) of carbon particles on the surface of the plating film were calculated by the same method as in Examples 1 and 2, and the orientation of the silver matrix And the wear resistance was evaluated. As a result, in Comparative Examples 1 and 2, the carbon particle content was 2.2 wt% and 1.7 wt%, respectively, and the amount of carbon particles on the surface was 34 area% and 22 area%. In Comparative Example 1 was plated at a current density of 1A / dm 2, but the silver matrix was oriented in the 220 plane, in Comparative Example 2 was plated at a current density of 3A / dm 2, the silver matrix is oriented in the 111 plane It was. Further, in Comparative Example 1 plated at a current density of 1 A / dm 2 , the material was not exposed even after 500,000 or more reciprocating sliding operations, but in Comparative Example 2 plated at a current density of 3 A / dm 2 The material was exposed after the reciprocating sliding operation of about 480,000 times.
[比較例3、4]
銀マトリックス配向調整剤として添加したセレノシアン酸カリウムの量を8mg/Lにした以外は比較例1および2と同様の方法により、複合めっき材を作製した。得られた複合めっき材について、実施例1および2と同様の方法により、めっき皮膜中の炭素粒子の含有量、めっき皮膜の表面の炭素粒子の量(面積%)を算出し、銀マトリックスの配向および耐摩耗性の評価を行った。その結果、比較例3および4では、それぞれ炭素粒子の含有量が2.0重量%および1.5重量%、表面の炭素粒子の量が27面積%および21面積%であった。また、電流密度1A/dm2でめっきした比較例3では、銀マトリックスが220面に配向していたが、電流密度3A/dm2でめっきした比較例2では、銀マトリックスが200面に配向していた。また、電流密度1A/dm2でめっきした比較例1では、50万回以上の往復摺動動作後でも素材が露出することはなかったが、電流密度3A/dm2でめっきした比較例2では、42万回程度の往復摺動動作後に素材が露出した。
[Comparative Examples 3 and 4]
A composite plating material was produced in the same manner as in Comparative Examples 1 and 2 except that the amount of potassium selenocyanate added as a silver matrix alignment modifier was 8 mg / L. For the obtained composite plating material, the content of carbon particles in the plating film and the amount (area%) of carbon particles on the surface of the plating film were calculated by the same method as in Examples 1 and 2, and the orientation of the silver matrix And the wear resistance was evaluated. As a result, in Comparative Examples 3 and 4, the carbon particle content was 2.0 wt% and 1.5 wt%, respectively, and the amount of surface carbon particles was 27 area% and 21 area%. In Comparative Example 3 was plated at a current density of 1A / dm 2, but the silver matrix was oriented in the 220 plane, in Comparative Example 2 was plated at a current density of 3A / dm 2, the silver matrix is oriented in the 200 plane It was. Further, in Comparative Example 1 plated at a current density of 1 A / dm 2 , the material was not exposed even after 500,000 or more reciprocating sliding operations, but in Comparative Example 2 plated at a current density of 3 A / dm 2 The material was exposed after about 420,000 reciprocating sliding operations.
[比較例5、6]
185g/Lの銀シアン化カリウムと90g/Lのシアン化カリウムとからなる、銀/遊離シアンのモル比が0.67のシアン銀めっき液を使用し、銀マトリックス配向調整剤として添加したセレノシアン酸カリウムの量を4mg/Lにした以外は実施例1および2と同様の方法により、複合めっき材を作製した。得られた複合めっき材について、実施例1および2と同様の方法により、めっき皮膜中の炭素粒子の含有量、めっき皮膜の表面の炭素粒子の量(面積%)を算出し、銀マトリックスの配向および耐摩耗性の評価を行った。その結果、比較例5および6では、それぞれ炭素粒子の含有量が1.8重量%および1.7重量%、表面の炭素粒子の量が33面積%および28面積%であった。また、電流密度1A/dm2でめっきした比較例5では、銀マトリックスが220面に配向していたが、電流密度3A/dm2でめっきした比較例6では、銀マトリックスが200面に配向していた。また、電流密度1A/dm2でめっきした比較例5では、48万回程度の往復摺動動作後に素材が露出し、電流密度3A/dm2でめっきした比較例6では、31万回程度の往復摺動動作後に素材が露出した。
[Comparative Examples 5 and 6]
A cyan silver plating solution having a silver / free cyan molar ratio of 0.67 consisting of 185 g / L silver potassium cyanide and 90 g / L potassium cyanide was used, and the amount of potassium selenocyanate added as a silver matrix alignment modifier was A composite plating material was produced in the same manner as in Examples 1 and 2 except that the amount was 4 mg / L. For the obtained composite plating material, the content of carbon particles in the plating film and the amount (area%) of carbon particles on the surface of the plating film were calculated by the same method as in Examples 1 and 2, and the orientation of the silver matrix And the wear resistance was evaluated. As a result, in Comparative Examples 5 and 6, the carbon particle content was 1.8% by weight and 1.7% by weight, and the amount of surface carbon particles was 33% by area and 28% by area, respectively. In Comparative Example 5 plated with a current density of 1 A / dm 2 , the silver matrix was oriented on the 220 plane, but in Comparative Example 6 plated with a current density of 3 A / dm 2 , the silver matrix was oriented on the 200 plane. It was. In Comparative Example 5 plated at a current density of 1 A / dm 2 , the material was exposed after a reciprocating sliding operation of about 480,000 times, and in Comparative Example 6 plated at a current density of 3 A / dm 2 , about 310,000 times. The material was exposed after the reciprocating sliding motion.
[比較例7、8]
銀マトリックス配向調整剤として添加したセレノシアン酸カリウムの量を12mg/Lにした以外は比較例5および6と同様の方法により、複合めっき材を作製した。得られた複合めっき材について、実施例1および2と同様の方法により、めっき皮膜中の炭素粒子の含有量、めっき皮膜の表面の炭素粒子の量(面積%)を算出し、銀マトリックスの配向および耐摩耗性の評価を行った。その結果、比較例7および8では、それぞれ炭素粒子の含有量が1.8重量%および1.6重量%、表面の炭素粒子の量が31面積%および21面積%であった。また、電流密度1A/dm2でめっきした比較例7では、銀マトリックスが220面に配向していたが、電流密度3A/dm2でめっきした比較例8では、銀マトリックスが111面に配向していた。また、電流密度1A/dm2でめっきした比較例7では、50万回以上の往復摺動動作後でも素材が露出することはなかったが、電流密度3A/dm2でめっきした比較例8では、37万回程度の往復摺動動作後に素材が露出した。
[Comparative Examples 7 and 8]
A composite plating material was produced in the same manner as in Comparative Examples 5 and 6 except that the amount of potassium selenocyanate added as a silver matrix alignment modifier was 12 mg / L. For the obtained composite plating material, the content of carbon particles in the plating film and the amount (area%) of carbon particles on the surface of the plating film were calculated by the same method as in Examples 1 and 2, and the orientation of the silver matrix And the wear resistance was evaluated. As a result, in Comparative Examples 7 and 8, the carbon particle content was 1.8 wt% and 1.6 wt%, respectively, and the amount of surface carbon particles was 31 area% and 21 area%. In Comparative Example 7 plated with a current density of 1 A / dm 2 , the silver matrix was oriented in the 220 plane, but in Comparative Example 8 plated with a current density of 3 A / dm 2 , the silver matrix was oriented in the 111 plane. It was. Further, in Comparative Example 7 plated with a current density of 1 A / dm 2 , the material was not exposed even after 500,000 or more reciprocating sliding operations, but in Comparative Example 8 plated with a current density of 3 A / dm 2 The material was exposed after 370,000 reciprocating sliding motions.
[比較例9、10]
銀マトリックス配向調整剤として添加したセレノシアン酸カリウムの量を4mg/Lにした以外は実施例1および2と同様の方法により、複合めっき材を作製した。得られた複合めっき材について、実施例1および2と同様の方法により、めっき皮膜中の炭素粒子の含有量、めっき皮膜の表面の炭素粒子の量(面積%)を算出し、銀マトリックスの配向および耐摩耗性の評価を行った。その結果、比較例9および10では、それぞれ炭素粒子の含有量が1.9重量%および1.7重量%、表面の炭素粒子の量が31面積%および27面積%であった。また、電流密度1A/dm2でめっきした比較例9では、銀マトリックスが220面に配向していたが、電流密度3A/dm2でめっきした比較例10では、銀マトリックスが111面に配向していた。また、電流密度1A/dm2でめっきした比較例9では、50万回以上の往復摺動動作後でも素材が露出することはなかったが、電流密度3A/dm2でめっきした比較例10では、37万回程度の往復摺動動作後に素材が露出した。
[Comparative Examples 9 and 10]
A composite plating material was produced in the same manner as in Examples 1 and 2, except that the amount of potassium selenocyanate added as a silver matrix alignment modifier was 4 mg / L. For the obtained composite plating material, the content of carbon particles in the plating film and the amount (area%) of carbon particles on the surface of the plating film were calculated by the same method as in Examples 1 and 2, and the orientation of the silver matrix And the wear resistance was evaluated. As a result, in Comparative Examples 9 and 10, the carbon particle content was 1.9 wt% and 1.7 wt%, respectively, and the amount of carbon particles on the surface was 31 area% and 27 area%. In Comparative Example 9 plated with a current density of 1 A / dm 2 , the silver matrix was oriented on the 220 plane, but in Comparative Example 10 plated with a current density of 3 A / dm 2 , the silver matrix was oriented on the 111 plane. It was. In Comparative Example 9 plated at a current density of 1 A / dm 2 , the material was not exposed even after 500,000 or more reciprocating sliding operations, but in Comparative Example 10 plated at a current density of 3 A / dm 2. The material was exposed after 370,000 reciprocating sliding motions.
実施例1〜8および比較例1〜10の結果を表1および表2にまとめて示す。 The results of Examples 1 to 8 and Comparative Examples 1 to 10 are summarized in Tables 1 and 2.
10 固定接点
12 可動接点
10 fixed
Claims (5)
A composite plating solution comprising a silver plating solution for silver plating a material, carbon particles added to the silver plating solution, and potassium selenocyanate , wherein the carbon particles are oxidized carbon particles, A composite plating solution, wherein the molar ratio of silver to free cyan in the composite plating solution is 0.7 or more.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005284303A JP4862192B2 (en) | 2005-09-29 | 2005-09-29 | Manufacturing method of composite plating material |
CN2006800362913A CN101287862B (en) | 2005-09-29 | 2006-09-12 | Process for producing composite-plated material |
PCT/JP2006/318472 WO2007037144A1 (en) | 2005-09-29 | 2006-09-12 | Process for producing composite-plated material |
EP06798083A EP1939331B1 (en) | 2005-09-29 | 2006-09-12 | Process for producing composite-plated material |
US12/088,448 US20090229987A1 (en) | 2005-09-29 | 2006-09-12 | Method for producing composite plated product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005284303A JP4862192B2 (en) | 2005-09-29 | 2005-09-29 | Manufacturing method of composite plating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007092141A JP2007092141A (en) | 2007-04-12 |
JP4862192B2 true JP4862192B2 (en) | 2012-01-25 |
Family
ID=37899573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005284303A Active JP4862192B2 (en) | 2005-09-29 | 2005-09-29 | Manufacturing method of composite plating material |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090229987A1 (en) |
EP (1) | EP1939331B1 (en) |
JP (1) | JP4862192B2 (en) |
CN (1) | CN101287862B (en) |
WO (1) | WO2007037144A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150622A (en) * | 2008-12-26 | 2010-07-08 | Hitachi Ltd | Plating liquid, conductive body substrate having projecting metallic structure and method of manufacturing the same |
JP5737787B2 (en) * | 2010-11-11 | 2015-06-17 | Dowaメタルテック株式会社 | Silver plating material and method for producing the same |
JP5346965B2 (en) * | 2011-02-08 | 2013-11-20 | Dowaメタルテック株式会社 | Silver plating material and method for producing the same |
JP5667543B2 (en) * | 2011-09-30 | 2015-02-12 | Dowaメタルテック株式会社 | Silver plating material and method for producing the same |
JP5848169B2 (en) * | 2012-03-14 | 2016-01-27 | Dowaメタルテック株式会社 | Silver plating material |
JP5848168B2 (en) * | 2012-03-14 | 2016-01-27 | Dowaメタルテック株式会社 | Silver plating material |
JP6193687B2 (en) * | 2012-09-27 | 2017-09-06 | Dowaメタルテック株式会社 | Silver plating material and method for producing the same |
CN108101250B (en) * | 2018-02-22 | 2018-11-13 | 江山宏力产品设计有限公司 | A kind of paper-making pollution emission reduction device |
EP3636804A1 (en) * | 2018-10-11 | 2020-04-15 | ABB Schweiz AG | Silver-graphene composite coating for sliding contact and electroplating method thereof |
JP6804574B2 (en) * | 2019-01-22 | 2020-12-23 | Dowaメタルテック株式会社 | Composite plating material and its manufacturing method |
EP4083270A4 (en) * | 2020-02-25 | 2023-12-20 | Dowa Metaltech Co., Ltd. | Silver-plated material and method for producing same |
CN111235608B (en) * | 2020-03-10 | 2021-02-12 | 国网浙江省电力有限公司电力科学研究院 | Cyanide-free silver-based composite plating solution, silver-based composite plating layer and preparation method thereof |
DE102020109818A1 (en) * | 2020-04-08 | 2021-04-22 | Doduco Solutions Gmbh | Electrical connector for connecting an electric vehicle to a charging station |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB991581A (en) * | 1962-03-21 | 1965-05-12 | High Temperature Materials Inc | Expanded pyrolytic graphite and process for producing the same |
GB1215002A (en) * | 1967-02-02 | 1970-12-09 | Courtaulds Ltd | Coating carbon with metal |
DE2543082C3 (en) * | 1975-09-26 | 1979-06-28 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Cyanidic silver electrolyte and process for the electrodeposition of silver-graphite dispersion coatings and its application |
JPS5348941A (en) * | 1976-10-16 | 1978-05-02 | Nippon Electro Plating | High speed silver plating method and apparatus therefor |
JPS5743995A (en) * | 1980-08-27 | 1982-03-12 | Sumitomo Electric Ind Ltd | Silver plating liquid and silver plating method |
JPS57140891A (en) * | 1981-02-23 | 1982-08-31 | Sumitomo Electric Ind Ltd | Pretreating solution for silver plating |
JPS62253798A (en) * | 1986-04-28 | 1987-11-05 | Japan Steel Works Ltd:The | Composite plating method |
US4749492A (en) * | 1987-07-06 | 1988-06-07 | Zimpro/Passavant | Process for recovering regenerated adsorbent particles and separating ash therefrom |
JP2714470B2 (en) * | 1990-03-02 | 1998-02-16 | 三菱電機株式会社 | Graphite particle dispersion silver plating method |
DE4010346A1 (en) * | 1990-03-28 | 1991-10-02 | Siemens Ag | METHOD OF APPLYING SILVER GRAPHITE DISPERSION OVERLAYS |
US5415791A (en) * | 1990-08-02 | 1995-05-16 | Oiles Corporation | Lubricating composition and a sliding member comprising the composition |
US5536386A (en) * | 1995-02-10 | 1996-07-16 | Macdermid, Incorporated | Process for preparing a non-conductive substrate for electroplating |
US5759378A (en) * | 1995-02-10 | 1998-06-02 | Macdermid, Incorporated | Process for preparing a non-conductive substrate for electroplating |
US5618400A (en) * | 1995-09-19 | 1997-04-08 | Shipley Company, L.L.C. | Electroplating process |
US5967860A (en) * | 1997-05-23 | 1999-10-19 | General Motors Corporation | Electroplated Ag-Ni-C electrical contacts |
JP3945956B2 (en) * | 2000-03-06 | 2007-07-18 | 独立行政法人科学技術振興機構 | Composite plating method |
GB2367291A (en) * | 2000-08-18 | 2002-04-03 | Graftech Inc | Preparing expandable graphite flake |
JP2005053752A (en) * | 2003-08-06 | 2005-03-03 | Hitachi Powdered Metals Co Ltd | Modified graphite particle and paint with which the modified graphite particle is compounded |
JP4783954B2 (en) * | 2004-06-21 | 2011-09-28 | Dowaメタルテック株式会社 | Composite plating material and method for producing the same |
JP4806808B2 (en) * | 2005-07-05 | 2011-11-02 | Dowaメタルテック株式会社 | Composite plating material and method for producing the same |
-
2005
- 2005-09-29 JP JP2005284303A patent/JP4862192B2/en active Active
-
2006
- 2006-09-12 US US12/088,448 patent/US20090229987A1/en not_active Abandoned
- 2006-09-12 WO PCT/JP2006/318472 patent/WO2007037144A1/en active Application Filing
- 2006-09-12 EP EP06798083A patent/EP1939331B1/en active Active
- 2006-09-12 CN CN2006800362913A patent/CN101287862B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101287862B (en) | 2010-09-08 |
EP1939331B1 (en) | 2013-02-20 |
JP2007092141A (en) | 2007-04-12 |
CN101287862A (en) | 2008-10-15 |
US20090229987A1 (en) | 2009-09-17 |
WO2007037144A1 (en) | 2007-04-05 |
EP1939331A4 (en) | 2012-01-04 |
EP1939331A1 (en) | 2008-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4862192B2 (en) | Manufacturing method of composite plating material | |
JP4806808B2 (en) | Composite plating material and method for producing the same | |
JP4783954B2 (en) | Composite plating material and method for producing the same | |
JP2007254876A (en) | Composite plating material and method of manufacturing the same | |
JP5625166B2 (en) | Composite plating material and method for producing the same | |
JP6804574B2 (en) | Composite plating material and its manufacturing method | |
JP2008127641A (en) | Method for producing composite plated material | |
CN115702262A (en) | Composite material, method for producing composite material, and terminal | |
JP4830133B2 (en) | Manufacturing method of composite plating material | |
JP4669967B2 (en) | Manufacturing method of composite plating material | |
JP4936114B2 (en) | Composite plating material and method for producing the same | |
TWI849156B (en) | Composite plated product and method for producing same | |
JP7233991B2 (en) | Composite plated material and its manufacturing method | |
JP6978568B2 (en) | Composite plating material and its manufacturing method | |
JP7341871B2 (en) | Composite plating material and its manufacturing method | |
RU2551327C1 (en) | Modified galvanic silver coating and method for production thereof | |
JP6911164B2 (en) | Composite plating material | |
CN118355153A (en) | Composite material, method for producing composite material, and terminal | |
JP2022076573A (en) | Composite plated material, and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20111019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111019 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4862192 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |