KR20020076726A - composition and manufacturing method of underwater non segregation high strength concrete - Google Patents

composition and manufacturing method of underwater non segregation high strength concrete Download PDF

Info

Publication number
KR20020076726A
KR20020076726A KR1020010016819A KR20010016819A KR20020076726A KR 20020076726 A KR20020076726 A KR 20020076726A KR 1020010016819 A KR1020010016819 A KR 1020010016819A KR 20010016819 A KR20010016819 A KR 20010016819A KR 20020076726 A KR20020076726 A KR 20020076726A
Authority
KR
South Korea
Prior art keywords
water
admixture
underwater
high strength
strength concrete
Prior art date
Application number
KR1020010016819A
Other languages
Korean (ko)
Other versions
KR100421752B1 (en
Inventor
강태오
Original Assignee
금호엔지니어링 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호엔지니어링 (주) filed Critical 금호엔지니어링 (주)
Priority to KR10-2001-0016819A priority Critical patent/KR100421752B1/en
Publication of KR20020076726A publication Critical patent/KR20020076726A/en
Application granted granted Critical
Publication of KR100421752B1 publication Critical patent/KR100421752B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/44Thickening, gelling or viscosity increasing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/74Underwater applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE: Provided is a high strength antiwashout underwater concrete composition which has no separation of materials, workability, good viscosity by using antiwashout underwater admixture and fluidifying agent. CONSTITUTION: The antiwashout underwater concrete composition comprises 410-470kg/m¬3 of cement, 45-55kg/m¬3 of fly ash, 220kg/m¬3 of water 600-650kg/m¬3 of fine aggregate, 900-950kg/m¬3 of coarse aggregate such as 19 or 25mm-sized gravel, 10-12kg/m¬3 of water reducing agent, melamine-based fluidifying agent, and 4-5kg/m¬3 of antiwashout underwater admixture, cellulose ether-based thickener. The antiwashout underwater concrete is prepared by dry-mixing cement, coarse and fine aggregates, and fly ash for 30sec, adding water and water reducing agent and mixing for 1 min, and adding antiwashout underwater admixture and fluidifying agent for 2.5min.

Description

수중불분리 고강도 콘크리트 조성물 및 그 제조방법{composition and manufacturing method of underwater non segregation high strength concrete}Composition and manufacturing method of underwater non-separation high strength concrete

본 발명은 수중불분리 고강도 콘크리트에 관한 것으로서, 보다 상세하게는 수중불분리 혼화제를 사용하여 수중에서 콘크리트를 타설하여도 재료의 분리가 일어나지 않으므로 콘크리트 품질의 신뢰성을 향상시키고 시공수역의 오염을 방지하며 더 나아가 시공환경을 보존하는 수중불분리 고강도 콘크리트 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a high strength concrete for underwater fire separation, and more particularly, because the separation of materials does not occur even when concrete is poured in water using an underwater fire separation admixture, thereby improving the reliability of concrete quality and preventing contamination of the construction area. Furthermore, the present invention relates to an underwater separation high strength concrete composition for preserving the construction environment and a method of manufacturing the same.

현재, 해양, 하천, 항만 등의 토목구조물에 사용되고 있는 수중콘크리트는 시공장치의 개량으로 콘크리트와 물과의 접촉을 방지함으로써 수중에서 재료가 분리되지 않게 하기 위하여 개발되어 있다.Currently, underwater concrete, which is used in civil engineering structures such as oceans, rivers, and harbors, has been developed to prevent the separation of materials in water by preventing contact between concrete and water by improving construction equipment.

즉, 수중콘크리트 타설 시 트레미관 또는 밑열림상자를 이용하거나 펌프에 의한 압송과 같은 방법을 사용하는 등 주로 공법적인 측면에서 재료의 분리 방지 대책을 강구하여 왔다. 그러나 이와 같은 방법은 대부분 수중콘크리트 타설 시, 시멘트 페이스트 또는 모르타르가 물에 씻겨 나가게 되어 철근과 콘크리트의 부착력이 저하되는 등 콘크리트 품질을 저하시키고 시공수역을 오염시키는 경향이 있다.In other words, measures have been taken to prevent the separation of materials in terms of construction methods, such as using a trem tube or an opening box or a method such as pumping by pump when underwater concrete is placed. However, most of these methods have a tendency to degrade concrete quality and contaminate the construction water, such as cement paste or mortar is washed out in water when the concrete is poured underwater.

따라서, 수중에서 콘크리트 타설 시, 재료의 분리를 일으키지 않고, 유동성이 우수하여 별도의 다짐 없이도 밀실한 콘크리트 구조물을 형성할 수 있으며, 시멘트 페이스트에 의하여 시공수역을 오염시키지 않는 수중불분리 고강도 콘크리트가 요구된다.Therefore, when placing concrete in water, it is possible to form a dense concrete structure without causing any separation of materials and excellent fluidity without any additional compaction. Underwater separation high strength concrete that does not contaminate the construction area by cement paste is required. do.

이러한 요구를 충족시키기 위하여, 본 발명은 수중불분리성 혼화제를 사용하여 콘크리트의 점성을 높여주므로 수중에서 콘크리트를 타설하여도 재료의 분리가 일어나지 않게 하여, 콘크리트 품질의 신뢰성을 향상시키고, 시공수역의 오염을 방지하며, 더 나아가 시공환경을 보존하는 수중불분리 고강도 콘크리트 조성물 및 그 제조방법을 제공하는 데 그 목적이 있다.In order to meet these demands, the present invention increases the viscosity of the concrete by using a water-incomparable admixture, so that the separation of materials does not occur even if the concrete is placed in water, improving the reliability of the concrete quality, It is an object of the present invention to provide a high strength concrete composition and a method for producing the same, which prevents contamination and further preserves the construction environment.

보다 구체적으로 설명하면, 본 발명은 현재 수중콘크리트 구조물에 가장 많이 사용되는 210~400㎏/㎠의 강도를 가지는 수중불분리 고강도 콘크리트 조성물 및 그 제조방법을 제공하는 데 그 목적이 있다.More specifically, it is an object of the present invention to provide a non- underwater separation high strength concrete composition having a strength of 210 ~ 400㎏ / ㎠ most commonly used in underwater concrete structures and a method of manufacturing the same.

이 목적을 달성하는 본 발명의 수중불분리 고강도 콘크리트 조성물은 시멘트, 굵은 골재, 잔 골재, 수중불분리 혼화제, 유동 혼화제, 플라이애쉬, 그리고 물과 감수제로 구성되며, 각 단위량(㎏/㎥), 즉 시멘트가 410~470, 플라이애쉬가 45~55, 물이 220, 잔 골재가 600~650, 굵은 골재가 900~950, 감수제가 10~12, 수중불분리 혼화제가 4~5인 것을 특징으로 한다.Underwater fire-resistant high-strength concrete composition of the present invention that achieves this object is composed of cement, coarse aggregate, fine aggregate, underwater fire separation admixture, flow admixture, fly ash, and water and water reducing agent, each unit amount (㎏ / ㎥) In other words, cement 410 ~ 470, fly ash 45 ~ 55, water 220, fine aggregate 600 ~ 650, coarse aggregate 900 ~ 950, water reducing agent 10 ~ 12, underwater fire separation admixture 4 ~ 5 It is done.

여기서 시멘트는 내황산염 5종을 사용한다. 이 시멘트의 물리적 성질 및 화학 성분은 표 1, 2와 같다.Here, cement is used five types of sulfate resistant. The physical properties and chemical composition of this cement are shown in Tables 1 and 2.

표 1. 시멘트의 물리적 성질Table 1. Physical Properties of Cement

시멘트 종류Cement type 비중importance 분말도 (㎠/g)Powder level (㎠ / g) 안정도 (%)Stability (%) 응결시간(분)Setting time (minutes) 압축강도(㎏/㎠)Compressive strength (㎏ / ㎠) 초결First 종결closing 3일3 days 7일7 days 28일28 days 5종5 types 3.103.10 32003200 0.10.1 280280 390390 200200 270270 380380

표 2. 시멘트의 화학적 성질Table 2. Chemical Properties of Cement

시멘트 종류Cement type MgO(%)MgO (%) SO3(%)SO 3 (%) 감열감량(%)Thermal loss (%) C3A(%)C 3 A (%) 5종5 types 3.43.4 2.02.0 1.31.3 3.83.8

굵은 골재는 보통 콘크리트에 사용되는 쇄석을 사용하며, 콘크리트의 압축 강도가 210㎏/㎠인 배합에서는 최대 치수가 25mm이고, 400㎏/㎠인 배합에서는 최대 치수가 19mm인 쇄석을 사용한다. 이와 같은 굵은 골재의 물성시험 결과는 표 3과 같다.Coarse aggregates usually use crushed stone, which is used for concrete. For concrete formulations with a compressive strength of 210 kg / cm 2, the largest dimension is 25 mm. Property test results of such coarse aggregates are shown in Table 3.

표 3. 굵은 골재의 물성시험 결과Table 3. Property test results of coarse aggregate

종류Kinds 치수(mm)Dimension (mm) 비중importance 흡수율(%)Absorption rate (%) 조립율Assembly rate 마모율Wear rate 단위중량(㎏/㎥)Unit weight (㎏ / ㎥) 비고Remarks 쇄석broken stone 1919 2.682.68 1.211.21 6.786.78 2222 16981698 쇄석broken stone 2525 2.682.68 1.211.21 7.007.00 2121 17081708

잔 골재는 염화물이 없고 조립율이 2.92정도인 강모래를 사용한다. 왜냐하면 수중불분리 콘크리트는 해양, 항만, 하천과 같은 수면하에서 철근콘크리트 구조물을 형성하므로 염화물이나 해수가 유입될 경우 구조물의 내구성이 저하되기 때문이다. 이 잔 골재의 물성시험 결과는 표 4와 같다.Fine aggregates are free of chloride and use steel sand with an assembly rate of about 2.92. Because underwater unsepared concrete forms reinforced concrete structures under the surface of the ocean, ports, and rivers, the durability of the structures is reduced when chlorides or seawater are introduced. Physical properties of the fine aggregates are shown in Table 4.

표 4. 잔 골재의 물성시험 결과Table 4. Property test results of fine aggregate

종류Kinds 비중importance 흡수율(%)Absorption rate (%) 조립율(%)Assembly rate (%) 단위중량(㎏/㎥)Unit weight (㎏ / ㎥) 비고Remarks 강모래River sand 2.622.62 1.451.45 2.922.92 16481648

수중불분리 혼화제는 셀룰로스 에테르계 증점제를 사용한다. 이 수중불분리 혼화제는 콘크리트의 점성을 높여주고 물의 세정작용으로 발생하는 재료분리에 대한 저항성, 품질의 신뢰성, 시공수역의 오염방지 등의 효과를 발휘하기 때문에 수중불분리 콘크리트의 배합에 필수적이다. 이 수중불분리 혼화제의 성질은 표 5와 같다.Separation of water-insoluble admixtures uses cellulose ether-based thickeners. This underwater segregation admixture is essential for the formulation of underwater segregation concrete because it enhances the viscosity of the concrete and has the effect of resistance to material separation caused by the water washing action, reliability of quality, and prevention of contamination of the construction area. The properties of this HF admixture are shown in Table 5.

표 5. 수중불분리 혼화제의 성질Table 5. Properties of Underwater Separation Admixtures

품명Product Name 제조업체Manufacturer 외관Exterior 주성분chief ingredient 사용량(㎏/㎥)Usage (㎏ / ㎥) PHOENIX-W-APHOENIX-W-A 진웅화학Jinwoong Chemical 백색 분말White powder 셀룰로스에테르계(HPMC)Cellulose ether system (HPMC) 4.64.6

유동 혼화제는 멜라민계를 사용한다. 수중불분리 혼화제에 의한 증점 효과로 점성이 높아진 수중불분리 콘크리트에 높은 유동성을 확보하기 위한 것으로 이의 사용 또한 필수적이다. 이러한 유동 혼화제의 성분은 표 6과 같다.The fluid admixture uses a melamine system. It is also essential to ensure high fluidity in the waterless segregated concrete with high viscosity due to the thickening effect of the waterless segregated admixture. The components of this fluid admixture are shown in Table 6.

표 6. 유동 혼화제의 성분Table 6. Components of Fluid Admixtures

품명Product Name 제조업체Manufacturer 외관Exterior 주성분chief ingredient 고형분농도Solids concentration PHPH 비중importance 사용량usage PHOENIX-W-APHOENIX-W-A 진웅화학Jinwoong Chemical 엷은갈색Hazel 멜라민계Melamine 3535 7.57.5 1.31.3 시멘트의 22%22% of cement

그리고 플라이애쉬는 시멘트 수화에 의하여 발생하는 칼슘이온(Ca+2)과 플라이애쉬에서 용출되는 SiO3이나 Al2O3가 반응하여 칼슐실리케이트수화물(CSH)이나 칼슐설퍼알루미네이트 수화물(CAH)을 생성하고 장기간에 걸쳐 고화되어 강도를 발현한다. 여기서 플라이애쉬는 습윤 밀도가 0.25이고 감열감량이 2.0인 서천화력발전소의 무연탄 플라이애쉬를 사용한다. 이 플라이애쉬의 화학성분은 표 7과 같다.In addition, fly ash reacts with calcium ions (Ca +2 ) generated by cement hydration and SiO 3 or Al 2 O 3 eluted from fly ash to produce a calcium silicate hydrate (CSH) or a calcium sulfaluminate hydrate (CAH). And solidify over a long period of time to develop strength. The fly ash uses anthracite fly ash of Seocheon thermal power plant with a wet density of 0.25 and a thermal loss of 2.0. The chemical composition of this fly ash is shown in Table 7.

표 7. 플라이애쉬의 화학성분(%)Table 7. Chemical Composition of Fly Ash (%)

SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO Na2ONa 2 O K2OK 2 O SO2 SO 2 기타Etc 55.555.5 33.233.2 4.14.1 0.20.2 1.11.1 0.30.3 4.54.5 0.30.3 0.80.8

또한, 본 발명의 수중불분리 고강도 콘크리트 제조방법은 시멘트, 굵은 골재, 잔 골재, 플라이애쉬를 믹서기에 넣고 30초간 건비빔하는 공정, 물과 감수제를 투입하여 1분간 믹싱하는 공정, 수중불분리 혼화제와 유동 혼화제를 투입하여 총 4분간 비빔하는 공정으로 이루어진다.In addition, the method of manufacturing a fire-resistant segregated high-strength concrete of the present invention is a process of putting cement, coarse aggregate, fine aggregate, and fly ash into a blender for 30 seconds, and mixing it for 1 minute by adding water and a water reducing agent, and mixing with water. And a flow admixture is added to the process for beaming for a total of 4 minutes.

여기서, 수중불분리 고강도 콘크리트는 수중불분리 혼화제를 사용하여 콘크리트의 점성, 즉 재료분리의 저항성을 높여 주므로 수중낙하 시공에서도 품질의 균일성 및 고강도를 가지며, 고유동의 유동 혼화제를 사용하므로 재료의 분리 없이 자중에 의한 수평 분산 충전을, 무(無)다짐으로 수중에서도 일반적인 수중콘크리트 시공장비를 이용할 수 있게 한다.Here, the underwater fire-resistant high-strength concrete improves the viscosity of the concrete, that is, the resistance of material separation by using the water-fired admixture, so that it has uniformity and strength of quality even in the construction of underwater dropping, and the material is separated because it uses a high flow fluid admixture. It is possible to use the general underwater concrete construction equipment in the water by compacting the horizontally distributed filling by self weight without any.

본 고안의 이점과 장점은 이하의 바람직한 실시 예로 설명하는 것에 의해 쉽게 이해될 수 있을 것이다.Advantages and advantages of the present invention will be readily understood by the following description of the preferred embodiments.

(제 1 실시 예)(First embodiment)

상기와 같은 수중불분리 콘크리트를 제조하기 위한 각 재료의 배합비는 표 8과 같다.The mixing ratio of each material for producing the above-mentioned water-insoluble concrete is shown in Table 8.

표 8. 제 1 실시 예의 수중불분리 콘크리트의 배합비Table 8. Mixing ratio of underwater unsepared concrete of Example 1

최대굵은 골재(mm)Coarse aggregate (mm) 단위량(㎏/㎥)Unit weight (㎏ / ㎥) 내황산염시멘트Sulphate Resistant Cement 플라이애쉬Fly ash water 잔골재(모래)Fine aggregate (sand) 굵은골재(자갈)Coarse aggregate (gravel) 감수제Water reducing agent 수중불분리혼화제Underwater fire separation admixture 25mm25 mm 412412 4646 220220 647647 920920 10.110.1 4.64.6

표 8과 같은 배합비로 각 재료를 믹싱하여 수중불분리 콘크리트를 제조한다. 그 제조방법은 크게 3단계의 공정으로 이루어진다.Mix each material in the mixing ratio as shown in Table 8 to prepare the water-insoluble concrete. The manufacturing method is largely composed of three steps.

먼저, 제 1 공정으로 건비빔을 실시한다. 즉, 시멘트, 자갈, 모래, 플라이애쉬를 상기와 같은 배합비로 믹서기에 넣고 30초간 건비빔을 실시한다.First, a dry beam is performed in a first step. That is, cement, gravel, sand, fly ash is put into the blender in the same ratio as described above and subjected to dry beam for 30 seconds.

제 2 공정은 물과 감수제를 투입하여 믹싱하는 공정이다. 이 공정은 1분간 지속된다.The second step is a step of mixing by adding water and a water reducing agent. This process lasts for 1 minute.

제 3 공정은 수중불분리 혼화제와 유동 혼화제를 투입하여 비빔하는 공정이다. 이 공정은 제 1, 2 공정의 시간과 합하여 총 4분간 실시된다.The third step is a process of adding and mixing the water-in-separation admixture and the fluid admixture and beaming them. This process is carried out for a total of 4 minutes in addition to the time of the first and second processes.

이러한 공정으로 얻어진 생콘크리트를 KSF2405에 따라 기(氣)중에서 10×20㎝ 몰드를 사용하여 압축 강도용 공시체를 제작하고, 또 수(水)중에서 수면하 10㎝ 높이로 몰드를 수조에 넣고 수위를 일정하게 유지시킨 뒤, 콘크리트를 용적의 5등분으로 나누어 자유 낙하시켜 채운다.The raw concrete obtained by such a process was prepared in 10 mm x 20 cm mold using a mold in accordance with KSF2405, and the mold was placed in a water tank at a height of 10 cm under water in a water bath. After keeping constant, the concrete is divided into 5 equal parts of the volume and filled freely.

약 10분 후 몰드를 수중에서 꺼낸 뒤 수분 증발을 막기 위하여 항온 항습실에 24시간 보관 뒤 탈형하여 20 ±3℃로 수중 양생한다. 이 공시체의 압축 강도는 표 9와 같다.After about 10 minutes, the mold is taken out of the water and stored in a constant temperature and humidity room for 24 hours in order to prevent evaporation of water. Then, the mold is demolded and cured under water at 20 ± 3 ℃. The compressive strength of this specimen is shown in Table 9.

표 9. 제 1 실시 예의 압축 강도(㎏/㎠)Table 9. Compressive Strength of the First Example (kg / cm 2)

구분 재령일Classification Retirement Date 7일7 days 28일28 days 수중 제작 공시체Underwater production specimen 173173 248248 기중 제작 공시체Lifting specimen 196196 269269

(제 2 실시 예)(Second embodiment)

표 10. 제 2 실시 예의 수중불분리 콘크리트의 배합비Table 10. Mixing ratio of undissolved concrete of Example 2

최대굵은 골재(mm)Coarse aggregate (mm) 단위량(㎏/㎥)Unit weight (㎏ / ㎥) 내황산염시멘트Sulphate Resistant Cement 플라이애쉬Fly ash water 잔골재(모래)Fine aggregate (sand) 굵은골재(자갈)Coarse aggregate (gravel) 감수제Water reducing agent 수중불분리혼화제Underwater fire separation admixture 25mm25 mm 461461 5151 220220 613613 909909 11.311.3 4.64.6

상기와 같은 배합비로 각 재료를 배합하여 제 1 실시 예와 동일한 제조방법으로 콘크리트를 제조하므로, 구체적인 설명은 생략하고 그 압축 강도만 표 11에 기재한다.Since the concrete is prepared by the same production method as in the first embodiment by mixing each material at the above-described mixing ratio, specific description is omitted and only the compressive strength thereof is shown in Table 11.

표 11. 제 2 실시 예의 압축 강도(㎏/㎠)Table 11. Compressive Strength of the Second Example (kg / cm 2)

구분 재령일Classification Retirement Date 7일7 days 28일28 days 수중 제작 공시체Underwater production specimen 235235 353353 기중 제작 공시체Lifting specimen 262262 376376

상기와 같이 본 발명은 수중불분리 혼화제와 유동화제를 이용하여 소요의 워커빌러티를 유지하면서 콘크리트의 점성을 높여주고 재료분리가 일어나지 않는 저항성을 높여주므로 콘크리트 품질의 신뢰성을 향상시킬 수 있고, 시공수역의 오염을 방지 및 환경 보존에 효과를 발휘할 수 있다.As described above, the present invention can increase the viscosity of the concrete while maintaining the required workability by using a water-incombustible admixture and a fluidizing agent, thereby improving the reliability of the concrete quality, thereby improving the construction quality and construction. It can be effective in preventing pollution and preserving the environment.

Claims (8)

시멘트, 굵은 골재, 잔 골재, 수중불분리 혼화제, 유동 혼화제, 플라이애쉬, 그리고 물과 감수제로 구성되며,Consisting of cement, coarse aggregate, fine aggregate, in-water admixture, fluid admixture, fly ash, and water and water reducing agent, 각각의 단위량(㎏/㎥)으로 시멘트가 410~470, 플라이애쉬가 45~55, 물이 220, 잔 골재가 600~650, 굵은 골재가 900~950, 감수제가 10~12, 수중불분리 혼화제가 4~5인 것을 특징으로 하는 수중불분리 고강도 콘크리트 조성물.Cement 410 ~ 470, Fly Ash 45 ~ 55, Water Aggregate 220 ~ 600, Fine Aggregate 600 ~ 650, Coarse Aggregate 900 ~ 950, Water Repellent 10 ~ 12, Underwater Fire Separation Underwater separation high strength concrete composition, characterized in that the admixture is 4-5. 제 1 항에 있어서, 상기 시멘트는 내황산염 5종임을 특징으로 하는 수중불분리 고강도 콘크리트 조성물.The method of claim 1, wherein the cement is in-water separation high strength concrete composition, characterized in that five. 제 1 항에 있어서, 상기 굵은 골재는 25mm 및 19mm의 쇄석임을 특징으로 하는 수중불분리 고강도 콘크리트 조성물.The high strength concrete composition of claim 1, wherein the coarse aggregate is crushed stone of 25 mm and 19 mm. 제 1 항에 있어서, 상기 잔 골재는 조립율이 2.92정도의 강모래임을 특징으로 하는 수중불분리 고강도 콘크리트 조성물.The method of claim 1, wherein the fine aggregate is in-sea segregation high strength concrete composition, characterized in that the granulation rate of about 2.92. 제 1 항에 있어서, 상기 수중불분리 혼화제는 셀룰로스 에테르계 증점제임을 특징으로 하는 수중불분리 고강도 콘크리트 조성물.The in-separable high strength concrete composition of claim 1, wherein the in-separable admixture is a cellulose ether-based thickener. 제 1 항에 있어서, 상기 유동 혼화제는 멜라민계임을 특징으로 하는 수중불분리 고강도 콘크리트 조성물.The method of claim 1, wherein the flow admixture is melamine-based high strength concrete composition in water. 제 1 항에 있어서, 상기 플라이애쉬는 무연탄 플라이애쉬임을 특징으로 하는 수중불분리 고강도 콘크리트 조성물.The high strength concrete composition of claim 1, wherein the fly ash is anthracite fly ash. 시멘트, 굵은 골재, 잔 골재, 플라이애쉬를 믹서기에 넣고 30초간 건비빔하는 공정,Cement, coarse aggregate, fine aggregate, fly ash into a blender for 30 seconds 물과 감수제를 투입하여 1분간 믹싱하는 공정,Mixing the water and water reducing agent for 1 minute, 수중불분리 혼화제와 유동 혼화제를 투입하여 총 4분간 비빔하는 공정으로 이루어지는 수중불분리 고강도 콘크리트 제조방법.Underwater separation high strength concrete manufacturing method consisting of a step of mixing the water admixture admixtures and fluid admixtures and beaming for a total of 4 minutes.
KR10-2001-0016819A 2001-03-30 2001-03-30 composition and manufacturing method of underwater non segregation high strength concrete KR100421752B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0016819A KR100421752B1 (en) 2001-03-30 2001-03-30 composition and manufacturing method of underwater non segregation high strength concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0016819A KR100421752B1 (en) 2001-03-30 2001-03-30 composition and manufacturing method of underwater non segregation high strength concrete

Publications (2)

Publication Number Publication Date
KR20020076726A true KR20020076726A (en) 2002-10-11
KR100421752B1 KR100421752B1 (en) 2004-03-10

Family

ID=27699295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0016819A KR100421752B1 (en) 2001-03-30 2001-03-30 composition and manufacturing method of underwater non segregation high strength concrete

Country Status (1)

Country Link
KR (1) KR100421752B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488190B1 (en) * 2014-09-05 2015-01-30 (주)콘텍이엔지 Concrete composition for artificial fishing banks
CN110723932A (en) * 2019-11-04 2020-01-24 中铁建大桥工程局集团第四工程有限公司 Underwater anti-dispersion concrete prepared from construction waste recycled aggregate
CN111205037A (en) * 2020-01-18 2020-05-29 杭州申华混凝土有限公司 Water-permeable concrete and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2824986B2 (en) * 1991-07-12 1998-11-18 株式会社竹中工務店 Super workable concrete
KR100207867B1 (en) * 1993-09-28 1999-07-15 Denki Kagaku Kogyo Kk Cement composition and chemical prestressed concreted therefrom
KR0145101B1 (en) * 1995-12-22 1998-07-15 유성용 Method of manufacturing high flowing cement
JP3608128B2 (en) * 1996-02-19 2005-01-05 清水建設株式会社 Manufacturing method of steel fiber reinforced high fluidity high strength concrete
KR19990030811A (en) * 1997-10-06 1999-05-06 김헌출 Self-filling concrete using thickener and its manufacturing method
KR20000014685A (en) * 1998-08-24 2000-03-15 정종순 Light insulating mortar composition having improved curing property and contraction-stability
KR100290051B1 (en) * 1999-04-30 2001-05-15 최익순 method for manufacturing fluid soil concrete and composition of fluid soil concrete
KR20000074430A (en) * 1999-05-20 2000-12-15 명호근 Production method of low heat non-vibrating concrete using belite rich cement and hydroxy propyl methyl cellulose(HPMC) viscosity agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488190B1 (en) * 2014-09-05 2015-01-30 (주)콘텍이엔지 Concrete composition for artificial fishing banks
CN110723932A (en) * 2019-11-04 2020-01-24 中铁建大桥工程局集团第四工程有限公司 Underwater anti-dispersion concrete prepared from construction waste recycled aggregate
CN111205037A (en) * 2020-01-18 2020-05-29 杭州申华混凝土有限公司 Water-permeable concrete and preparation method thereof

Also Published As

Publication number Publication date
KR100421752B1 (en) 2004-03-10

Similar Documents

Publication Publication Date Title
Lee et al. Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products
US6451104B2 (en) Method for producing a blended cementitious composition
Kasinikota et al. Evaluation of compressed stabilized earth block properties using crushed brick waste
Zhang et al. Investigation of the durability of eco-friendly concrete material incorporating artificial lightweight fine aggregate and pozzolanic minerals under dual sulfate attack
DE102010013667C5 (en) Aerated concrete molding and process for its preparation
Lorca et al. Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition
CZ302954B6 (en) Composition of hemp concrete or mortar mixtures, industrial product produced therefrom and use thereof
Reddy et al. Partial replacement of cement in concrete with sugarcane bagasse ash and its behaviour in aggressive environments
Mansour et al. The effect of the addition of metakaolin on the fresh and hardened properties of blended cement products: A review
Danso et al. Characterization of compressed earth blocks stabilized with clay pozzolana
Dogan et al. The effect of cement type on long-term transport properties of self-compacting concretes
CN111253127A (en) C30 carbon fiber broken brick recycled concrete and preparation method thereof
Quang Effect of quartz powder and mineral admixtures on the properties of high-performance concrete
JP5179919B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant concrete
KR100421752B1 (en) composition and manufacturing method of underwater non segregation high strength concrete
Ramalekshmi et al. Experimental behavior of reinforced concrete with partial replacement of cement with ground granulated blast furnace slag
Beemamol et al. Investigations on cement mortar using ceramic tailing sand as fine aggregate
KR100333347B1 (en) Method of producing self waterproof agents
Khiavi et al. Effects of micro silica on permeability of plastic concrete
Umar et al. Experiemental study on strength of concrete using silica fumes as supplementary cementitious material
Jo et al. Effect of w/b ratio and binder content on the properties of self-compacting high performance concrete (SCHPC)
SU903332A1 (en) Composition for producing facing panels
Somasekharaiah et al. Experimental investigation on the strength properties of high performance concrete using M-sand and metakaolin
KR102619818B1 (en) Self-compacting concrete composition comprising mono-fluid type admixture composition
Kallunkal et al. Optimization of foam concrete masonry blocks

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110111

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee