KR20020075669A - Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same - Google Patents

Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same Download PDF

Info

Publication number
KR20020075669A
KR20020075669A KR1020010015884A KR20010015884A KR20020075669A KR 20020075669 A KR20020075669 A KR 20020075669A KR 1020010015884 A KR1020010015884 A KR 1020010015884A KR 20010015884 A KR20010015884 A KR 20010015884A KR 20020075669 A KR20020075669 A KR 20020075669A
Authority
KR
South Korea
Prior art keywords
siloxane
based resin
formula
compound
solvent
Prior art date
Application number
KR1020010015884A
Other languages
Korean (ko)
Other versions
KR100475548B1 (en
Inventor
류이열
임진형
마상국
나은주
황일선
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR10-2001-0015884A priority Critical patent/KR100475548B1/en
Priority to EP02251958A priority patent/EP1245642B1/en
Priority to DE60204502T priority patent/DE60204502T2/en
Priority to JP2002089759A priority patent/JP3739331B2/en
Priority to US10/105,723 priority patent/US6623711B2/en
Publication of KR20020075669A publication Critical patent/KR20020075669A/en
Priority to US10/621,380 priority patent/US7019099B2/en
Application granted granted Critical
Publication of KR100475548B1 publication Critical patent/KR100475548B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE: Provided are a siloxane-based resin, which can easily form an insulating film having low dielectric constant in producing highly integrated semiconductor, and a method for forming an interlayer insulating film of semiconductor by using the same. CONSTITUTION: The siloxane-based resin is produced by hydrolyzing a cage type siloxane compound having the structure of formula 1a, 1b or 1c, and a cyclic siloxane compound having the structure of formula 2, or a silane compound having the structure of formula 3: RSiX1X2X3, into organic solvent in the presence of an acid catalyst, and polycondensing the above compounds. In the formulae, R represents hydrogen atom, alkyl group of C1-C3, cyclic alkyl group of C3-C10, or aryl group of C6-C15; each of X1, X2 and X3 independently represents an alkyl group of C1-C3, alkoxy group of C1-C10, or halogen atom; p is an integer of 3-8; m is an integer of 1-10; and n is an integer of 1-12.

Description

실록산계 수지 및 이를 이용한 반도체 층간 절연막의 형성방법{Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same}Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same}

본 발명은 실록산계 수지 및 이를 이용한 반도체 층간 절연막의 형성방법에 관한 것으로, 보다 상세하게는 케이지형 실록산 화합물과 환형 실록산 화합물 또는 실란계 화합물을 유기용매 중에서 산촉매의 존재하에 가수분해 및 축합중합시켜 제조된 신규의 실록산계 수지, 및 상기 수지를 반도체의 저유전성 절연막으로 이용하는 것을 특징으로 하는 반도체 층간 절연막의 형성방법에 관한 것이다.The present invention relates to a siloxane-based resin and a method for forming a semiconductor interlayer insulating film using the same, and more particularly, to prepare a cage-type siloxane compound and a cyclic siloxane compound or silane compound in the organic solvent by hydrolysis and condensation polymerization in the presence of an acid catalyst. A novel siloxane resin and a method for forming a semiconductor interlayer insulating film are used as the low dielectric insulating film of a semiconductor.

반도체의 집적도가 증가함에 따라 소자의 성능은 배선 속도에 의해 좌우되며, 배선에서의 저항과 용량(capacity)을 작게하기 위해서는 층간 절연막의 축적용량을 낮추는 것이 요구된다. 이와 관련하여, 미국특허 제 3,615,272호, 제 4,399,266호 및 제 4,999,397호에서는 반도체 층간 절연막 형성을 위하여, 기존의 화학적 기상 증착법(Chemical Vapor Deposition)에 사용되던 유전율 4.00의 SiO2대신에 SOD(Spin on Deoposition)가 가능한 유전율 2.5~3.1 정도의 폴리실세스퀴옥산(polysilsesquioxane)을 사용한 예를 개시하고 있으며, 이 경우 우수한 평탄화 특성으로 인해 스핀코팅 방법을 적용하는 것이 가능하였다.As the degree of integration of a semiconductor increases, the performance of the device depends on the wiring speed, and in order to reduce the resistance and capacity in the wiring, it is required to lower the storage capacitance of the interlayer insulating film. In this regard, U.S. Patent Nos. 3,615,272, 4,399,266 and 4,999,397 use SOD (Spin on Deoposition) instead of SiO 2 with a dielectric constant of 4.00, which is used in conventional chemical vapor deposition (CVD) to form a semiconductor interlayer insulating film. An example of using a polysilsesquioxane having a dielectric constant of about 2.5 to 3.1 is disclosed, and in this case, it was possible to apply the spin coating method due to excellent planarization characteristics.

상기 폴리실세스퀴옥산 및 이의 제조방법은 당해 기술분야에 이미 공지되어 있는데 예를 들면, 미국특허 제 3,615,272호에는 벤젠술폰산 수화물 가수분해 매개물 중에서 트리클로로실란을 가수분해하여 수지를 형성한 후, 그 수지를 물 또는 수성황산으로 세척함으로써 근본적으로 완전히 축합된 폴리실세스퀴옥산 수지를 제조하는 방법이 개시되어 있다. 또한, 미국특허 제 5,010,159호에는 아릴술폰산 수화물 가수분해 매개물 중에서 하이드로실란을 가수분해하여 수지를 형성한 후, 그 수지를 중화제와 접촉시키는 단계를 포함하는 폴리실세스퀴옥산 수지의 제조방법이 개시되어 있다.The polysilsesquioxane and its preparation method are already known in the art. For example, US Pat. No. 3,615,272 discloses a resin by hydrolyzing trichlorosilane in a benzenesulfonic acid hydrate hydrolysis medium, and then A method for producing a essentially fully condensed polysilsesquioxane resin is disclosed by washing the resin with water or aqueous sulfuric acid. In addition, U.S. Patent No. 5,010,159 discloses a method for producing a polysilsesquioxane resin comprising hydrolyzing hydrosilane in an arylsulfonic acid hydrate hydrolysis medium to form a resin, and then contacting the resin with a neutralizing agent. have.

그러나, 이러한 폴리실세스퀴옥산 수지의 사용만으로는 고집적도 반도체 층간 절연막의 유전성을 낮추는데 충분치 않아, 보다 낮은 유전성을 달성할 수 있는 새로운 수지의 개발이 요구되고 있는 실정이다.However, the use of such polysilsesquioxane resin alone is not sufficient to lower the dielectric constant of the high-density semiconductor interlayer insulating film, and there is a demand for development of a new resin capable of achieving lower dielectric constant.

이에, 본 발명은 케이지형 실록산 화합물과 환형 실록산 화합물 또는 실란 화합물을 단위체로 사용하여 유전율이 매우 낮은 실록산계 공중합체를 제조하고, 상기 공중합체를 이용하여 저유전성 반도체 층간 절연막을 형성하는 방법을 제공함을 목적으로 한다.Accordingly, the present invention provides a method of preparing a siloxane copolymer having a very low dielectric constant using a cage-type siloxane compound and a cyclic siloxane compound or a silane compound as a unit, and forming a low dielectric semiconductor interlayer insulating film using the copolymer. For the purpose.

즉, 본 발명의 한 측면은 하기 화학식 1a, 1b 또는 1c의 구조를 갖는 케이지형 실록산 화합물과 하기 화학식 2의 구조를 갖는 환형 실록산 화합물 또는 하기 화학식 3의 구조를 갖는 실란 화합물을 유기용매 중에서 산촉매의 존재하에 가수분해 및 축합중합시켜 제조된 실록산계 수지를 제공한다.That is, one aspect of the present invention provides a caged siloxane compound having a structure of Formula 1a, 1b or 1c and a cyclic siloxane compound having a structure of Formula 2 or a silane compound having a structure of Formula 3 in an organic solvent. It provides a siloxane resin prepared by hydrolysis and condensation polymerization in the presence.

RSiX1X2X3 RSiX 1 X 2 X 3

상기 화학식에서,In the above formula,

R은 수소 원자, C1~C3의 알킬기, C3~C10의 환형알킬기 또는 C6~C15의 아릴기이고; X1, X2및 X3는 각각 독립적으로 C1~C3의 알킬기, C1~C10의 알콕시기 또는 할로겐 원자이며; p는 3 내지 8의 정수이고; m은 1 내지 10의 정수이며; n은 1 내지 12의정수이다.R is a hydrogen atom, a C 1 -C 3 alkyl group, a C 3 -C 10 cyclic alkyl group, or a C 6 -C 15 aryl group; X 1 , X 2 and X 3 are each independently a C 1 to C 3 alkyl group, a C 1 to C 10 alkoxy group or a halogen atom; p is an integer from 3 to 8; m is an integer from 1 to 10; n is an integer from 1 to 12.

본 발명의 다른 측면은 상기 실록산계 수지를 유기용매에 용해시켜 실리콘 기판 위에 코팅한 후, 열경화시키는 단계를 포함하는 반도체 층간 절연막의 형성방법을 제공한다.Another aspect of the invention provides a method for forming a semiconductor interlayer insulating film comprising the step of dissolving the siloxane-based resin in an organic solvent and coating on a silicon substrate, followed by thermal curing.

이하, 본 발명의 실록산계 수지에 대하여 보다 상세히 설명하기로 한다.Hereinafter, the siloxane resin of the present invention will be described in more detail.

본 발명의 실록산계 수지는 케이지형 실록산계 단위체와 환형 실록산계 단위체 또는 일반적인 실란계 단위체를 유기용매 중에서 산촉매의 존재하에 가수분해 및 축합중합시켜 제조된 공중합체임을 특징으로 한다.The siloxane-based resin of the present invention is a copolymer prepared by hydrolysis and condensation polymerization of a cage-type siloxane unit and a cyclic siloxane unit or a general silane unit in an organic solvent in the presence of an acid catalyst.

본 발명의 실록산계 수지 제조에 사용되는 케이지형 실록산계 단위체는 산소 원자를 통해 고리내 및 고리간 규소 원자들이 서로 연결된 환형 구조를 갖는 화합물로서, 말단에 가수분해가 가능한 1개 이상의 작용기를 갖는 유기기가 포함되어 있으며, 하기 화학식 1a, 1b 및 1c로 표현될 수 있다.Cage-type siloxane units used in the production of siloxane resins of the present invention are compounds having a cyclic structure in which silicon atoms in a ring and inter-rings are connected to each other through an oxygen atom, and having at least one functional group capable of hydrolysis at the terminal. A group is included and may be represented by the following Chemical Formulas 1a, 1b and 1c.

[화학식 1a][Formula 1a]

[화학식 1b][Formula 1b]

[화학식 1c][Formula 1c]

상기 화학식 1a 내지 1c에서,In Chemical Formulas 1a to 1c,

X1, X2및 X3는 각각 독립적으로 C1~C3의 알킬기, C1~C10의 알콕시기 또는 할로겐 원자이고; n은 1 내지 12의 정수이다.X 1 , X 2 and X 3 are each independently C 1 -C 3 alkyl group, C 1 -C 10 alkoxy group or halogen atom; n is an integer from 1 to 12.

상기 케이지형 실록산계 단위체는 시판되는 말단의 작용기가 할로겐기인 실록산계 단위체를 그대로 사용하거나, 또는 필요에 따라 상기 말단의 할로겐기를 알킬기 또는 알콕시기로 변환시킨 후 사용한다. 이와 같은 변환에 사용되는 방법은 본 발명의 목적을 저해하지 않는 한 특별히 제한되지 아니하고, 당해 기술분야에서 공지된 임의의 방법을 사용할 수 있으며, 예를 들어 말단의 할로겐기를 알콕시기로 변환하고자 하는 경우에는 알코올 및 트리에틸아민(triethylamine)과 함께 반응시킴으로써 용이하게 달성될 수 있다.The cage-type siloxane unit is a siloxane-based unit in which a commercially available terminal functional group is a halogen group as it is, or is used after converting the halogen group of the terminal into an alkyl group or an alkoxy group, if necessary. The method used for such a conversion is not particularly limited as long as the object of the present invention is not impaired, and any method known in the art may be used, for example, when the halogen group at the terminal is to be converted into an alkoxy group. It can be easily accomplished by reacting with alcohol and triethylamine.

본 발명의 실록산계 수지 제조에 사용되는 환형 실록산계 단위체는 산소 원자를 통해 규소 원자가 서로 연결된 환형 구조를 갖는 화합물로서, 말단에 가수분해가 가능한 1개 이상의 작용기를 갖는 유기기가 포함되어 있으며, 하기 화학식 2로 표현될 수 있다.Cyclic siloxane units used in the production of the siloxane resin of the present invention is a compound having a cyclic structure in which silicon atoms are connected to each other through an oxygen atom, and includes an organic group having at least one functional group capable of hydrolysis at the terminal, It can be represented by two.

[화학식 2][Formula 2]

상기 화학식 2에서,In Chemical Formula 2,

R은 수소 원자, C1~C3의 알킬기, C3~C10의 환형알킬기 또는 C6~C15의 아릴기이고; X1, X2및 X3는 각각 독립적으로 C1~C3의 알킬기, C1~C10의 알콕시기 또는 할로겐 원자이며; p는 3 내지 8의 정수이고; m은 1 내지 10의 정수이다.R is a hydrogen atom, a C 1 -C 3 alkyl group, a C 3 -C 10 cyclic alkyl group, or a C 6 -C 15 aryl group; X 1 , X 2 and X 3 are each independently a C 1 to C 3 alkyl group, a C 1 to C 10 alkoxy group or a halogen atom; p is an integer from 3 to 8; m is an integer of 1-10.

상기 환형 실록산계 단위체는 예를 들면, 금속촉매를 이용한 하이드로실릴레이션 반응을 통하여 제조될 수 있으나, 그 제조방법은 본 발명의 목적을 저해하지 않는 한 특별히 제한되는 것은 아니다.The cyclic siloxane units may be prepared through, for example, a hydrosilylation reaction using a metal catalyst, but the production method is not particularly limited unless the object of the present invention is impaired.

본 발명의 실록산계 수지 제조에 사용되는 실란계 단위체는 규소 원자에 가수분해가 가능한 작용기가 1개 이상 치환되어 있는 구조를 갖는 통상의 실란 화합물로서, 하기 화학식 3으로 표현될 수 있다.The silane-based unit used in the production of the siloxane resin of the present invention is a conventional silane compound having a structure in which at least one functional group capable of hydrolysis is substituted on a silicon atom, and may be represented by the following Chemical Formula 3.

[화학식 3][Formula 3]

RSiX1X2X3 RSiX 1 X 2 X 3

상기 화학식 3에서,In Chemical Formula 3,

R은 수소 원자, C1~C3의 알킬기, C3~C10의 환형알킬기 또는 C6~C15의 아릴기이고; X1, X2및 X3는 각각 독립적으로 C1~C3의 알킬기, C1~C10의 알콕시기 또는 할로겐 원자이다.R is a hydrogen atom, a C 1 -C 3 alkyl group, a C 3 -C 10 cyclic alkyl group, or a C 6 -C 15 aryl group; X 1 , X 2 and X 3 are each independently a C 1 to C 3 alkyl group, a C 1 to C 10 alkoxy group or a halogen atom.

본 발명의 실록산계 수지 제조시, 상기 케이지형 실록산 화합물과 상기 환형 실록산 화합물 또는 상기 실란 화합물 간의 몰비는 0.1:99.9 내지 99.9:0.1, 바람직하게는 5:95 내지 50:50의 범위에 들도록 사용하는 것이 좋다.In preparing the siloxane resin of the present invention, the molar ratio between the cage-type siloxane compound and the cyclic siloxane compound or the silane compound is in the range of 0.1: 99.9 to 99.9: 0.1, preferably 5:95 to 50:50. It is good.

본 발명의 실록산계 수지 제조에 사용되는 유기용매로는 방향족 용매, 지방족 용매, 케톤계 용매, 에테르계 용매, 실리콘 용매, 또는 이들의 혼합물을 사용하는 것이 바람직하다.It is preferable to use an aromatic solvent, an aliphatic solvent, a ketone solvent, an ether solvent, a silicone solvent, or a mixture thereof as the organic solvent used in the preparation of the siloxane resin of the present invention.

또한, 본 발명의 실록산계 수지 제조에 사용되는 산촉매의 종류는 특별히 제한되는 것은 아니나, 염산, 벤젠술폰산, 질산, 옥살산, 포름산, 또는 이들의 혼합물을 사용하는 것이 바람직하다.In addition, the kind of acid catalyst used for producing the siloxane resin of the present invention is not particularly limited, but it is preferable to use hydrochloric acid, benzenesulfonic acid, nitric acid, oxalic acid, formic acid, or a mixture thereof.

상기 산촉매는 케이지형 단위체 및 환형 단위체, 또는 케이지형 단위체 및 실란계 단위체의 말단 작용기에 대하여 1 내지 1×10-6의 당량으로 첨가되는 것이 바람직하다.The acid catalyst is preferably added in an amount of 1 to 1 × 10 −6 equivalents to the terminal functional groups of the cage type unit and the cyclic unit or cage type unit and the silane unit.

상기 유기용매 중에서 상기 산촉매의 존재하에 수행되는 가수분해반응 및 축합중합반응 중에 사용되는 물의 양은 사용된 단위체의 작용기에 대한 당량으로 1 내지 100, 바람직하게는 1 내지 10의 범위에 드는 것이 좋다.The amount of water used during the hydrolysis and condensation polymerization reaction in the organic solvent in the presence of the acid catalyst is in the range of 1 to 100, preferably 1 to 10 equivalents to the functional group of the monomer used.

상기 가수분해반응 및 축합중합반응은 0 내지 200℃, 바람직하게는 50 내지 110℃의 온도에서, 1 내지 100시간 동안, 바람직하게는 5 내지 48시간 동안 수행하는 것이 좋다.The hydrolysis reaction and condensation polymerization reaction is preferably carried out at a temperature of 0 to 200 ℃, preferably 50 to 110 ℃, for 1 to 100 hours, preferably for 5 to 48 hours.

이와 같이 제조된 본 발명의 실록산계 수지는 1,000 내지 1,000,000, 바람직하게는 3,000 내지 300,000의 분자량을 가지며, 수지내 Si-OH 함량은 10몰% 이상이다.The siloxane resin of the present invention thus prepared has a molecular weight of 1,000 to 1,000,000, preferably 3,000 to 300,000, and the Si-OH content in the resin is 10 mol% or more.

이하, 본 발명의 실록산계 수지를 이용한 반도체 층간 절연막의 형성방법에 대하여 상세히 설명하고자 한다.Hereinafter, a method of forming a semiconductor interlayer insulating film using the siloxane resin of the present invention will be described in detail.

본 발명의 반도체 층간 절연막 형성방법은 상기 실록산계 수지를 유기용매에 용해시켜 실리콘 기판 위에 코팅하는 단계, 및 상기 코팅된 기판을 가열하여 실록산계 수지를 경화시키는 단계를 포함한다.The method for forming a semiconductor interlayer insulating film of the present invention includes dissolving the siloxane-based resin in an organic solvent and coating it on a silicon substrate, and heating the coated substrate to cure the siloxane-based resin.

본 발명의 절연막 형성방법에서 실록산계 수지를 녹이는데 사용되는 유기용매의 종류는 특별히 제한된 것은 아니나, 아니졸(anisole), 크실렌(xylene)등의 방향족계 탄화수소; 메틸이소부틸케톤, 아세톤 등의 케톤계 용매; 테트라히드로퓨란, 이소프로필에테르등의 에테르계 용매; 실리콘 용매; 또는 이들의 혼합물을 사용하는 것이 바람직하다.The kind of organic solvent used to dissolve the siloxane resin in the insulating film forming method of the present invention is not particularly limited, but aromatic hydrocarbons such as anisole and xylene; Ketone solvents such as methyl isobutyl ketone and acetone; Ether solvents such as tetrahydrofuran and isopropyl ether; Silicone solvents; Or mixtures thereof.

상기 유기용매는 실록산계 수지를 기판에 도포하기 위해 요구되는 농도까지 충분한 양이 존재하여야 하며, 상기 실록산계 수지의 고형분 농도가 0.1 내지 80 중량%, 바람직하게는 5 내지 30중량%가 되도록 녹이는 것이 좋다.The organic solvent should be present in a sufficient amount up to the concentration required to apply the siloxane resin to the substrate, and the organic solvent is dissolved so that the solid content concentration of the siloxane resin is 0.1 to 80% by weight, preferably 5 to 30% by weight. good.

이와 같이 준비된 본 발명의 실록산계 수지 용액을 기판에 도포하기 위한 방법은 스핀 코팅(spin coating), 딥 코팅(deep coating), 분무 코팅(spray coating), 흐름 코팅(flow coating), 스크린 인쇄(screen printing) 등을 포함하나, 이에 제한되는 것은 아니며, 가장 바람직한 도포방법은 스핀 코팅이다. 특히, 스핀 코팅을 행하는 경우, 스핀의 속도는 1000 내지 5000rpm의 범위내에서 조절하는 것이 바람직하다.The method for applying the siloxane-based resin solution of the present invention prepared in this way to the substrate is spin coating, deep coating, spray coating, flow coating, screen printing. printing) and the like, but the present invention is not limited thereto, and the most preferable coating method is spin coating. In particular, in the case of performing spin coating, the speed of the spin is preferably adjusted within the range of 1000 to 5000 rpm.

도포가 완료되면, 코팅된 기판으로부터 유기용매를 증발시켜 실록산계 수지막이 기판상에 침착되게 한다. 이때, 증발방법으로는 코팅된 기판을 주위 환경에 노출시키는 것과 같은 단순 공기 건조법, 또는 경화 공정의 초기 단계에서 진공을 적용하거나 100℃이하에서 약하게 가열하는 방법 등이 사용될 수 있다.When the application is complete, the organic solvent is evaporated from the coated substrate so that the siloxane resin film is deposited on the substrate. In this case, as the evaporation method, a simple air drying method such as exposing the coated substrate to the surrounding environment, or a method of applying a vacuum at the initial stage of the curing process or weakly heating below 100 ° C. may be used.

유기용매를 증발시킨 후에는, 코팅된 기판을 1 내지 150분 동안 150 내지 600℃, 바람직하게는 200 내지 450℃의 온도에서 열경화시켜, 균열이 없는 불용성피막을 형성시킨다. 균열이 없는 피막이란 ×1000 배율의 광학현미경으로 관찰했을 때, 육안으로 볼 수 있는 임의의 균열이 관찰되지 않는 피막을 뜻하며, 불용성 피막이란 상기 실록산계 수지 용액의 제조에 사용된 유기용매에 본질적으로 용해되지 않는 피막을 말한다.After evaporating the organic solvent, the coated substrate is thermally cured at a temperature of 150 to 600 ° C., preferably 200 to 450 ° C. for 1 to 150 minutes to form an insoluble coating without cracks. A crack-free film means a film in which any cracks visible to the naked eye are not observed when observed with an optical microscope at a × 1000 magnification, and an insoluble film is essentially an organic solvent used in the preparation of the siloxane resin solution. Refers to a film that does not dissolve.

상술한 본 발명의 방법에 따라 제조된 박막은 3.0 이하의 유전율, 바람직하게는 2.0~2.7의 유전율을 가지므로, 반도체 층간 절연막으로서 매우 유용하다.The thin film produced according to the method of the present invention described above has a dielectric constant of 3.0 or less, preferably 2.0 to 2.7, and thus is very useful as a semiconductor interlayer insulating film.

이하 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것으로 본 발명을 제한하기 위한 것이 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the following examples are for illustrative purposes only and are not intended to limit the present invention.

제조예 1: 케이지형 실록산계 단위체 합성 Preparation Example 1 Synthesis of Cage Type Siloxane Unit

제조예 1-1: 단위체 (A) 합성 Preparation Example 1-1 Synthesis of Unit (A)

옥타(클로로실릴에틸)-포스(octa(chlorosilylethyl)-POSS[Polyhedral Oligomeric Silsesquioxane]) 7.194mmol(10.0g)을 테트라히드로퓨란 500ml로 희석시키고, 트리에틸아민 63.310mmol(6.41g)을 첨가하였다. 이어서, 반응온도를 -78℃로 낮추고, 메틸알콜 63.310mmol(2.03g)을 서서히 가한 후, 반응온도를 서서히 상온까지 승온시켰다. 상온에서 20시간 동안 반응을 진행시킨 후, 셀라이트(celite)를 통해 여과하고, 0.1Torr 정도의 감압하에서 휘발성 물질을 제거하였다. 여기에 펜탄 100ml을 가하고, 1시간 동안 교반한 후, 셀라이트(celite)를 통해 여과하여 무색의 맑은 용액을 얻고, 다시 이 용액으로부터 0.1Torr 정도의감압하에서 펜탄을 제거하여, 하기의 구조를 갖는 단위체 (A)를 수득하였다.7.194 mmol (10.0 g) of octa (chlorosilylethyl) -POSS [Polyhedral Oligomeric Silsesquioxane] was diluted with 500 ml of tetrahydrofuran and 63.310 mmol (6.41 g) of triethylamine was added. Subsequently, the reaction temperature was lowered to −78 ° C., 63.310 mmol (2.03 g) of methyl alcohol was slowly added, and the reaction temperature was gradually raised to room temperature. After the reaction was performed at room temperature for 20 hours, the mixture was filtered through celite, and volatiles were removed under reduced pressure of about 0.1 Torr. 100 ml of pentane was added thereto, stirred for 1 hour, filtered through celite to give a colorless clear solution, and pentane was further removed from the solution under reduced pressure of about 0.1 Torr. Unit (A) was obtained.

상기 단위체 (A)를 CDCl3에 녹여 측정한 NMR 결과는 다음과 같다.The NMR results of dissolving the unit (A) in CDCl 3 are as follows.

1H-NMR(300MHz): δ 0.11(s, 48H, 8×-[CH3]2), 0.54~0.68(m, 32H, 8×-CH2CH2-), 3.43(s, 24H, 8×-OCH3) 1 H - NMR (300 MHz): δ 0.11 (s, 48H, 8 ×-[CH 3 ] 2 ), 0.54-0.68 (m, 32H, 8 × -CH 2 CH 2- ), 3.43 (s, 24H, 8 × -OCH 3 )

제조예 1-2: 단위체 (B) 합성 Preparation Example 1-2 Synthesis of Unit (B)

옥타(디클로로실릴에틸)-포스(octa(dichlorosilylethyl)-POSS) 6.438mmol(10.0g)을 테트라히드로퓨란 500ml로 희석시키고, 트리에틸아민 113.306mmol(11.47g)을 첨가하였다. 이어서, 반응온도를 -78℃로 낮추고, 메틸알콜 113.306mmol(3.63g)을 서서히 가한 후, 반응온도를 서서히 상온까지 승온시켰다. 상온에서 20시간 동안 반응을 진행시킨 후, 셀라이트(celite)를 통해 여과하고, 0.1Torr 정도의 감압하에서 휘발성 물질을 제거하였다. 여기에 펜탄 100ml을 가하고, 1시간 동안 교반한 후, 셀라이트(celite)를 통해 여과하여 무색의 맑은 용액을 얻고, 다시 이 용액으로부터 0.1Torr 정도의 감압하에서 펜탄을 제거하여, 하기의 구조를 갖는 단위체 (B)를 수득하였다.6.438 mmol (10.0 g) of octa (dichlorosilylethyl) -force (octa (dichlorosilylethyl) -POSS) was diluted with 500 ml of tetrahydrofuran and 113.306 mmol (11.47 g) of triethylamine were added. Subsequently, the reaction temperature was lowered to -78 ° C, methyl alcohol 113.306 mmol (3.63 g) was added slowly, and the reaction temperature was gradually raised to room temperature. After the reaction was performed at room temperature for 20 hours, the mixture was filtered through celite, and volatiles were removed under reduced pressure of about 0.1 Torr. 100 ml of pentane was added thereto, stirred for 1 hour, filtered through celite to give a colorless clear solution, and pentane was further removed from the solution under reduced pressure of about 0.1 Torr. Unit (B) was obtained.

상기 단위체 (B)를 CDCl3에 녹여 측정한 NMR 결과는 다음과 같다.The NMR results of dissolving the unit (B) in CDCl 3 are as follows.

1H-NMR(300MHz): δ 0.12(s, 24H, 8×-CH3), 0.56~0.70(m, 32H, 8×-CH2CH2-), 3.46(s, 48H, 8×-[OCH3]2) 1 H - NMR (300 MHz): δ 0.12 (s, 24H, 8 × -CH 3 ), 0.56-0.70 (m, 32H, 8 × -CH 2 CH 2- ), 3.46 (s, 48H, 8 ×-[ OCH 3 ] 2 )

제조예 1-3: 단위체 (C) 합성 Preparation Example 1-3 Synthesis of Unit (C)

옥타(트리클로로실릴에틸)-포스(octa(trichlorosilylethyl)-POSS) 2.913mmol(5.0g)을 테트라히드로퓨란 500ml로 희석시키고, 트리에틸아민 76.893mmol(7.78g)을 첨가하였다. 이어서, 반응온도를 -78℃로 낮추고, 메틸알콜 76.893mmol(2.464g)을 서서히 가한 후, 반응온도를 서서히 상온까지 승온시켰다. 상온에서 20시간 동안 반응을 진행시킨 후, 셀라이트(celite)를 통해 여과하고, 0.1Torr 정도의 감압하에서 휘발성 물질을 제거하였다. 여기에 펜탄 100ml을 가하고, 1시간 동안 교반한 후, 셀라이트(celite)를 통해 여과하여 무색의 맑은 용액을 얻고, 다시 이 용액으로부터 0.1Torr 정도의 감압하에서 펜탄을 제거하여, 하기의구조를 갖는 단위체 (C)를 수득하였다.2.913 mmol (5.0 g) of octa (trichlorosilylethyl) -force (octa (trichlorosilylethyl) -POSS) was diluted with 500 ml of tetrahydrofuran and 76.893 mmol (7.78 g) of triethylamine was added. Subsequently, the reaction temperature was lowered to -78 ° C, methyl alcohol 76.893 mmol (2.464 g) was gradually added, and the reaction temperature was gradually raised to room temperature. After the reaction was performed at room temperature for 20 hours, the mixture was filtered through celite, and volatiles were removed under reduced pressure of about 0.1 Torr. 100 ml of pentane was added thereto, stirred for 1 hour, filtered through celite to obtain a colorless clear solution, and pentane was further removed from the solution under reduced pressure of about 0.1 Torr. Unit (C) was obtained.

상기 단위체 (C)를 CDCl3에 녹여 측정한 NMR 결과는 다음과 같다.The NMR results of dissolving the unit (C) in CDCl 3 are as follows.

1H-NMR(300MHz): δ 0.66~0.69(m, 32H, 8×-CH2CH2-), 3.58(s, 72H, 8×-[OCH3]3) 1 H - NMR (300 MHz): δ 0.66-0.69 (m, 32H, 8 × -CH 2 CH 2- ), 3.58 (s, 72H, 8 ×-[OCH 3 ] 3 )

제조예 2: 환형 실록산계 단위체 합성 Preparation Example 2 Synthesis of Cyclic Siloxane Unit

제조예 2-1: 단위체 (D) 합성 Preparation Example 2-1 Synthesis of Monomer (D)

2,4,6,8-테트라메틸-2,4,6,8-테트라비닐시클로테트라실록산(2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane) 29.014mmol(10.0g)과 크실렌 용액에 녹아있는 플레티늄(0)-1,3-디비닐-1,1,3,3-테트라메틸디실록산 화합물(platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex(solution in xylenes)) 0.164g을 플라스크에 투입한 후, 디에틸 에테르 300ml를 넣어 희석시켰다. 이어서, 반응 용기의 온도를 -78℃로 낮춘 후, 트리클로로실란 127.66mmol(17.29g)을 서서히 가한 다음, 반응온도를 서서히 상온까지 승온시켰다.이후 상온에서 20시간 동안 반응을 진행시키고, 0.1Torr 정도의 감압하에서 휘발성 물질을 제거하였다. 여기에 펜탄 100ml을 가하고, 1시간 동안 교반한 후, 셀라이트(celite)를 통해 여과하여 용액을 얻고, 다시 이 용액으로부터 0.1Torr 정도의 감압하에서 펜탄을 제거하여 하기의 구조를 갖는 액상 화합물을 수득하였다.2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane) 29.014 mmol (10.0 g) ) And platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane compound (platinum (0) -1,3-divinyl-1,1,3, 0.164 g of 3-tetramethyldisiloxane complex (solution in xylenes)) was added to the flask, followed by dilution with 300 ml of diethyl ether. Subsequently, after lowering the temperature of the reaction vessel to −78 ° C., 127.66 mmol (17.29 g) of trichlorosilane was slowly added, and the reaction temperature was gradually raised to room temperature. Thereafter, the reaction was allowed to proceed at room temperature for 20 hours, and 0.1 Torr. The volatiles were removed under reduced pressure. 100 ml of pentane was added thereto, stirred for 1 hour, filtered through celite to obtain a solution, and pentane was further removed from the solution under reduced pressure of about 0.1 Torr to obtain a liquid compound having the following structure. It was.

상기 액상 화합물 11.28mmol(10.0g)을 테트라히드로퓨란 500ml로 희석시키고, 트리에틸아민 136.71mmol(13.83g)을 첨가하였다. 이어서, 반응온도를 -78℃로 낮추고, 메틸알콜 136.71mmol(4.38g)을 서서히 가한 후, 반응온도를 서서히 상온까지 승온시켰다. 상온에서 15시간 동안 반응을 진행시킨 후, 셀라이트(celite)를 통해 여과하고, 0.1Torr 정도의 감압하에서 휘발성 물질을 제거하였다. 여기에 펜탄 100ml을 가하고, 1시간 동안 교반한 후, 셀라이트(celite)를 통해 여과하여 무색의 맑은 용액을 얻고, 다시 이 용액으로부터 0.1Torr 정도의 감압하에서 펜탄을 제거하여, 하기의 구조를 갖는 단위체 (D)를 수득하였다.11.28 mmol (10.0 g) of the liquid compound was diluted with 500 ml of tetrahydrofuran and 136.71 mmol (13.83 g) of triethylamine was added. Subsequently, the reaction temperature was lowered to −78 ° C., and 136.71 mmol (4.38 g) of methyl alcohol was slowly added, and then the reaction temperature was gradually raised to room temperature. After the reaction was performed at room temperature for 15 hours, the mixture was filtered through celite and volatiles were removed under reduced pressure of about 0.1 Torr. 100 ml of pentane was added thereto, stirred for 1 hour, filtered through celite to give a colorless clear solution, and pentane was further removed from the solution under reduced pressure of about 0.1 Torr. Unit (D) was obtained.

상기 단위체 (D)를 CDCl3에 녹여 측정한 NMR 결과는 다음과 같다.The NMR results of dissolving the unit (D) in CDCl 3 are as follows.

1H-NMR(300MHz): δ 0.09(s, 12H, 4×-CH3), 0.52~0.64(m, 16H, 4×-CH2CH2-), 3.58(s, 36H, 4×-[OCH3]3) 1 H - NMR (300 MHz): δ 0.09 (s, 12H, 4 × -CH 3 ), 0.52 to 0.64 (m, 16H, 4 × -CH 2 CH 2- ), 3.58 (s, 36H, 4 ×-[ OCH 3 ] 3 )

제조예 2-2: 단위체 (E) 합성 Preparation Example 2-2 Synthesis of Unit (E)

2,4,6,8-테트라메틸시클로테트라실록산(2,4,6,8-tetramethylcyclotetrasiloxane) 8.32mmol(2.0g)과 크실렌 용액에 녹아있는 플레티늄(0)-1,3-디비닐-1,1,3,3-테트라메틸디실록산 화합물 0.034g을 플라스크에 투입한 후, 톨루엔 100ml를 넣어 희석시키고, 트리메톡시(7-옥텐-1-일)실란 (trimethoxy(7-octen-1-yl)silane) 33.36mmol(7.75g)을 서서히 가한 다음, 반응온도를 서서히 75℃까지 승온시켰다. 이후 36시간 동안 반응을 진행시킨 후, 0.1Torr 감압하에서 휘발성 물질을 제거하였다. 여기에 펜탄 100ml을 가하고, 1시간 동안 교반한 후, 셀라이트(celite)를 통해 여과하여 용액을 얻고, 다시 이 용액으로부터 0.1Torr 감압하에서 펜탄을 제거하여, 하기의 구조를 갖는 단위체 (E)를 수득하였다.2,4,6,8-tetramethylcyclotetrasiloxane (2,4,6,8-tetramethylcyclotetrasiloxane) 8.32 mmol (2.0 g) and platinum (0) -1,3-divinyl-1 dissolved in xylene solution, 0.034 g of 1,3,3-tetramethyldisiloxane compound was added to the flask, followed by dilution with 100 ml of toluene, and trimethoxy (7-octen-1-yl). 33.36 mmol (7.75 g) was added slowly, and the reaction temperature was gradually raised to 75 ° C. After the reaction was carried out for 36 hours, volatiles were removed under 0.1 Torr reduced pressure. 100 ml of pentane was added thereto, stirred for 1 hour, filtered through celite to obtain a solution, and pentane was further removed from the solution under 0.1 Torr reduced pressure to obtain a unit (E) having the following structure. Obtained.

상기 단위체 (E)를 CDCl3에 녹여 측정한 NMR 결과는 다음과 같다.The NMR results of measuring the unit (E) in CDCl 3 are as follows.

1H-NMR(300MHz): δ 0.11(s, 12H, 4×-CH3), 0.48~0.53(m, 8H, 4×-CH2-), 0.86~0.90(m, 8H, 4×-CH2-), 1.15~1.71(m, 48H, 4×-[CH2]6), 3.58(s, 36H, 4×-[OCH3]3) 1 H - NMR (300 MHz): δ 0.11 (s, 12H, 4 × -CH 3 ), 0.48 to 0.53 (m, 8H, 4 × -CH 2- ), 0.86 to 0.90 (m, 8H, 4 × -CH 2- ), 1.15 to 1.71 (m, 48H, 4 ×-[CH 2 ] 6 ), 3.58 (s, 36H, 4 ×-[OCH 3 ] 3 )

실시예 1: 실록산계 수지 합성 Example 1 siloxane-based resin synthesis

하기 표 1에 나타낸 바와 같이, 케이지형 단위체와 환형 단위체 또는 시판되는 실란계 단위체 각각을 정량한 후, 테트라히드로퓨란 45ml로 희석시켜 플라스크에 투입하고, 플라스크의 내부 온도를 -78℃까지 내렸다. -78℃에서 염산과 물을 서서히 첨가한 후, 온도를 70℃로 서서히 승온시켰다. 이후 70℃에서 반응을 16시간 동안 진행시켰다. 반응용액을 분별깔대기에 옮긴 후, 디에틸에테르 90ml를 첨가하고, 물 50ml로 3회 세척한 다음, 감압하에서 휘발성 물질을 제거하여 흰색 분말 형태의 중합체를 얻었다. 상기 중합체를 소량의 아세톤에 용해시키고, 이 용액을 기공이 0.2μm인 실린지 필터로 여과하여 미세한 분말 및 기타 이물질을 제거하고 맑은 용액 부분만을 취한 후, 물을 서서히 가하였다. 이때 생성된 흰색 분말과 용액 부분(아세톤과 물의 혼합용액)을 분리한 후, 0 내지 5℃의 온도로 0.1Torr 감압하에서 상기 흰색 분말을 건조시켜 분별된 실록산계 수지를 수득하였다. 각각의 중합체 합성에 사용된 단위체, 산촉매, 물 및 수득한 실록산계 수지의 양은 하기 표 1과 같다.As shown in Table 1 below, each of the cage-type unit and the cyclic unit or the commercially available silane-based unit was quantified, diluted with 45 ml of tetrahydrofuran and added to the flask, and the temperature of the flask was lowered to -78 ° C. After slowly adding hydrochloric acid and water at -78 ° C, the temperature was gradually raised to 70 ° C. Thereafter, the reaction was performed at 70 ° C. for 16 hours. After the reaction solution was transferred to a separatory funnel, 90 ml of diethyl ether was added, washed three times with 50 ml of water, and volatiles were removed under reduced pressure to obtain a white powdery polymer. The polymer was dissolved in a small amount of acetone and the solution was filtered through a syringe filter with a pore of 0.2 μm to remove fine powder and other debris, and only the clear solution portion was taken, followed by the slow addition of water. At this time, the resulting white powder and the solution portion (acetone and water mixed solution) were separated, and the white powder was dried under reduced pressure at 0.1 Torr at a temperature of 0 to 5 ℃ to obtain a fractionated siloxane resin. The amount of monomers, acid catalyst, water and siloxane resins used in the synthesis of each polymer are shown in Table 1 below.

수지Suzy 단위체(g)Unit (g) HCl(mmol)HCl (mmol) H2O(mmol)H 2 O (mmol) 수득량(g)Yield (g) 케이지형Cage type 환형Annular 실란계Silane system (a)(a) 단위체 (A)2.00gMonomer (A) 2.00 g 단위체 (D)11.08gUnit (D) 11.08g 1.7131.713 570.96570.96 6.156.15 (b)(b) 단위체 (A)2.00gMonomer (A) 2.00 g CH3Si(OCH3)31.81gCH 3 Si (OCH 3 ) 3 1.81 g 0.005170.00517 172.36172.36 2.032.03 (c)(c) 단위체 (B)2.00gUnit (B) 2.00 g 단위체 (D)10.12gUnit (D) 10.12 g 1.6731.673 557.56557.56 6.046.04 (d)(d) 단위체 (B)2.00gUnit (B) 2.00 g 단위체 (E)14.20gMonomer (E) 14.20 g 1.6731.673 557.56557.56 5.175.17 (e)(e) 단위체 (B)2.00gUnit (B) 2.00 g CH3Si(OCH3)31.65gCH 3 Si (OCH 3 ) 3 1.65 g 0.005800.00580 193.36193.36 1.951.95 (f)(f) 단위체 (C)2.00gMonomer (C) 2.00 g 단위체 (D)9.32gMonomer (D) 9.32 g 1.6401.640 546.70546.70 4.114.11

상기로부터 수득한 실록산계 수지의 분자량, Si-OH 함량, Si-OCH3함량, Si-CH3함량 및 무게손실 측정치는 하기 표 2와 같다.The molecular weight, Si-OH content, Si-OCH 3 content, Si-CH 3 content, and weight loss measurements of the siloxane resins obtained from the above are shown in Table 2 below.

수지Suzy MWMW MWDMWD Si-OH(%)Si-OH (%) Si-OCH3(%)Si-OCH 3 (%) Si-CH3(%)Si-CH 3 (%) 무게손실(%)Weight loss (%) (a)(a) 6341863418 6.136.13 26.326.3 0.70.7 73.073.0 4.54.5 (b)(b) 68786878 6.156.15 12.912.9 0.90.9 86.286.2 4.24.2 (c)(c) 6661466614 8.598.59 37.637.6 0.60.6 61.861.8 4.14.1 (d)(d) 8986089860 8.348.34 39.739.7 0.80.8 59.559.5 3.83.8 (e)(e) 69046904 5.705.70 30.630.6 1.41.4 68.068.0 4.64.6 (f)(f) 6714567145 7.867.86 28.628.6 1.71.7 69.769.7 3.73.7

[물성 측정 방법][Measurement Method]

※분자량: 겔 투과 크로마토그래피(gel permeation chromatogrphy, Waters社)로 분석하였다.※ Molecular weight: analyzed by gel permeation chromatography (gel permeation chromatogrphy, Waters).

※Si-OH 함량, Si-OCH3함량, Si-CH3함량: 핵자기공명 분석기(NMR, Bruker社)로 분석하였다.※ Si-OH content, Si-OCH 3 content, Si-CH 3 content: It was analyzed by nuclear magnetic resonance analyzer (NMR, Bruker).

Si-OH(%)=Area(Si-OH)/[Area(Si-OH)+Area(Si-OCH3)+Area(Si-CH3)]×100Si-OH (%) = Area (Si-OH) / [Area (Si-OH) + Area (Si-OCH 3 ) + Area (Si-CH 3 )] × 100

Si-OCH3(%)=Area(Si-OCH3)/[Area(Si-OH)+Area(Si-OCH3)+Area(Si-CH3)]×100Si-OCH 3 (%) = Area (Si-OCH 3 ) / [Area (Si-OH) + Area (Si-OCH 3 ) + Area (Si-CH 3 )] × 100

Si-CH3(%)=Area(Si-CH3)/[Area(Si-OH)+Area(Si-OCH3)+Area(Si-CH3)]×100Si-CH 3 (%) = Area (Si-CH 3 ) / [Area (Si-OH) + Area (Si-OCH 3 ) + Area (Si-CH 3 )] × 100

※무게손실: 열중량감소 분석기(TGA, TA instruments社)로 200℃ 내지 500℃ 온도 범위에서의 무게손실(%)를 측정하였다.※ Weight loss: The weight loss (%) was measured in the temperature range of 200 degreeC-500 degreeC with the thermogravimetry analyzer (TGA, TA instruments).

실시예 2: 박막두께 및 유전율 측정 Example 2 thin film thickness and dielectric constant measurement

상기 실시예 1로부터 수득한 실록산계 수지를 메틸이소부틸케톤에 녹이고, 이 용액을 보론으로 도핑(doping)된 P-타입의 실리콘 웨이퍼 상에 3000rpm으로 스핀 코팅(spin-coating)하였다. 상기 코팅된 기판을 핫플레이트 상에서 150℃에서 1분, 250℃에서 1분간 순차적으로 소프트 베이킹(soft baking)을 실시하여 유기용제를 충분히 제거하였다. 이어서, 린버그 로(Linberg furnace) 내에서 400℃, 진공 분위기의 조건하에서 60분간 경화(curing)를 실시하여 테스트 시편을 제조하였다. 완성된 테스트 시편 각각에 대해서, 프리즘 커플러(prism coupler), 엘립소미터(ellipsometer) 및 프로파일러(profiler)를 이용하여 기판 상에 형성된 박막의 두께를 측정하고, 프리즘 커플러와 엘립소미터를 이용하여 굴절율을 측정하였으며, 그 결과를 하기 표 3에 요약하여 나타내었다.The siloxane resin obtained in Example 1 was dissolved in methyl isobutyl ketone, and the solution was spin-coated at 3000 rpm on a P-type silicon wafer doped with boron. The coated substrate was subjected to soft baking sequentially at 150 ° C. for 1 minute at 250 ° C. for 1 minute to sufficiently remove the organic solvent. Subsequently, the test specimens were prepared by curing for 60 minutes in a Linberg furnace at 400 ° C. under a vacuum atmosphere. For each of the completed test specimens, the thickness of the thin film formed on the substrate was measured using a prism coupler, ellipsometer, and profiler, and the prism coupler and ellipsometer were used. The refractive index was measured and the results are summarized in Table 3 below.

수지Suzy 프리즘 커플러Prism coupler 엘립소미터Ellipsometer 프로파일러Profiler 유전율permittivity 두께(Å)Thickness 굴절율Refractive index 두께(Å)Thickness 굴절율Refractive index 두께(Å)Thickness (a)(a) 81688168 1.4331.433 -- -- 77517751 2.262.26 (b)(b) 73357335 1.4201.420 73677367 1.4221.422 65846584 2.302.30 (c)(c) 86768676 1.4261.426 87008700 1.4261.426 82468246 2.342.34 (d)(d) 80508050 1.4351.435 -- -- 79617961 2.312.31 (e)(e) 75357535 1.4241.424 76447644 1.4231.423 70557055 2.342.34 (f)(f) 85658565 1.4271.427 -- -- 84128412 2.422.42

한편, 상기 실록산계 수지 박막의 유전율을 Hg CV 미터(SSM 490i CV system, Solid State Measurements)를 이용하여, 약 1 MHz의 주파수에서 게이트 전압(gate voltage)이 -220V 내지 220V인 범위내에서 측정하였다.Meanwhile, the dielectric constant of the siloxane resin thin film was measured using a Hg CV meter (SSM 490i CV system, Solid State Measurements) within a range of -220V to 220V gate voltage at a frequency of about 1 MHz. .

유전율을 측정하기 위해서는 사전에 박막두께와 유전율을 알고 있는 기준물질(예: 열산화 실리콘옥사이드)이 코팅된 시편에 대해 정전용량(capacitance)을 측정하고, 하기 수학식 1을 이용하여 Hg 전극과 상기 시편과의 접촉면적을 구해 기준값으로 한다.In order to measure the dielectric constant, the capacitance of the specimen coated with a reference material (for example, thermally oxidized silicon oxide) having a known thin film thickness and dielectric constant is measured, and the Hg electrode and the Obtain the area of contact with the specimen as the reference value.

A= C × t / kA = C × t / k

[비고][Remarks]

A = Hg와 시편의 접촉면적A = area of contact between Hg and the specimen

C = 측정된 정전용량C = measured capacitance

t = 막의 두께t = film thickness

k = 기준물질의 유전율(열산화 실리콘옥사이드의 경우에는 3.9)k = dielectric constant of the reference material (3.9 for thermal silicon oxide)

C-V 측정시 테스트 시편의 정전용량과 상기 기준값을 바탕으로 한 막 두께(이하, "환산두께"라 함)가 측정되므로, 이 환산두께와 위에서 측정한 테스트 시편의 막 두께를 하기 수학식 2에 대입하여 테스트 시편의 유전율을 계산하였다.Since the film thickness (hereinafter referred to as "converted thickness") based on the capacitance of the test specimen and the reference value is measured during CV measurement, the converted thickness and the film thickness of the test specimen measured above are substituted into Equation 2 below. The dielectric constant of the test specimen was calculated.

k테스트시편= 3.9 × t테스트시편/ t환산두께 k test specimen = 3.9 × t test specimen / t thickness

상기와 같이 측정된 유전율을 상기 표 3에 나타내었다.The permittivity measured as described above is shown in Table 3 above.

이상에서 상세히 설명한 바와 같이, 본 발명의 실록산계 수지를 이용하면 고집적도 반도체 제조시 저유전율의 절연막을 용이하게 형성할 수 있다.As described in detail above, by using the siloxane resin of the present invention, it is possible to easily form an insulating film of low dielectric constant in manufacturing a high integration semiconductor.

Claims (13)

하기 화학식 1a, 1b 또는 1c의 구조를 갖는 케이지형 실록산 화합물과 하기 화학식 2의 구조를 갖는 환형 실록산 화합물 또는 하기 화학식 3의 구조를 갖는 실란 화합물을 유기용매 중에서 산촉매의 존재하에 가수분해 및 축합중합시켜 제조된 실록산계 수지.The cage-type siloxane compound having the structure of Formula 1a, 1b or 1c and the cyclic siloxane compound having the structure of Formula 2 or the silane compound having the structure of Formula 3 are hydrolyzed and condensation-polymerized in an organic solvent in the presence of an acid catalyst. Prepared siloxane resin. [화학식 1a][Formula 1a] [화학식 1b][Formula 1b] [화학식 1c][Formula 1c] [화학식 2][Formula 2] [화학식 3][Formula 3] RSiX1X2X3 RSiX 1 X 2 X 3 상기 화학식에서,In the above formula, R은 수소 원자, C1~C3의 알킬기, C3~C10의 환형알킬기 또는 C6~C15의 아릴기이고; X1, X2및 X3는 각각 독립적으로 C1~C3의 알킬기, C1~C10의 알콕시기 또는 할로겐 원자이며; p는 3 내지 8의 정수이고; m은 1 내지 10의 정수이며; n은 1 내지 12의정수임.R is a hydrogen atom, a C 1 -C 3 alkyl group, a C 3 -C 10 cyclic alkyl group, or a C 6 -C 15 aryl group; X 1 , X 2 and X 3 are each independently a C 1 to C 3 alkyl group, a C 1 to C 10 alkoxy group or a halogen atom; p is an integer from 3 to 8; m is an integer from 1 to 10; n is an integer from 1 to 12. 제 1항에 있어서, 상기 케이지형 실록산 화합물과 상기 환형 실록산 화합물 또는 상기 실란 화합물 간의 몰비는 0.1:99.9 내지 99.9:0.1인 것을 특징으로 하는 실록산계 수지.The siloxane-based resin according to claim 1, wherein the molar ratio between the cage siloxane compound and the cyclic siloxane compound or the silane compound is 0.1: 99.9 to 99.9: 0.1. 제 1항에 있어서, 상기 유기용매는 방향족 용매, 지방족 용매, 케톤계 용매, 에테르계 용매, 실리콘 용매, 또는 이들의 혼합물인 것을 특징으로 하는 실록산계 수지.The siloxane-based resin according to claim 1, wherein the organic solvent is an aromatic solvent, an aliphatic solvent, a ketone solvent, an ether solvent, a silicone solvent, or a mixture thereof. 제 1항에 있어서, 상기 산촉매는 염산, 벤젠술폰산, 질산, 옥살산, 포름산, 또는 이들의 혼합물인 것을 특징으로 하는 실록산계 수지.The siloxane-based resin according to claim 1, wherein the acid catalyst is hydrochloric acid, benzenesulfonic acid, nitric acid, oxalic acid, formic acid, or a mixture thereof. 제 1항에 있어서, 상기 산촉매는 케이지형 실록산 화합물 및 환형 실록산 화합물, 또는 케이지형 실록산 화합물 및 실란 화합물의 말단 작용기에 대하여 1 내지 1×10-6의 당량으로 첨가되는 것을 특징으로 하는 실록산계 수지.The siloxane-based resin according to claim 1, wherein the acid catalyst is added in an amount of 1 to 1 × 10 −6 equivalents to the terminal functional groups of the cage-type siloxane compound and the cyclic siloxane compound, or the cage-type siloxane compound and the silane compound. . 제 1항에 있어서, 상기 가수분해반응 및 축합중합반응은 케이지형 실록산 화합물 및 환형 실록산 화합물, 또는 케이지형 실록산 화합물 및 실란 화합물의 말단작용기에 대하여 1 내지 100 당량의 물을 첨가한 후, 0 내지 200℃의 온도에서 1 내지 100시간 동안 수행되는 것을 특징으로 하는 실록산계 수지.The method of claim 1, wherein the hydrolysis reaction and the condensation polymerization reaction are performed after adding 1 to 100 equivalents of water to the terminal functional groups of the cage-type siloxane compound and the cyclic siloxane compound, or the cage-type siloxane compound and the silane compound. Siloxane resin, characterized in that carried out for 1 to 100 hours at a temperature of 200 ℃. 제 1항에 있어서, 상기 실록산계 수지의 Si-OH 함량은 10몰% 이상인 것을 특징으로 하는 실록산계 수지.The siloxane-based resin according to claim 1, wherein the Si-OH content of the siloxane-based resin is 10 mol% or more. 제 1항에 있어서, 상기 실록산계 수지의 분자량은 1,000 내지 1,000,000인 것을 특징으로 하는 실록산계 수지.The siloxane-based resin of claim 1, wherein the siloxane-based resin has a molecular weight of 1,000 to 1,000,000. 제 1항에 따른 실록산계 수지를 유기용매에 용해시켜 실리콘 기판 위에 코팅한 후, 열경화시키는 단계를 포함하는 반도체 층간 절연막의 형성방법.A method for forming a semiconductor interlayer insulating film comprising the step of dissolving the siloxane-based resin according to claim 1 in an organic solvent and coating it on a silicon substrate. 제 9항에 있어서, 상기 유기용매는 방향족계 탄화수소 용매, 케톤계 용매, 에테르계 용매, 실리콘 용매 또는 이들의 혼합물인 것을 특징으로 하는 반도체 층간 절연막의 형성방법.The method of claim 9, wherein the organic solvent is an aromatic hydrocarbon solvent, a ketone solvent, an ether solvent, a silicon solvent, or a mixture thereof. 제 9항에 있어서, 상기 실록산계 수지를 고형분 농도가 0.1 내지 80 중량%가 되도록 상기 유기용매에 녹이는 것을 특징으로 하는 반도체 층간 절연막의 형성방법.10. The method for forming a semiconductor interlayer insulating film according to claim 9, wherein the siloxane resin is dissolved in the organic solvent so that a solid content concentration is 0.1 to 80 wt%. 제 9항에 있어서, 상기 코팅은 1000~5000rpm의 스핀 속도로 스핀 코팅함으로써 이루어지는 것을 특징으로 하는 반도체 층간 절연막의 형성방법.The method of claim 9, wherein the coating is performed by spin coating at a spin speed of 1000 to 5000 rpm. 제 9항에 있어서, 상기 열경화는 150 내지 600℃의 온도에서 1 내지 150분 동안 수행되는 것을 특징으로 하는 반도체 층간 절연막의 형성방법.The method of claim 9, wherein the thermosetting is performed at a temperature of 150 to 600 ° C. for 1 to 150 minutes.
KR10-2001-0015884A 2001-03-27 2001-03-27 Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same KR100475548B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR10-2001-0015884A KR100475548B1 (en) 2001-03-27 2001-03-27 Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same
EP02251958A EP1245642B1 (en) 2001-03-27 2002-03-19 Siloxane-based resin and method for forming an insulating film between interconnecting layers in wafers
DE60204502T DE60204502T2 (en) 2001-03-27 2002-03-19 Polysiloxane resin and process for producing an intermediate layer thereof for wafers
JP2002089759A JP3739331B2 (en) 2001-03-27 2002-03-27 Siloxane resin and method for forming semiconductor interlayer insulating film using the same
US10/105,723 US6623711B2 (en) 2001-03-27 2002-03-27 Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor devices by using the same
US10/621,380 US7019099B2 (en) 2001-03-27 2003-07-18 Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor devices by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0015884A KR100475548B1 (en) 2001-03-27 2001-03-27 Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same

Publications (2)

Publication Number Publication Date
KR20020075669A true KR20020075669A (en) 2002-10-05
KR100475548B1 KR100475548B1 (en) 2005-03-10

Family

ID=27698829

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0015884A KR100475548B1 (en) 2001-03-27 2001-03-27 Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same

Country Status (1)

Country Link
KR (1) KR100475548B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488347B1 (en) * 2002-10-31 2005-05-10 삼성전자주식회사 Siloxane-based resin and method for forming an insulating thin film between interconnect layers in a semiconductor device by using the same
KR100554327B1 (en) * 2001-09-14 2006-02-24 삼성전자주식회사 Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor using the same
KR100856953B1 (en) * 2004-06-21 2008-09-04 히다치 가세고교 가부시끼가이샤 Organic siloxane film, semiconductor device using same, flat panel display and raw material liquid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378790A (en) * 1992-09-16 1995-01-03 E. I. Du Pont De Nemours & Co. Single component inorganic/organic network materials and precursors thereof
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
US5942638A (en) * 1998-01-05 1999-08-24 The United States Of America As Represented By The Secretary Of The Air Force Method of functionalizing polycyclic silicones and the resulting compounds
RU2293745C2 (en) * 1999-08-04 2007-02-20 Хайбрид Плэстикс Method for formation of polyhedral oligomer silsesquioxanes
KR100397372B1 (en) * 2000-09-09 2003-09-13 학교법인 포항공과대학교 Dielectric material with a small dielectric constant including polyhedral oligomeric silsesquioxane and process for manufacturing dielectric thin film with a extremely small dielectric constant using the same
EP1245642B1 (en) * 2001-03-27 2005-06-08 Samsung Electronics Co., Ltd. Siloxane-based resin and method for forming an insulating film between interconnecting layers in wafers
US6623711B2 (en) * 2001-03-27 2003-09-23 Samsung Electronics Co., Ltd. Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor devices by using the same
DE60135540D1 (en) * 2001-03-27 2008-10-09 Samsung Electronics Co Ltd noporen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554327B1 (en) * 2001-09-14 2006-02-24 삼성전자주식회사 Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor using the same
KR100488347B1 (en) * 2002-10-31 2005-05-10 삼성전자주식회사 Siloxane-based resin and method for forming an insulating thin film between interconnect layers in a semiconductor device by using the same
KR100856953B1 (en) * 2004-06-21 2008-09-04 히다치 가세고교 가부시끼가이샤 Organic siloxane film, semiconductor device using same, flat panel display and raw material liquid

Also Published As

Publication number Publication date
KR100475548B1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US7294584B2 (en) Siloxane-based resin and a semiconductor interlayer insulating film using the same
JP3646087B2 (en) Method for forming semiconductor interlayer insulating film
JP3739331B2 (en) Siloxane resin and method for forming semiconductor interlayer insulating film using the same
US7198823B2 (en) Siloxane-based resin containing germanium and an interlayer insulating film for a semiconductor device using the same
US6623711B2 (en) Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor devices by using the same
US7108922B2 (en) Siloxane-based resin and interlayer insulating film formed using the same
US7582718B2 (en) Multi-functional linear siloxane compound, a siloxane polymer prepared from the compound, and a process for forming a dielectric film by using the polymer
US20050080214A1 (en) Multi-functional cyclic silicate compound, siloxane-based polymer prepared from the compound and process of producing insulating film using the polymer
US7014917B2 (en) Siloxane-based resin and interlayer insulating film for a semiconductor device made using the same
WO2008082128A1 (en) Norbornene-based silsesquioxane copolymers, norbornene-based silane derivative used for preparation of the same and method of preparing low dielectric insulating film comprising the same
KR100554327B1 (en) Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor using the same
KR100488347B1 (en) Siloxane-based resin and method for forming an insulating thin film between interconnect layers in a semiconductor device by using the same
KR100475548B1 (en) Siloxane-based resin and method for forming insulating film between metal layers in semiconductor using the same
KR100585940B1 (en) Nanoporous composition comprising polycaprolactone derivatives and method for forming an insulating film between metal layers in a semiconductor device using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130131

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee