KR20020061434A - Modified nickel-alumina catalyst for selective hydrogenation of diolefins and preparation method thereof - Google Patents

Modified nickel-alumina catalyst for selective hydrogenation of diolefins and preparation method thereof Download PDF

Info

Publication number
KR20020061434A
KR20020061434A KR1020010002734A KR20010002734A KR20020061434A KR 20020061434 A KR20020061434 A KR 20020061434A KR 1020010002734 A KR1020010002734 A KR 1020010002734A KR 20010002734 A KR20010002734 A KR 20010002734A KR 20020061434 A KR20020061434 A KR 20020061434A
Authority
KR
South Korea
Prior art keywords
nickel
alumina
catalyst
modified
gamma
Prior art date
Application number
KR1020010002734A
Other languages
Korean (ko)
Other versions
KR100419858B1 (en
Inventor
박상언
장종산
이경열
황진수
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2001-0002734A priority Critical patent/KR100419858B1/en
Publication of KR20020061434A publication Critical patent/KR20020061434A/en
Application granted granted Critical
Publication of KR100419858B1 publication Critical patent/KR100419858B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: The modified nickel-alumina catalyst for selective hydrogenation of diolefins of the present invention is manufactured by surface modifying gamma-alumina support with one element selected from zirconium, lanthanum and tin, and then it is further supported by nickel. CONSTITUTION: In a modified nickel-alumina catalyst for selective hydrogenation of diolefins that is manufactured by surface modifying gamma-alumina support with one element selected from zirconium, lanthanum and tin, and then it is further supported by nickel, the present invention is characterized in that gamma-alumina support is supported by one element selected from zirconium, lanthanum and tin in an amount of 0.2 to 10 wt.% and nickel in an amount of 0.5 to 10 wt.%, based on the weight of the gamma-alumina support. Before the modified nickel-alumina catalyst is used to convert diolefins to corresponding mono olefins through selective hydrogenation reaction, the modified nickel-alumina catalyst should undergo reduction stage at 400-500deg.C and pretreatment at 300-450deg.C in H2S gas atmosphere.

Description

디올레핀류 화합물의 선택적 수소화 반응을 위한 수식된 니켈-알루미나계 촉매와 그 제조방법{Modified Nickel-Alumina catalyst for selective hydrogenation of diolefins and preparation method thereof}Modified Nickel-Alumina catalyst for selective hydrogenation of diolefins and preparation method

본 발명은 디올레핀류 화합물의 선택적 수소화 반응을 위한 수식된 니켈-알루미나계 촉매와 그 제조방법에 관한 것으로서, 더욱 상세하게는 지르코늄, 란타늄, 주석 중에서 선택된 한 성분으로 표면이 수식된 감마-알루미나 담체상에 니켈을 담지한 촉매로서, 지방족 디-올레핀류 화합물의 선택적 수소화 반응에 유용하게 사용할 수 있는 수식된 니켈-알루미나계 촉매와 그 제조방법에 관한 것이다.The present invention relates to a modified nickel-alumina-based catalyst for the selective hydrogenation of diolefin compounds and a method for preparing the same, and more particularly, to a gamma-alumina carrier whose surface is modified with one component selected from zirconium, lanthanum and tin. It relates to a modified nickel-alumina-based catalyst which can be usefully used for selective hydrogenation of aliphatic di-olefin compounds as a catalyst supporting nickel on a phase, and a method for producing the same.

선택적 수소화 공정은 수소화 대상 화합물을 원하는 단계에서 생성물을 조절하고자 할 때 중요하게 활용될 수 있다. 이러한 선택적 수소화 공정은 석유화학 및 정유산업에서 최종 생성물 중의 부산물로 포함되어 있는 2개의 이중 결합을 갖고 있는 디엔-화합물이나 삼중결합을 갖고 있는 아세틸렌계 탄화수소를 제거하여 생성물의 품질을 개선하기 위한 목적으로 매우 중요하게 활용되고 있다. 이때, 상기 디엔-화합물 또는 아세틸렌계 탄화수소가 생성물 중에 함께 포함되어 있는 경우, 다음 단계의 촉매 전환공정에서 부반응을 일으켜 최종 생성물의 순도나 수율을 감소시키거나 고분자 중합체의 형성으로 공정 운전을 방해하는 문제를 야기시킬 수 있다.The selective hydrogenation process may be important when the compound to be hydrogenated is desired to control the product at a desired stage. This selective hydrogenation process aims to improve the product quality by removing diene-compound having two double bonds or acetylene hydrocarbon having triple bond in the petrochemical and refining industries as a by-product of the final product. It is very important. In this case, when the diene-compound or acetylene hydrocarbon is included in the product, a side reaction occurs in the next step of the catalytic conversion to reduce the purity or yield of the final product or to prevent the process operation due to the formation of a polymer. May cause.

따라서, 선택적 수소화 공정은 이러한 문제점을 근본적으로 개선하여 분리문제의 부하를 줄이고 생성물의 순도 및 수율 향상에 중요하게 활용될 수 있다.Therefore, the selective hydrogenation process can fundamentally improve this problem to reduce the load of the separation problem and to be important in improving the purity and yield of the product.

또한, 파라핀 탈수소 공정에 의해 생산되는 모노-올레핀은 석유화학 및 정유산업에서 매우 중요하게 활용되고 있다. 즉, 탄소수 9 ∼ 15개 범위를 갖는 선형 모노-올레핀 혼합물의 경우 벤젠과의 알킬화 공정을 통해 선형 알킬벤젠 혼합물을 제조하는데 이용되며, 이러한 선형 알킬벤젠은 계면활성제 및 생분해성 세제원료로 사용되는 공업적으로 매우 중요한 화학제품이다.In addition, the mono-olefin produced by the paraffin dehydrogenation process is very important in the petrochemical and oil refining industry. In other words, linear mono-olefin mixtures having a range of 9 to 15 carbon atoms are used to prepare a linear alkylbenzene mixture through an alkylation process with benzene, and such linear alkylbenzenes are used as surfactants and biodegradable detergent raw materials. It is a very important chemical.

그런데, 선형 파라핀의 탈수소 공정에 의해 생산되는 모노-올레핀은 불가피하게 디-올레핀이 부반응물로 생성되어 모노-올레핀 수율을 감소시켜 경제성을 저감시키며, 더 나아가 디-올레핀의 존재가 선형 알킬벤젠으로의 알킬화 공정에서 부산물로서 고비점을 갖는 디페닐 화합물을 발생시킬 뿐만 아니라 알킬화 공정의 산촉매의 소모를 불필요하게 증대시킨다. 그리고 고비점의 디페닐 화합물은 연성세제 원료로 사용되는 선형 알킬벤젠의 순도를 저하시켜 물성을 저해하기 때문에 디페닐 화합물 생성이전에 디-올레핀 단계에서 제거되어야 한다. 이러한 디-올레핀의 제거방법으로는 두 가지 방법이 가능하다. 하나는 증류에 의한 분리이며, 다른 하나는 반응에 의한 제거방법을 사용한다. 그러나, 모노-올레핀과 디-올레핀은 비점이 서로 비슷하기 때문에 증류과정에 의한 분리가 그렇게 용이하지 않다. 따라서, 디-올레핀의 모노-올레핀 탄화수소로의 선택적인 전환이 분리문제의 해결 뿐만 아니라 모노-올레핀 수율 향상에도 크게 기여하기 때문에 공정의 경제성 향상에 일석이조의 효과를 기대할 수 있다.However, mono-olefins produced by the dehydrogenation process of linear paraffins inevitably produce di-olefins as side reactants to reduce mono-olefin yields, thereby reducing economics, and furthermore, the presence of di-olefins into linear alkylbenzenes. Not only does it generate a diphenyl compound having a high boiling point as a byproduct in the alkylation process but also unnecessarily increases the consumption of the acid catalyst of the alkylation process. In addition, since the high boiling point diphenyl compound lowers the purity of the linear alkylbenzene used as a soft detergent material and inhibits physical properties, it should be removed in the di-olefin step before the diphenyl compound is produced. There are two methods for removing such di-olefins. One is separation by distillation and the other is by reaction. However, since mono-olefin and di-olefin have similar boiling points, separation by distillation is not so easy. Therefore, the selective conversion of di-olefins to mono-olefin hydrocarbons not only solves the separation problem but also contributes to the improvement of mono-olefin yield, and thus can be expected to have an effect of improving the economics of the process.

한편, 디-올레핀의 선택적 수소화에 사용되는 전통적인 촉매 성분으로는 니켈, 백금 및 팔라듐이 있으며, 그 중에서도 팔라듐과 백금이 수소화에 선택성이 높아 많이 사용되고 있지만, 경제적인 면에서 값이 싼 니켈 담지 촉매가 공업적으로 선호된다.Conventional catalyst components used for the selective hydrogenation of di-olefins include nickel, platinum, and palladium. Among them, palladium and platinum are widely used because of their high selectivity for hydrogenation. Industrially preferred.

그러나, 지금까지 사용되는 니켈 담지 촉매의 경우 수소화 반응에 대한 활성은 뛰어난 반면에 선택성이 거의 없어 별도의 처리 없이는 디-올레핀의 이중결합 뿐만 아니라 모노-올레핀의 불포화 이중결합마저도 환원시켜 버리기 때문에 그 자체로는 선택적 수소화 반응에 적용하기가 어렵다.However, the nickel-supported catalysts used up to now have excellent activity on the hydrogenation reaction, but have almost no selectivity, thus reducing not only the double bond of the di-olefin but also the unsaturated double bond of the mono-olefin without further treatment. Furnace is difficult to apply to the selective hydrogenation reaction.

이러한 문제를 해결하기 위한 종래 방법으로, 니켈 담지 촉매를 제조하고 이를 환원한 후 이황화수소나 티오펜과 같은 유황화합물로 전처리하여 니켈의 활성을 크게 저하시킨 후 사용하는 방법이 일반화되어 있다. 즉, 여러 종류의 디-올레핀을 선택적 수소화시키는 촉매로서 유황처리한 Ni-Al2O3가 여러 그룹들에 의해 제안되어 왔다[미국특허 제3,234,298호, 미국특허 제3,472,763호, 미국특허 제3,919,341호, 미국특허 제4,695,560호]. 대표적으로 UOP사가 제안한 미국특허 제4,695,560호에 의하면, 유황처리하여 제조한 Ni-Al2O3촉매를 탄소수 10 ∼ 13개의 선형 디-올레핀 탄화수소의 선택적 수소화 촉매로서 제안하였으며, 이때 상기 촉매는 0.05 ∼ 1.5 중량% 범위의 유황성분과 1.0 ∼ 25 중량%의 니켈을 함유하고 1.4 ∼ 2.5 cc/g의 세공부피, 150 ㎡/g 이상의 표면적, 150 Å 이하의 세공직경이 총 세공부피의 25% 이하이고, 500 Å 이상의 세공직경이 총 세공부피의 60% 이상을 갖는다.As a conventional method for solving such a problem, a method of preparing a supported catalyst and reducing it, followed by pretreatment with a sulfur compound such as hydrogen disulfide or thiophene, greatly reduces the activity of nickel, and is generally used. That is, sulfur-treated Ni-Al 2 O 3 has been proposed by various groups as a catalyst for the selective hydrogenation of various types of di-olefins (US Pat. No. 3,234,298, US Pat. No. 3,472,763, US Pat. No. 3,919,341). , US Pat. No. 4,695,560]. Representatively, U.S. Patent No. 4,695,560, proposed by UOP, proposes a sulfur-treated Ni-Al 2 O 3 catalyst as a selective hydrogenation catalyst for C10-13 linear di-olefin hydrocarbons, wherein the catalyst is 0.05-. It contains a sulfur component in the range of 1.5% by weight and 1.0 to 25% by weight of nickel, and has a pore volume of 1.4 to 2.5 cc / g, a surface area of 150 m 2 / g or more and a pore diameter of 150 mm or less, which is 25% or less of the total pore volume. The pore diameter of at least 500 mm 3 has at least 60% of the total pore volume.

또한, 쉘 오일(Shell Oil)사의 미국특허 제4,078,011호에서는 알루미나 담체 대신에 황화 알루미늄을 담체로 한 니켈 촉매가 선택적 수소화 촉매로 제안된 바 있으며, 상기 촉매의 경우 3 ∼ 6개의 디-올레핀 탄화수소의 선택적 수소화에 적용하는 특징이 있다.In addition, Shell Oil (US Pat. No. 4,078,011) proposes a nickel catalyst having a sulfide of aluminum as a selective hydrogenation catalyst instead of an alumina carrier, and in the case of the catalyst, three to six di-olefin hydrocarbons are used. There is a characteristic applied to selective hydrogenation.

이와 같이, 많은 경우 디-올레핀 선택적 수소화 공정에 니켈-알루미나계 촉매가 사용되며, 촉매의 선택성을 높이기 위해 촉매를 반응기에 충진시킨 후 반응전에 유황처리를 하여 활성을 크게 저하시켜 반응을 진행시키는 방법을 사용하고 있다.As such, in many cases, a nickel-alumina-based catalyst is used in the di-olefin selective hydrogenation process, and the catalyst is charged in the reactor to increase the selectivity of the catalyst, and then sulfur-treated before the reaction to significantly reduce the activity to proceed with the reaction. I'm using.

그러나, 이러한 유황처리에도 불구하고 니켈-알루미나계 촉매의 모노-올레핀 선택성은 50% 이하에 지나지 않아 촉매 선택성 향상을 위한 촉매 개선을 필요로 한다.However, in spite of such sulfur treatment, the mono-olefin selectivity of the nickel-alumina catalyst is only 50% or less, and thus the catalyst improvement for improving the catalyst selectivity is required.

이와 같이, 종래의 디-올레핀 화합물의 선택적 수소화 반응용 촉매는 촉매 선택성이 아직 부족한 실정이므로, 상기와 같은 문제점이 개선된 새로운 선택적 수소화 촉매에 대한 개발이 절실히 요구되고 있는 실정이다.As described above, since the catalyst for selective hydrogenation of the conventional di-olefin compound still lacks catalyst selectivity, there is an urgent need for development of a new selective hydrogenation catalyst having the above problems.

본 발명은 상기 문제점들을 개선하기 위하여 기존의 니켈-알루미나계 촉매의 감마-알루미나 담체에 지르코늄, 란타늄, 주석 가운데 한성분을 첨가하여 담체 표면을 수식함으로써 지나치게 강한 니켈의 활성을 약화시키고 선택성을 향상시킨 수식된 니켈-알루미나계 촉매를 제공하는 데 그 목적이 있다.The present invention modifies the surface of the carrier by adding one component of zirconium, lanthanum and tin to the gamma-alumina carrier of the conventional nickel-alumina catalyst to improve the above problems, thereby weakening the activity of the excessively strong nickel and improving selectivity. It is an object to provide a modified nickel-alumina-based catalyst.

본 발명은 탄화수소 혼합물 중에 함유된 디-올레핀 화합물의 선택적 수소화 반응용 니켈-알루미나계 촉매에 있어서, 지르코늄, 란타늄, 주석 중에서 선택된 한 성분으로 표면이 수식된 감마-알루미나 담체상에 니켈이 담지되어 이루어진 수식된 니켈-알루미나계 촉매를 그 특징으로 한다.In the nickel-alumina catalyst for selective hydrogenation of di-olefin compounds contained in a hydrocarbon mixture, nickel is supported on a gamma-alumina carrier whose surface is modified with one of zirconium, lanthanum and tin. It is characterized by a modified nickel-alumina based catalyst.

본 발명은 탄화수소 혼합물 중에 함유된 디-올레핀 화합물의 선택적 수소화 반응용 니켈-알루미나계 촉매의 제조방법에 있어서, 지르코늄, 란타늄, 주석 중에서 선택된 한 성분을 증류수에 용해시켜 감마-알루미나 담체를 첨가하여 습윤 함침법에 의해 수식된 감마-알루미나 담체를 제조하는 단계와 상기 수식된 감마-알루미나 담체를 니켈질산염을 용해시킨 증류수에 습윤함침법 또는 침전법을 이용해 니켈을 수식된 감마-알루미나 담체에 담지하는 단계로 구성되는 수식된 니켈-알루미나계 촉매의 제조방법을 또 다른 특징으로 한다.The present invention provides a method for preparing a nickel-alumina catalyst for the selective hydrogenation of di-olefin compounds contained in a hydrocarbon mixture, wherein a component selected from zirconium, lanthanum and tin is dissolved in distilled water to add a gamma-alumina carrier to wet it. Preparing a modified gamma-alumina carrier by impregnation and supporting the modified gamma-alumina carrier in distilled water in which nickel nitrate is dissolved in a modified gamma-alumina carrier by wet impregnation or precipitation. It is another feature of the method for producing a modified nickel-alumina-based catalyst consisting of.

본 발명은 상기 수식된 니켈-알루미나계 촉매를 이용하여 탄화수소 혼합물 중에 함유된 디-올레핀 화합물을 선택적으로 수소화시키는 방법을 또 다른 특징으로 한다.The present invention is further characterized by a method of selectively hydrogenating a di-olefin compound contained in a hydrocarbon mixture using the modified nickel-alumina-based catalyst.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명에 따는 수식된 니켈-알루미나계 촉매는 이중결합을 1개 또는 2개를 함유하고 있는 탄소수 8 ∼ 15의 탄화수소 혼합물 중에서 디-올레핀 화합물을 동일 탄소수의 모노-올레핀 화합물로 선택적으로 수소화시켜 모노-올레핀의 수율을 향상시킬 수 있는 수식된 니켈-알루미나계 촉매에 관한 것이다.The modified nickel-alumina catalyst according to the present invention is a mono-olefin by selectively hydrogenating a di-olefin compound to a mono-olefin compound having the same carbon number in a hydrocarbon mixture having 8 to 15 carbon atoms containing one or two double bonds. It relates to a modified nickel-alumina-based catalyst capable of improving the yield of -olefin.

본 발명에서는 함침법, 침전퇴적법, 졸겔법, 공침법, 화학증착법, 이온교환법 등을 사용하여 지르코늄, 란타늄, 주석 중에서 선택된 한 성분으로 표면이 수식된 감마-알루미나 담체상에 니켈을 담지하여 수식된 니켈-알루미나계 촉매를 제조한다.In the present invention, by impregnating, sedimentation deposition, sol-gel method, co-precipitation method, chemical vapor deposition method, ion exchange method, etc., the nickel is supported on a gamma-alumina carrier whose surface is modified with one component selected from zirconium, lanthanum and tin. To prepare a nickel-alumina-based catalyst.

이와 같은 수식된 니켈-알루미나계 촉매를 제조과정에 따라 상세히 살펴보면 다음과 같다.Looking at such a modified nickel-alumina-based catalyst according to the manufacturing process in detail as follows.

수식된 니켈-알루미나계 촉매는 두단계의 제조 과정, 즉 감마-알루미나 담체의 수식과정과 수식된 감마-알루미나의 니켈 담지 과정을 거친다.The modified nickel-alumina-based catalyst undergoes two steps of preparation, namely, modification of the gamma-alumina carrier and nickel loading of the modified gamma-alumina.

먼저 감마-알루미나 담체의 수식과정은 지르코늄원으로서 지르코늄 질산염 (ZrO(NO3)2 .xH2O), 란타늄원으로서 란타늄 질산염 (La(NO3)3 .6H2O), 주석원으로서 이염화 주석염 (SnCl2 .2H2O) 중에서 선택된 한 성분을 증류수에 녹여 수용액을 만든 후 감마-알루미나 담체를 기준으로 0.2 ∼ 10 중량%의 농도에 맞춰 적당량의 수용액을 건조된 감마-알루미나 담체 (비표면적 210 m2/g, 세공부피 0.75 mL/g)에 첨가하고습윤 함침법에 의해 제조한다. 이렇게 얻어진 물질은 110 ℃에서 4 ∼ 6 시간 오븐에서 건조한 후 소성로에 넣고 500 ℃에서 4시간의 소성 과정을 거친다. 그런 다음 니켈 질산염 (Ni(NO3)2 .6H2O)을 증류수에 녹인 수용액을 감마-알루미나 담체를 기준으로 0.5 ∼ 10 중량%의 농도에 맞춰서 습윤 함침법에 의해 수식된 감마-알루미나에 담지하거나 암모니아수를 사용하여 침전법에 의해 수식된 감마-알루미나에 담지한다. 이렇게 얻어진 물질은 110 ℃에서 4 ∼ 6 시간 오븐에서 건조한 후 소성로에 넣고 500 ∼ 700 ℃에서 4시간의 소성 과정을 거쳐 최종적으로 수식된 니켈-알루미나계 촉매가 제조된다.First, gamma-qualified process of the alumina support is a zirconium nitrate as the zirconium source (. ZrO (NO 3) 2 xH 2 O), lanthanum nitrate as the lanthanum source (. La (NO 3) 3 6H 2 O), tin source dichloride tin salts (. SnCl 2 2H 2 O), create a component of an aqueous solution dissolved in distilled water, selected from the group consisting of gamma-gamma drying an aqueous solution of an appropriate amount according to the concentration of 0.2 to 10% by weight based on the alumina carrier-alumina carrier (non- Surface area 210 m 2 / g, pore volume 0.75 mL / g) and prepared by wet impregnation method. The material thus obtained is dried in an oven at 110 ° C. for 4-6 hours and then placed in a kiln for 4 hours at 500 ° C. Then, nickel nitrate (Ni (NO 3) 2 6H 2 O.) An aqueous solution of gamma dissolved in distilled water - is supported on the alumina-based on the alumina support of gamma qualified by the wet impregnation method according to the concentration of 0.5 to 10% by weight Or supported by gamma-alumina modified by precipitation using ammonia water. The material thus obtained is dried in an oven at 110 ° C. for 4 to 6 hours, then placed in a kiln, and calcined at 500 to 700 ° C. for 4 hours to finally prepare a modified nickel-alumina catalyst.

한편, 상기와 같은 방법으로 제조된 수식된 니켈-알루미나계 촉매를 이용한 선택적 수소화 공정을 설명하면 다음과 같으며, 수소화 공정을 통하여 선택적 수소화 활성을 측정한다.Meanwhile, the selective hydrogenation process using the modified nickel-alumina-based catalyst prepared by the method described above is as follows. The selective hydrogenation activity is measured through the hydrogenation process.

본 발명의 촉매활성의 측정에는 실험실에서 제작한 전형적인 고정층 촉매 반응장치가 사용된다. 선택적 수소화 촉매를 상기 반응장치에 첨가하기 전에 전처리과정을 거치는데, 즉 상기에서 제조된 촉매를 선택적 수소화 반응에 적용하기 위해 상기에서 제조된 촉매 1 g을 3/8 인치 크기의 스테인레스 스틸 반응기에 채우고 분당 50 mL의 유속을 갖는 5% 수소로 400 ∼ 500 ℃ 범위에서 1 ∼ 4 시간 동안 환원한 후, 300 ∼ 450 ℃ 범위에서 2시간동안 다시 1000 ppm의 H2S 기체가 함유된 질소 기류를 분당 100 mL의 유속으로 촉매층에 통과시켜 전처리한 후 반응온도로 낮춰 반응에 사용한다. 이때, 반응기는 반응중에 촉매 분말이 반응기 하부로가라앉는 것을 방지하기 위해 1 ㎛의 기공을 갖는 스테인레스 스틸 필터를 반응기 중간에 용접하여 고정시킨 후 그 위에 촉매를 채우게 된다.In the measurement of the catalytic activity of the present invention, a typical fixed bed catalytic reactor manufactured in the laboratory is used. Before the selective hydrogenation catalyst is added to the reactor, a pretreatment is performed, i.e., 1 g of the catalyst prepared above is charged into a 3/8 inch stainless steel reactor to apply the catalyst prepared above to the selective hydrogenation reaction. 5% hydrogen with a flow rate of 50 mL per minute was reduced for 1 to 4 hours in the range of 400 to 500 ° C., followed by nitrogen gas containing 1000 ppm of H 2 S gas for 2 hours in the range of 300 to 450 ° C. per minute. After passing through the catalyst bed at a flow rate of 100 mL, pretreatment is carried out to lower the reaction temperature. In this case, in order to prevent the catalyst powder from sinking to the bottom of the reactor during the reaction, the reactor is fixed by welding a stainless steel filter having pores of 1 μm in the middle of the reactor and then filling the catalyst thereon.

상기와 같이 촉매를 전처리한 후, 측정할 반응온도에 맞추고 탄소수 8 ∼ 15개의 선형 지방족 탄화수소 혼합물로 이루어진 액체 반응물을 HPLC 펌프(ICI LC 1110)를 사용하여 정량적으로 반응기로 주입하는데, 먼저 촉매가 반응물로 완전히 젖도록 분당 5 ㎖의 부피로 5분 동안 반응물을 촉매층에 통과시킨다. 이때, 상기 탄소수 8 ∼ 15개의 선형 지방족 탄화수소 혼합물로는 선형 지방족 파라핀을 Pt-Sn계 탈수소화 촉매를 사용하여 탈수소화 반응에 의해 얻어진 것으로서 미반응된 선형의 지방족 파라핀과 모노-올레핀 및 디-올레핀 생성물, 방향족 화합물 등이 혼합된 혼합물을 반응에 사용하며, 예를 들면 파라핀이 84.5 중량%, 모노-올레핀이 10.3 중량%, 디-올레핀이 1.2 중량%, 방향족 화합물이 4.0 중량%로 혼합된 혼합물을 반응에 사용할 수 있다.After pretreatment of the catalyst as described above, a liquid reactant consisting of a linear aliphatic hydrocarbon mixture having 8 to 15 carbon atoms, which is adjusted to the reaction temperature to be measured, is quantitatively injected into the reactor using an HPLC pump (ICI LC 1110). The reaction is passed through the catalyst bed for 5 minutes at a volume of 5 ml per minute so as to completely wet the furnace. In this case, the linear aliphatic hydrocarbon mixture having 8 to 15 carbon atoms is obtained by dehydrogenation of linear aliphatic paraffins using a Pt-Sn-based dehydrogenation catalyst, and unreacted linear aliphatic paraffins, mono-olefins and di-olefins. A mixture of a product, an aromatic compound, and the like is used for the reaction, for example, a mixture of 84.5% by weight of paraffin, 10.3% by weight of mono-olefin, 1.2% by weight of di-olefin, and 4.0% by weight of aromatic compound. Can be used for the reaction.

그런 다음, 액체 반응물과 수소를 반응조건에 맞게 일정한 비율로 촉매층을 통과시키고, 반응기 이후에 달려있는 냉각기를 통과하여 나온 액체를 바이얼에 포집하여 HPLC를 이용하여 반응전 후 탄화수소의 농도를 분석한다. 이때, 반응조건으로는 반응온도가 80 ∼ 250 ℃ , 반응압력이 1 ∼ 12 기압, 시간당 액체 반응물의 공간속도 LHSV(Liquid Hourly Space Velocity)가 시간당 4 ∼ 12, 수소 : 선형 지방족 탄화수소 혼합물 중의 디-올레핀의 비율이 1.0 ∼ 3.0 : 1의 범위에서 촉매 활성이 측정된다. 상기 반응기의 온도는 전기히터와 프로그램 가능한 자동온도 조절장치에 의해 조절되며, 반응압력은 반응기 이후에 설치된배압조절기(Back Pressure Regulator)에 의해 조절된다. 첨가되는 수소의 유량은 자동 유량 조절 장치(MKS Instrument, Model 247C)에 의해 조절되는데 반응물인 디-올레핀과 정량적으로 반응시키기 위해 첨가해야할 양이 매우 소량이기 때문에 정확히 수소의 유속을 맞추기 어렵고, 이에 따라 자동 유량 조절장치 바로 다음에 솔레노이드(Solenoid) 밸브라는 자동 온-오프 밸브를 사용하여 주기적으로 수소를 주입한다.Then, the liquid reactant and hydrogen are passed through the catalyst bed at a constant ratio according to the reaction conditions, and the liquid from the cooler after the reactor is collected in a vial and analyzed for the concentration of hydrocarbon before and after the reaction using HPLC. . At this time, the reaction conditions include a reaction temperature of 80 to 250 ° C., a reaction pressure of 1 to 12 atm, and a liquid hourly space velocity (LHSV) of liquid reactant per hour of 4 to 12 per hour, hydrogen: di- in a linear aliphatic hydrocarbon mixture. Catalyst activity is measured in the range of 1.0-3.0: 1 the ratio of an olefin. The temperature of the reactor is controlled by an electric heater and a programmable thermostat, and the reaction pressure is controlled by a back pressure regulator installed after the reactor. The flow rate of the added hydrogen is controlled by an automatic flow control device (MKS Instrument, Model 247C), and it is difficult to accurately match the flow rate of hydrogen because of the very small amount added to react quantitatively with the reactant di-olefin. Immediately after the automatic flow regulator, hydrogen is periodically injected using an automatic on-off valve called a solenoid valve.

본 발명에서 반응전후 탄화수소의 조성은 굴절률(Refractive Index) 검출기가 부착된 HPLC를 이용하여 분석하며, 이때 컬럼은 2개의 실리카 HPLC 컬럼을 직렬로 연결하여 사용하고, HPLC의 용출 용매는 n-헥산을 사용한다.In the present invention, the composition of the hydrocarbon before and after the reaction is analyzed using HPLC with a refractive index detector, in which the column is connected by connecting two silica HPLC columns in series, and the elution solvent of the HPLC is n-hexane. use.

이상과 같은 본 발명에 따른 수식된 니켈-알루미나계 촉매는 선형 지방족 탄화수소 혼합물로부터 디-올레핀 탄화수소를 선택적으로 동일 몰수의 모노-올레핀 탄화수소로 선택적으로 전환시킬 수 있어 수소화 대상 화합물을 원하는 단계에서 생성물의 선택성을 조절하고자 하는 수소화 공정에 중요하게 활용될 수 있다.The modified nickel-alumina catalyst according to the present invention as described above can selectively convert di-olefin hydrocarbons from linear aliphatic hydrocarbon mixtures to the same moles of mono-olefin hydrocarbons to convert the hydrogenated compound to the desired step of the product. It may be important for the hydrogenation process to control the selectivity.

이하, 본 발명을 다음의 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited by the examples.

실시예 1Example 1

본 실시예에서 사용된 니켈-지르코니아-알루미나 촉매(Ni-Zr-Al2O3)는 두단계 과정으로 제조하였다.The nickel-zirconia-alumina catalyst (Ni-Zr-Al 2 O 3 ) used in this example was prepared in a two step process.

먼저 감마-알루미나 담체의 수식을 위해 습윤 함침법을 이용하였다. 지르코늄원으로서 지르코늄 질산염 (ZrO(NO3)2 .xH2O)을 증류수에 녹여 수용액을 만든 후 지르코늄 금속에 대한 농도로 4.5 중량%가 되도록 적당량의 수용액을 1.8 ∼ 2.0 mm 직경의 건조된 구형 감마-알루미나 담체 (비표면적 210 m2/g, 세공부피 0.75 mL/g)에 첨가하고 충분히 혼합하였으며, 이렇게 얻어진 물질은 110oC에서 4 ∼ 6 시간 오븐에서 건조한 후 소성로에 넣고 500oC에서 4시간의 소성 과정을 거쳐 얻어졌다. 그런 다음 니켈 질산염 (Ni(NO3)2 .6H2O)을 증류수에 녹여 알루미나 담체의 세공부피에 해당하는 만큼의 수용액을 제조하고 이 수용액에 니켈 금속을 기준으로 4.5 중량%의 농도가 되도록 맞춰서 지르코늄으로 수식된 감마-알루미나에 혼합하였다. 이렇게 얻어진 물질을 110oC에서 4 ∼ 6 시간 오븐에서 건조한 후 소성로에 넣고 500oC에서 4시간의 소성 과정을 거쳐 최종적으로 제조되었다.Wet impregnation was first used to modify the gamma-alumina carrier. A zirconium source of zirconium nitrate (ZrO (NO 3) 2. XH 2 O) to an aqueous solution of an appropriate amount such that 4.5 wt% at a concentration of the zirconium metal, create a solution dissolved in distilled water, 1.8 ~ 2.0 mm The dried spherical gamma having a diameter of -Added to an alumina carrier (specific surface area 210 m 2 / g, pore volume 0.75 mL / g) and thoroughly mixed, the material thus obtained was dried in an oven at 110 o C for 4 to 6 hours and then placed in a baking furnace at 4 o 500 o C. It was obtained through the calcination process of time. Then prepare a nickel nitrate aqueous solution by an amount corresponding to the pore volume of the alumina support is dissolved in a (Ni (NO 3) 2. 6H 2 O) of distilled water, and according to a concentration of 4.5% by weight based on the nickel metal to the aqueous solution It was mixed with gamma-alumina modified with zirconium. The material thus obtained was dried in an oven at 110 ° C. for 4 to 6 hours and then placed in a kiln to finally produce a baking process at 500 ° C. for 4 hours.

실시예 2Example 2

실시예 1과 동일한 방법을 사용하여 2 중량%의 지르코니아로 수식된 알루미나 담체를 얻은 후 침전-퇴적법에 의해 니켈 산화물을 담지하여 얻어진 니켈-지르코니아-알루미나 촉매를 제조하였다. 니켈 산화물의 담지 방법은 니켈 질산염수용액 1M을 제조한 후 재결정으로 얻어진 1M 농도의 ZrCl4수용액 500 mL에 필요한 비율만큼 60 ℃에서 6시간 동안 강하게 저어준 후 여기에 29.8% 암모니아수(Fisher Scientific사)를 pH가 10이 될 때까지 첨가하여 침전시킨 후 침전물을 5%의 묽은 암모니아수를 이용하여 염소이온이 더 이상 관찰되지 않을 때까지 여과, 세척하고 다시 증류수로 세척하였다. 이렇게 얻어진 물질을 110oC에서 4 ∼ 6 시간 오븐에서 건조한 후 소성로에 넣고 500oC에서 4시간의 소성 과정을 거쳐 최종적으로 제조되었다. 이 때 첨가된 니켈 담지량은 니켈 금속을 기준으로 3.0 중량%이었다.A nickel-zirconia-alumina catalyst was prepared by obtaining alumina carrier modified with 2% by weight of zirconia using the same method as in Example 1 and supporting nickel oxide by precipitation-deposition. In the method of supporting nickel oxide, 1M of nickel nitrate aqueous solution was prepared, and then stired vigorously at 60 ° C. for 6 hours in a ratio required for 500 mL of 1M ZrCl 4 aqueous solution obtained by recrystallization, followed by adding 29.8% ammonia water (Fisher Scientific). After the precipitate was added until the pH was 10, the precipitate was filtered, washed with 5% dilute ammonia water until no more chlorine ions were observed, and then washed with distilled water. The material thus obtained was dried in an oven at 110 ° C. for 4 to 6 hours and then placed in a kiln to finally produce a baking process at 500 ° C. for 4 hours. The amount of nickel supported at this time was 3.0 wt% based on the nickel metal.

실시예 3Example 3

실시예 1과 동일한 방법으로 제조하되 지르코늄의 함유량이 6.0 중량%, 그리고 니켈의 담지량을 6.0 중량%로 하여 니켈-지르코니아-알루미나 촉매를 제조하였다.A nickel-zirconia-alumina catalyst was prepared in the same manner as in Example 1 except that the content of zirconium was 6.0 wt% and the amount of nickel was 6.0 wt%.

실시예 4Example 4

실시예 1과 동일한 방법으로 제조하되, 감마-알루미나 담체를 수식할 성분을 지르코늄 대신에 란타늄을 사용하였으며, 란타늄의 함유량은 2.0 중량%이고 니켈 담지량은 6.0 중량%로 하여 니켈-란타늄-알루미나 (Ni-La-Al2O3) 촉매를 제조하였다.It was prepared in the same manner as in Example 1 except that lanthanum was used instead of zirconium as a component to modify the gamma-alumina carrier, and the content of lanthanum was 2.0% by weight and the amount of nickel was 6.0% by weight of nickel-lanthanum-alumina (Ni -La-Al 2 O 3 ) catalyst was prepared.

실시예 5Example 5

실시예 1과 동일한 방법으로 제조하되, 감마-알루미나 담체를 수식할 성분을 지르코늄 대신에 주석을 사용하였으며, 주석의 함유량은 3.0 중량%이고 니켈 담지량은 6.0 중량%로 하여 니켈-주석-알루미나 (Ni-Sn-Al2O3) 촉매를 제조하였다.Prepared in the same manner as in Example 1 except that tin was used instead of zirconium to modify the gamma-alumina carrier, and the tin content was 3.0% by weight and the nickel loading was 6.0% by weight of nickel-tin-alumina (Ni -Sn-Al 2 O 3 ) catalyst was prepared.

비교예 1Comparative Example 1

실시예에서 얻어진 수식된 니켈-알루미나계 촉매의 선택적 수소화 활성과 비교하기 위해 니켈 5 중량%를 함유한 니켈-알루미나계 촉매를 함침법에 의해 제조하였다. 담체로는 실시예 1과 동일한 감마-알루미나가 사용되었다. 제조과정은 구형 감마-알루미나 담체 20 g에 1몰 농도의 니켈 질산염 수용액을 4.5 중량%의 담지량에 맞도록 첨가하여 50 ℃에서 6시간 동안 저어주었다. 그런 다음, 회전식 진공 증발건조기에 용액이 들어있는 플라스크를 연결하여 100 torr의 감압과 80 ℃ 온도에서 회전하면서 물을 증발시켰다. 물을 증발시킨 촉매 전구체 분말을 건조 오븐에 넣고 100 ℃에서 12시간 동안 건조한 후 소성로에 넣고 공기중에서 650 ℃에서 4시간 동안 소성하여 니켈-감마-알루미나 (Ni-γ-Al2O3) 촉매를 얻었다.A nickel-alumina-based catalyst containing 5% by weight of nickel was prepared by impregnation to compare with the selective hydrogenation activity of the modified nickel-alumina-based catalyst obtained in the examples. As the carrier, the same gamma-alumina as in Example 1 was used. In the preparation process, 1 mol of nickel nitrate aqueous solution was added to 20 g of the spherical gamma-alumina support so as to meet the supporting amount of 4.5 wt% and stirred at 50 ° C. for 6 hours. Then, a flask containing a solution was connected to a rotary vacuum evaporator, and the water was evaporated while rotating at a temperature of 100 torr and a temperature of 80 ° C. The catalyst precursor powder having evaporated water was put in a drying oven, dried at 100 ° C. for 12 hours, and then put in a kiln, and calcined at 650 ° C. for 4 hours in air to prepare a nickel-gamma-alumina (Ni-γ-Al 2 O 3 ) catalyst. Got it.

실험예 1Experimental Example 1

실시예 1 ∼ 5와 비교예 1에서 얻은 촉매들의 선택적 수소화 활성을 다음과 같은 방법으로 비교 측정하였으며, 그 결과는 다음 표 1에 나타낸 바와 같다.The selective hydrogenation activity of the catalysts obtained in Examples 1 to 5 and Comparative Example 1 was measured by the following method, and the results are shown in Table 1 below.

촉매 활성의 측정에는 실험실에서 제작한 전형적인 고정층 촉매 반응장치가 사용되었다. 선택적 수소화 촉매를 상기 반응장치에 첨가하기 전에 전처리과정을 거치는데 전기히터와 프로그램 가능한 자동온도 조절장치(한영전자, HY P-100) 및 배압조절기 (Back Pressure Regulator) 장치가 부착된 3/8 인치 크기의 스테인레스 스틸 반응기에 상기에서 제조된 촉매 1 g을 채우고 분당 50 mL의 유속을 갖는 5% 수소로 400 ∼ 500 ℃ 범위에서 1 ∼ 4 시간 동안 환원한 후 300 ∼ 450 ℃ 범위에서 2시간동안 다시 1000 ppm의 H2S 기체가 함유된 질소 기류를 분당 100 mL의 유속으로 촉매층에 통과시켜 전처리한 후 반응온도로 낮춰 반응에 사용한다. 이 때, 반응기는 1 ㎛의 기공을 갖는 스테인레스 스틸 필터를 반응기 중간에 용접하여 고정시킨 후 그 위에 촉매를 채웠다. 상기와 같이 촉매를 전처리한 후, 측정할 반응온도에 맞추고 탄소수 8 ∼ 15 범위의 선형 지방족 탄화수소 혼합물로 이루어진 액체 반응물을 HPLC 펌프(ICI LC 1110)를 사용하여 정량적으로 반응기로 주입하는데, 먼저 촉매가 반응물로 완전히 젖도록 분당 5 ㎖의 부피로 5분 동안 반응물을 촉매층에 통과시킨다. 이때, 상기 탄소수 8 ∼ 15 범위의 선형 지방족 탄화수소 혼합물은 선형 지방족 파라핀을 Pt-Sn계 탈수소화 촉매를 사용하여 탈수소화 반응에 의해 얻어진 것으로서 미반응된 선형의 지방족 파라핀과 모노-올레핀 및 디-올레핀 생성물, 방향족 화합물 등이 혼합된 형태이며, 그 조성은 파라핀이84.5 중량%, 모노-올레핀이 10.3 중량%, 디-올레핀이 1.2 중량%, 방향족 화합물이 4.0 중량%를 차지하였다. 한편 반응물로 촉매를 적신 후 액체 반응물과 수소를 반응조건에 맞게 일정한 비율로 촉매층을 통과시키고, 반응기 이후에 달려있는 냉각기를 통과하여 나온 액체를 바이얼에 포집하여 HPLC를 이용하여 반응전 후 탄화수소의 농도를 분석한다. 이 때, 실시예에서 얻은 촉매와 비교예에서 얻은 촉매의 선택적 수소화 활성을 비교하기 위해 반응온도 200 ℃ 범위, 반응압력이 10 기압, 시간당 액체 반응물의 공간속도 LHSV(Liquid Hourly Space Velocity)가 시간당 6, 수소 : 선형 지방족 탄화수소 혼합물 중의 디-올레핀의 비율이 1.5 : 1인 조건에서 촉매 활성이 측정되었다. 반응전후 탄화수소의 조성은 굴절율(Refractive Index) 검출기(Shimadzu RIS-10A)가 부착된 HPLC(Shimadzu LC-10AD)를 이용하여 분석하였고, 이때 컬럼은 2개의 실리카(Waters사, Spherisorb 5 ㎛) HPLC 컬럼을 직렬로 연결하여 사용하였으며, HPLC의 용출 용매는 n-헥산을 사용하였다.A typical fixed bed catalytic reactor manufactured in the laboratory was used to measure the catalytic activity. Before adding the selective hydrogenation catalyst to the reactor, the pretreatment process is carried out with a 3/8 inch with electric heater, programmable thermostat (HY P-100) and back pressure regulator. 1 g of the catalyst prepared above was charged to a sized stainless steel reactor with 5% hydrogen having a flow rate of 50 mL per minute, reduced for 1 to 4 hours in the range of 400 to 500 ° C., and then again for 2 hours in the range of 300 to 450 ° C. A nitrogen stream containing 1000 ppm H 2 S gas is passed through the catalyst bed at a flow rate of 100 mL per minute, pretreated, and lowered to the reaction temperature for use in the reaction. At this time, the reactor was fixed by welding a stainless steel filter having pores of 1 μm in the middle of the reactor and filling the catalyst thereon. After pretreatment of the catalyst as described above, a liquid reactant consisting of a linear aliphatic hydrocarbon mixture having a carbon number of 8 to 15, adjusted to the reaction temperature to be measured, is quantitatively injected into the reactor using an HPLC pump (ICI LC 1110). The reaction is passed through the catalyst bed for 5 minutes at a volume of 5 ml per minute so as to completely wet the reaction. In this case, the linear aliphatic hydrocarbon mixture having 8 to 15 carbon atoms is obtained by dehydrogenation of linear aliphatic paraffins using a Pt-Sn-based dehydrogenation catalyst, and unreacted linear aliphatic paraffins, mono-olefins and di-olefins. The product, an aromatic compound, and the like were mixed, and the composition was 84.5 wt% of paraffin, 10.3 wt% of mono-olefin, 1.2 wt% of di-olefin, and 4.0 wt% of aromatic compound. Meanwhile, after wetting the catalyst with the reactant, the liquid reactant and hydrogen are passed through the catalyst layer at a constant ratio according to the reaction conditions, and the liquid from the cooler after the reactor is collected in a vial to collect the hydrocarbon before and after the reaction using HPLC. Analyze the concentration. At this time, in order to compare the selective hydrogenation activity of the catalyst obtained in the Example and the catalyst obtained in the Comparative Example, the reaction temperature is 200 ℃ range, the reaction pressure is 10 atm, the liquid hourly space velocity (LHSV) of the liquid reactant per hour is 6 per hour The catalytic activity was measured under the condition that the ratio of di-olefins in the hydrogen: linear aliphatic hydrocarbon mixture was 1.5: 1. The composition of the hydrocarbon before and after the reaction was analyzed using HPLC (Shimadzu LC-10AD) attached with a refractive index detector (Shimadzu RIS-10A), wherein the column was composed of two silica (Waters, Spherisorb 5 μm) HPLC columns. Were used in series, and the elution solvent of HPLC used n-hexane.

다음 표 1에는 실시예 1 ∼ 5에서 제조한 촉매와 비교예 1에서 제조한 촉매의 선택적 수소화 활성이 비교 예시되었으며, 이러한 결과들은 반응개시 후 정상 상태에 도달하는 4시간 이후부터 8시간까지의 결과치를 평균한 값으로 나타내었다.In Table 1 below, the selective hydrogenation activity of the catalysts prepared in Examples 1 to 5 and the catalysts prepared in Comparative Example 1 were compared. Is expressed as an average value.

상기 표 1에서 보면, 비교예 1의 Ni-γ-Al2O3촉매의 경우에 디-올레핀 전환율은 높지만 모노-올레핀에 대한 선택성은 42.8%로 비교적 낮은 반면에 지르코늄, 란타늄 또는 주석으로 수식한 감마-알루미나 담체에 담지된 니켈 촉매의 경우 모노-올레핀 선택도가 Ni-γ-Al2O3촉매에 비해 크게 증대되어 결과적으로 모노-올레핀 수율이 Ni-γ-Al2O3촉매에 비해 최소 15%에서 최대 29%까지 향상된 결과를 나타내었다.In Table 1, the Ni-γ-Al 2 O 3 catalyst of Comparative Example 1 has a high di-olefin conversion but relatively low selectivity for mono-olefin (42.8%), but modified with zirconium, lanthanum or tin. In the case of the nickel catalyst supported on the gamma-alumina support, the mono-olefin selectivity is greatly increased compared to the Ni-γ-Al 2 O 3 catalyst, resulting in a mono-olefin yield of a minimum compared to the Ni-γ-Al 2 O 3 catalyst. Results have been improved from 15% up to 29%.

상술한 바와 같이, 본 발명의 탄화수소 혼합물 중에 함유된 디-올레핀 화합물의 선택적 수소화 반응에 유용한 수식된 니켈-알루미나계 촉매는 유황처리시에 기존에 석유화학 공정에서 많이 사용된 단순한 형태의Ni-γ-Al2O3촉매에 비해 모노-올레핀 선택성을 향상시킬 수 있어 부산물 처리에 따른 분리 문제를 크게 완화시키고 생성물의 수율을 높일 수 있는 방법으로 활용될 수 있음을 제시해 준다.As described above, the modified nickel-alumina-based catalysts useful for the selective hydrogenation of di-olefin compounds contained in the hydrocarbon mixtures of the present invention are simple forms of N i- which are widely used in petrochemical processes in the sulfur treatment. Compared to the γ-Al 2 O 3 catalyst it can improve the mono-olefin selectivity suggests that it can be utilized as a way to greatly alleviate the separation problem by the by-product treatment and increase the yield of the product.

Claims (6)

탄화수소 혼합물 중에 함유된 디-올레핀 화합물의 선택적 수소화 반응용 니켈-알루미나계 촉매에 있어서, 지르코늄, 란타늄, 주석 중에서 선택된 한 성분으로 표면이 수식된 감마-알루미나 담체상에 니켈이 담지되어 이루어진 것임을 특징으로 하는 수식된 니켈-알루미나계 촉매.Nickel-alumina catalyst for selective hydrogenation of di-olefin compounds contained in a hydrocarbon mixture, characterized in that the nickel is supported on a gamma-alumina carrier whose surface is modified with one of zirconium, lanthanum and tin. Modified nickel-alumina-based catalyst. 제 1 항에 있어서, 상기 지르코늄, 란타늄, 주석이 감마-알루미나 기준으로 0.2 ∼ 10 중량% 함유된 것임을 특징으로 하는 수식된 니켈-알루미나계 촉매.The modified nickel-alumina catalyst according to claim 1, wherein the zirconium, lanthanum and tin are contained in an amount of 0.2 to 10 wt% based on gamma-alumina. 제 1 항에 있어서, 상기 니켈이 감마-알루미나 기준으로 0.5 ∼ 10 중량% 함유된 것임을 특징으로 하는 수식된 니켈-알루미나계 촉매.The modified nickel-alumina catalyst according to claim 1, wherein the nickel is contained in an amount of 0.5 to 10 wt% based on gamma-alumina. 탄화수소 혼합물 중에 함유된 디-올레핀 화합물의 선택적 수소화 반응용 니켈-알루미나계 촉매의 제조방법에 있어서,In the method for producing a nickel-alumina catalyst for the selective hydrogenation of the di-olefin compound contained in the hydrocarbon mixture, 지르코늄, 란타늄, 주석 중에서 선택된 한 성분을 증류수에 용해시켜 감마-알루미나 담체를 첨가하여 습윤 함침법에 의해 수식된 감마-알루미나 담체를 제조하는 단계;와Dissolving one component selected from zirconium, lanthanum and tin in distilled water to prepare a gamma-alumina carrier modified by wet impregnation by adding a gamma-alumina carrier; and 상기 수식된 감마-알루미나 담체를 니켈질산염을 용해시킨 증류수에 습윤함침법 또는 침전법을 이용해 니켈을 수식된 감마-알루미나 담체에 담지하는 단계;Supporting the modified gamma-alumina carrier in the modified gamma-alumina carrier by wet impregnation or precipitation in distilled water in which nickel nitrate was dissolved; 로 구성되는 것임을 특징으로 하는 수식된 니켈-알루미나계 촉매의 제조방법.Method for producing a modified nickel-alumina catalyst, characterized in that consisting of. 상기 제 1 항에 기재된 수식된 니켈-알루미나계 촉매상에서 디-올레핀 탄화수소를 동일 탄소수의 모노-올레핀 탄화수소로 선택적으로 전환시키는 공정을 수행하는 것을 특징으로 하는 디-올레핀 화합물의 선택적 수소화 방법.A process for selectively converting di-olefin hydrocarbons into mono-olefin hydrocarbons having the same carbon number on the modified nickel-alumina-based catalyst according to claim 1 is carried out. 제 5 항에 있어서, 상기 디-올레핀 화합물의 선택적 수소화 반응은 수식된 니켈-알루미나계 촉매가 400 ∼ 500 ℃ 에서 환원, 300 ∼ 450 ℃ 에서 H2S 기체에 의한 전처리 단계를 거치는 조건하에서 수행하는 것을 특징으로 하는 디-올레핀 화합물의 선택적 수소화 방법.The method of claim 5, wherein the selective hydrogenation of the di-olefin compound is carried out under a condition that the modified nickel-alumina catalyst is subjected to a pretreatment step of reducing at 400 ~ 500 ℃, H 2 S gas at 300 ~ 450 ℃ Selective hydrogenation method of the di-olefin compound, characterized in that.
KR10-2001-0002734A 2001-01-17 2001-01-17 Modified Nickel-Alumina catalyst for selective hydrogenation of diolefins and preparation method thereof KR100419858B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0002734A KR100419858B1 (en) 2001-01-17 2001-01-17 Modified Nickel-Alumina catalyst for selective hydrogenation of diolefins and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0002734A KR100419858B1 (en) 2001-01-17 2001-01-17 Modified Nickel-Alumina catalyst for selective hydrogenation of diolefins and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20020061434A true KR20020061434A (en) 2002-07-24
KR100419858B1 KR100419858B1 (en) 2004-02-25

Family

ID=27692012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0002734A KR100419858B1 (en) 2001-01-17 2001-01-17 Modified Nickel-Alumina catalyst for selective hydrogenation of diolefins and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100419858B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009062386A1 (en) * 2007-11-01 2009-05-22 Petrochina Company Limited A selective nickle based htdrogenation catalyst and the preparation thereof
US8211823B2 (en) 2007-12-13 2012-07-03 Petrochina Company Limited Selective hydrogenation catalyst and the preparation thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2539647B1 (en) * 1983-01-24 1985-06-07 Inst Francais Du Petrole PROCESS FOR THE PREPARATION OF SUPPORTED BIMETALLIC OR PLURIMETALLIC CATALYSTS BASED ON ONE OR MORE GROUP VIII METALS AND AT LEAST ONE GROUP IV METAL OBTAINED CATALYSTS AND USES THEREOF
US4748290A (en) * 1984-12-17 1988-05-31 Phillips Petroleum Company Hydrogenation catalysts and process
US4734540A (en) * 1986-12-22 1988-03-29 Uop Inc. Catalyst for the selective hydrogenation of polyunsaturated organics
US4911948A (en) * 1988-09-07 1990-03-27 Acumeter Laboratories, Inc. Method of screen printing and application of hot melt upon moving web substrates
US5208405A (en) * 1992-03-03 1993-05-04 Phillips Petroleum Company Selective hydrogenation of diolefins
US5523271A (en) * 1994-12-13 1996-06-04 Intevep, S.A. Catalyst for the simultaneous selective hydrogenation of diolefins and nitriles and method of making same
AU692723B2 (en) * 1996-02-01 1998-06-11 Phillips Petroleum Company Catalyst composition and process for selecting hydrogenation of diolefins
DE19608241A1 (en) * 1996-03-04 1997-09-18 Basf Ag Process for the selective hydrogenation of dienes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009062386A1 (en) * 2007-11-01 2009-05-22 Petrochina Company Limited A selective nickle based htdrogenation catalyst and the preparation thereof
GB2467086A (en) * 2007-11-01 2010-07-21 Petrochina Co Ltd A selective nickle based htdrogenation catalyst and the preparation thereof
GB2467086B (en) * 2007-11-01 2012-02-08 Petrochina Co Ltd A selective nickle based hydrogenation catalyst and the preparation thereof
US9597668B2 (en) 2007-11-01 2017-03-21 Petrochina Company Limited Selective nickel based hydrogenation catalyst and the preparation thereof
US8211823B2 (en) 2007-12-13 2012-07-03 Petrochina Company Limited Selective hydrogenation catalyst and the preparation thereof

Also Published As

Publication number Publication date
KR100419858B1 (en) 2004-02-25

Similar Documents

Publication Publication Date Title
CN1081081C (en) Dehydrogenationc atalyst for C6-15 Chain Alkane
EP1385626B1 (en) Process for selective hydrogenation of alkynes and catalyst therefor
KR100568056B1 (en) Catalyst And Processes For The Selective Hydrogenation Of Unsaturated Compounds In Hydrocarbon Streams
JP6636162B2 (en) Palladium-based hydrogenation catalyst, method for producing the same, and use thereof
KR101345523B1 (en) Selective hydrogenation process employing a sulphurized catalyst
RU2290258C2 (en) Supported catalyst for selective hydrogenation of alkines and dienes, method of preparation thereof, and a selective alkine and diene hydrogenation process
DK2161076T3 (en) Process for selective hydrogenation using a sulfide catalyst of a specific composition
US5358920A (en) Dehydrogenating catalyst for saturate hydrocarbons
KR20020040789A (en) Advances in dehydrogenation catalysis
EP0174836A2 (en) Solid strong acid catalyst
EA008968B1 (en) Selective hydrogenation process and catalyst therefor
US10618033B2 (en) Mesoporous and macroporous nickel-based catalyst having a median macropore diameter of greater than 200 nm and its use with regard to hydrogenation
US20060060505A1 (en) Catalyst and process for selective hydrogenation
US4734540A (en) Catalyst for the selective hydrogenation of polyunsaturated organics
CA1107304A (en) Process for producing olefins from carbon monoxide and hydrogen
KR100419858B1 (en) Modified Nickel-Alumina catalyst for selective hydrogenation of diolefins and preparation method thereof
KR100392202B1 (en) Selective Hydrogenation Catalyst based on Nickel-Zirconia and Its Use for Selective Hydrogenation of Di-olefins
WO2005051538A1 (en) Catalyst and process for selective hydrogenation
JPH0529504B2 (en)
CN1016165B (en) Catalyzer rich in macropores for selectively hydrogenating olefinic hydrocarbon
JPH0529506B2 (en)
US6239323B1 (en) Catalyser for aromatising aliphatic and alicyclic hydrocarbons, methods of producing and using said catalyst
RU2050190C1 (en) Method for preparation of nickel catalyst for hydrogenation of unsaturated aromatic hydrocarbons and carbonyl compounds
CN1024903C (en) Catalyst for transforming di-olefines selectice hydrogenation to single-olefines
JPH0529505B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100830

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee