KR20020057762A - TMR device and the fabricating method thereof - Google Patents

TMR device and the fabricating method thereof Download PDF

Info

Publication number
KR20020057762A
KR20020057762A KR1020010000837A KR20010000837A KR20020057762A KR 20020057762 A KR20020057762 A KR 20020057762A KR 1020010000837 A KR1020010000837 A KR 1020010000837A KR 20010000837 A KR20010000837 A KR 20010000837A KR 20020057762 A KR20020057762 A KR 20020057762A
Authority
KR
South Korea
Prior art keywords
layer
oxide
fen
tunnel barrier
forming
Prior art date
Application number
KR1020010000837A
Other languages
Korean (ko)
Other versions
KR100382764B1 (en
Inventor
송이헌
김태완
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR10-2001-0000837A priority Critical patent/KR100382764B1/en
Publication of KR20020057762A publication Critical patent/KR20020057762A/en
Application granted granted Critical
Publication of KR100382764B1 publication Critical patent/KR100382764B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Abstract

PURPOSE: A tunnel ring magneto-resistance element and a method for fabricating the same are provided to fabricate efficiently an oxide tunneling barrier by improving a lowering phenomenon of a magneto-resistive ratio. CONSTITUTION: An anti-ferromagnetic layer(110) is deposited on a silicon substrate. A fixing layer(120) is deposited on the anti-ferromagnetic layer(110). An oxide tunneling barrier(130) is deposited on the fixing layer(120). A free layer(140) is deposited on the oxide tunneling barrier(130). An FeN layer(150) is formed between the fixing layer(120) and the oxide later tunnel barrier(130). The fixing layer(120) is formed by ferromagnetic material such as CoFe or NiFe. The FeN layer(150) is formed by implanting nitrogen gas into the fixing layer(120) and combining Fe ions with N ions on a surface of the fixing layer(120).

Description

터널링 자기저항 소자 및 그 제조방법{TMR device and the fabricating method thereof}Tunneling magnetoresistive element and manufacturing method thereof

본 발명은 터널링 자기저항 소자 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 터널링 자기저항소자의 산화막 터널링 장벽의 제조과정중 일어날 수 있는자기저항 비(MR ratio)의 저하를 방지하는 질화막이 형성된 터널링 자기저항 소자 및 그 제조방법에 관한 것이다.The present invention relates to a tunneling magnetoresistive device and a method of manufacturing the same, and more particularly, to tunneling in which a nitride film is formed to prevent a decrease in the MR ratio that may occur during the manufacturing of the oxide tunneling barrier of the tunneling magnetoresistive device. A magnetoresistive element and a method of manufacturing the same.

종래의 자기 랜덤 액세스 메모리(magnetic randam access memory; MRAM) 셀의 기본 요소인 터널링 자기저항(Tunneling Magnetoresistive; TMR) 소자는 도 1의 개략 구조에서 보듯이 반강자성층(Antiferromagnetic; AFM)(10)과의 교환 바이어스 결합에 의해 자화가 고정되는 강자성체 재료인 CoFe 나 NiFe 등으로 형성된 고정층(Ferromagnetic:FM)(20)과, 자화가 고정되지 않고 기록된 매체(신호 필드)로 부터의 자계에 응답하여 자유로이 회전하는 강자성체인 자유층(40)과, 상기 고정층(20)과 자유층(40)을 분리하는 절연층인 산화물 터널 장벽(Oxide tunneling barrier)(30)으로 형성되어 있다.Tunneling magnetoresistive (TMR) elements, which are the basic elements of conventional magnetic random access memory (MRAM) cells, are shown with an antiferromagnetic layer (AFM) 10 as shown in the schematic structure of FIG. A ferromagnetic (FM) 20 formed of CoFe, NiFe, or the like, a ferromagnetic material in which magnetization is fixed by an exchange bias coupling, and freely in response to a magnetic field from a medium (signal field) in which magnetization is not fixed. A free layer 40 which is a rotating ferromagnetic material and an oxide tunneling barrier 30 which is an insulating layer separating the fixed layer 20 and the free layer 40 are formed.

상기 TMR 소자의 작용을 도 2의 모식도를 참조하여 설명한다. 도 2의 (a)에서 고정층과 자유층의 자화 스핀이 반대방향인 경우, 전류를 인가하면 TMR 소자의 높은 자기저항으로 인하여 적은 전류가 터널 장벽을 통과하여 흐른다. 역으로 도 2의 (b)에서 보면, 고정층(20)과 자유층(40)의 스핀의 방향이 같아 자기저항이 낮으므로 전류를 인가하면 많은 전류가 흐른다. 이때 자기저항 비(Magnetoresistive Ratio; MR ratio)는 다음 식으로 표현된다.The operation of the TMR element will be described with reference to the schematic diagram of FIG. 2. In FIG. 2A, when the magnetization spins of the pinned layer and the free layer are in opposite directions, when a current is applied, a small current flows through the tunnel barrier due to the high magnetoresistance of the TMR element. On the contrary, in FIG. 2B, since the direction of spin of the pinned layer 20 and the free layer 40 is the same, the magnetoresistance is low, and a large amount of current flows when a current is applied. In this case, the magnetoresistive ratio (MR ratio) is expressed by the following equation.

이때 MR ratio가 높아야 상기 고정층(20)과 자유층(40)의 스핀의 방향을 판별하기가 용이해져 "1"과 "0" 의 정보의 읽기 및 쓰기를 행하는 우수한 MRAM을 만들 수 있게 되는 것이다.In this case, a high MR ratio makes it easier to determine the direction of spin of the pinned layer 20 and the free layer 40, thereby making it possible to make an excellent MRAM for reading and writing information of " 1 " and " 0 ".

그러나 종래의 TMR 소자는 산화막 터널 장벽(30) 형성시 주로 고정층(20) 상에 10 Å 정도의 알루미늄 박막을 입힌 후 플라즈마 산화로 알루미나(Al2O3)의 절연체를 형성하는 게 일반적이나, 플라즈마 산화가 부족한 경우(도 3의 (a)), 하부층의 알루미늄 금속(Al)이 일부 남아 터널링 전류가 감소되며, 산화가 지나치게 진행된 경우(도 3의 (b)), 고정층(20)의 표면을 산화시켜 표면산화층(50)이 형성되어 스핀 변동이 발생되고 자유층과(40)의 스핀 반응이 감소되어 MR ratio가 감소되는 문제점이 있었다.However, in the conventional TMR device, when the oxide tunnel barrier 30 is formed, an aluminum thin film of about 10 mW is usually coated on the fixed layer 20, and then an insulator of alumina (Al 2 O 3 ) is formed by plasma oxidation. When the oxidation is insufficient (Fig. 3 (a)), a portion of the aluminum metal (Al) of the lower layer remains, the tunneling current is reduced, and if the oxidation is excessively progressed (Fig. 3 (b)), the surface of the fixed layer 20 The surface oxide layer 50 is oxidized to form spin fluctuations, and the spin reaction of the free layer 40 is reduced, thereby reducing the MR ratio.

본 발명은 상기의 문제점을 개선하기 위하여 창출된 것으로서, 본 발명의 목적은 산화물 터널 장벽을 효율적으로 제조하는 터널링 자기저항 소자 제조방법을 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a tunneling magnetoresistive element for efficiently manufacturing an oxide tunnel barrier.

본 발명의 다른 목적은 상기 제조방법으로 제조된 터널링 자기저항 소자를 제공하는 것이다.Another object of the present invention is to provide a tunneling magnetoresistive element manufactured by the above manufacturing method.

도 1은 종래의 터널링 자기저항 소자의 개략 단면도,1 is a schematic cross-sectional view of a conventional tunneling magnetoresistive element;

도 2는 터널링 자기저항 소자의 작용 모식도,2 is a schematic diagram of an operation of a tunneling magnetoresistive element;

도 3의 (a)는 플라즈마 산화가 부족한 경우의 TMR 소자의 개략 단면도, (b)는 플라즈마 산화가 지나친 경우의 TMR 소자의 개략 단면도.3A is a schematic cross-sectional view of a TMR element when plasma oxidation is insufficient, and (b) is a schematic cross-sectional view of a TMR element when plasma oxidation is excessive.

도 4는 본 발명에 의한 터널링 자기저항 소자의 제조공정의 개략도,4 is a schematic diagram of a manufacturing process of a tunneling magnetoresistive element according to the present invention;

도 5는 본 발명에 의한 터널링 자기저항 소자의 개략적인 단면도.5 is a schematic cross-sectional view of a tunneling magnetoresistive element according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10,110: 반강자성층 20,120: 고정층10,110: antiferromagnetic layer 20,120: fixed layer

30,130: 터널 장벽 40,140: 자유층30,130: tunnel barrier 40,140: free layer

50: 산화층 150: FeN 층50: oxide layer 150: FeN layer

상기의 목적을 달성하기 위하여, 실리콘 기판위에 반강자성층, 고정층, 산화막 터널 장벽과 자유층을 순차적으로 적층하는 터널링 자기저항 소자의 제조방법에 있어서,In order to achieve the above object, in the method of manufacturing a tunneling magnetoresistive element in which an antiferromagnetic layer, a pinned layer, an oxide tunnel barrier and a free layer are sequentially stacked on a silicon substrate,

상기 고정층 상에 질소가스를 처리하여 FeN 층을 형성하는 질화단계를 더 포함하며, 상기 산화막 터널 장벽을 형성하는 단계는 상기 FeN 층 상에 알루미늄 박막을 형성한 후 플라즈마 산화로 산화막 터널 장벽을 형성하는 단계를 포함하였다. 또한 상기 질화단계에 이어서, 상기 기판을 가열하는 단계를 더 포함하는 것이 바람직하다.The method may further include a nitriding step of forming a FeN layer by treating nitrogen gas on the fixed layer, and the forming of the oxide tunnel barrier may include forming an aluminum thin film on the FeN layer and forming an oxide tunnel tunnel by plasma oxidation. Step included. In addition, after the nitriding step, it is preferable to further include the step of heating the substrate.

상기의 다른 목적을 달성하기 위하여 실리콘 기판위에 반강자성층, 고정층, 산화막 터널 장벽과 자유층이 순차적으로 적층되는 터널링 자기저항 소자에 있어서,In the tunneling magnetoresistive element in which an antiferromagnetic layer, a pinned layer, an oxide tunnel barrier, and a free layer are sequentially stacked on a silicon substrate in order to achieve the above another object,

상기 고정층과 산화막 터널 장벽 사이에 질소가스 처리에 의한 FeN 층을 포함하였다.The FeN layer by nitrogen gas treatment was included between the fixed layer and the oxide tunnel tunnel barrier.

이하, 첨부도면을 참조하여 본 발명의 터널링 자기저항 소자 및 그 제조방법에 따른 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment according to the tunneling magnetoresistive element and the method of manufacturing the present invention.

도 4는 본 발명에 의한 터널링 자기저항 소자의 개략적인 제조공정도이다.4 is a schematic manufacturing process diagram of a tunneling magnetoresistive element according to the present invention.

도 4에 따르면, 본 발명의 TMR 소자의 제조방법은 TMR 소자를 형성할 기판을 마련하는 단계; 상기 기판 상에 버퍼층을 형성하는 단계; 상기 버퍼층 상에 반강자성층을 형성하는 단계; 상기 반강자성층 상에 강자성 재료로 이루어진 고정층을 형성하는 단계; 상기 고정층에 질소가스를 처리하여 FeN 층을 형성하는 단계; 상기 FeN 층 상에 알루미늄 박막을 형성하는 단계; 상기 알루미늄 박막에 플라즈마로 산화시켜 절연층인 산화막 터널 장벽을 형성하는 단계; 및 상기 산화막 터널 장벽 상에 강자성체의 자유층을 형성하는 단계;를 포함한다.According to Figure 4, the method of manufacturing a TMR device of the present invention comprises the steps of preparing a substrate to form a TMR device; Forming a buffer layer on the substrate; Forming an antiferromagnetic layer on the buffer layer; Forming a pinned layer of ferromagnetic material on the antiferromagnetic layer; Treating the fixed layer with nitrogen gas to form a FeN layer; Forming an aluminum thin film on the FeN layer; Oxidizing the aluminum thin film with plasma to form an oxide tunnel barrier as an insulating layer; And forming a free layer of ferromagnetic material on the oxide tunnel barrier.

상기 제조공정을 실시예를 통하여 상세히 설명한다.The manufacturing process will be described in detail through examples.

먼저 약 2000 Å의 열처리된 산화물(thermal oxide)이 형성된 실리콘 웨이퍼기판을 진공챔버에 넣어 스퍼터링 방법에 의해 탄탈륨 버퍼층을 약 300 Å 입힌 후, TMR 소자의 피닝(pinning) 역할을 하는 약 200 Å의 IrMn(반강자성층)과 피닝이 이루어지는 약 50 Å의 CoFe(고정층)를 형성한다. 그리고 N2분위기에서 200℃로 표면처리를 하여 CoFe의 상부에 FeN층을 형성한다. 이어서 약 10 Å 정도의 알루미늄 금속을 입힌 후 플라즈마 산화방법으로 매우 얇은 알루미나(Al2O3) 터널 장벽을 형성한다. 이때 고정층 상의 얇은 FeN 층이 CoFe(고정층)이 산화되는 현상을 방지해준다. 상기 터널 장벽 상에 200 Å 정도의 NiFe(자유층)을 형성하여 TMR 소자를 완성한다. 또한 상기 FeN 층 형성후 200~300 ℃ 범위에서 어닐링(annealing)을 하여 계면에서의 결정 흠(lattice defect)과 스트레인(strain)을 감소시켜주어 더욱 강한 스핀 분극(spin polarization)을 얻을 수 있게 한다.First, a silicon wafer substrate having a thermal oxide of about 2000 GPa was deposited in a vacuum chamber, and a tantalum buffer layer was coated with about 300 GPa by a sputtering method, and then about 200 GPa of IrMn serving as pinning of the TMR element. (Antiferromagnetic layer) and CoFe (fixed layer) of about 50 GPa is formed. Then, the surface is treated at 200 ° C. in an N 2 atmosphere to form a FeN layer on top of CoFe. Subsequently, an aluminum metal of about 10 mW is coated and a very thin alumina (Al 2 O 3 ) tunnel barrier is formed by plasma oxidation. At this time, the thin FeN layer on the fixed layer prevents the phenomenon of CoFe (fixed layer) is oxidized. A 200 nm NiFe (free layer) is formed on the tunnel barrier to complete the TMR element. In addition, after forming the FeN layer, annealing (annealing) in the range of 200 ~ 300 ℃ to reduce the crystal defect (lattice defect) and strain (strain) at the interface to obtain a stronger spin polarization (spin polarization).

도 5는 본 발명에 의한 터널링 자기저항 소자의 개략적인 단면도이다.5 is a schematic cross-sectional view of a tunneling magnetoresistive element according to the present invention.

도 5에 따르면, 반강자성층(110), 고정층(120), 산화막 터널 장벽(130)과 자유층(140)이 순차적으로 적층되어 있으며, 상기 고정층(120)과 산화막 터널 장벽(130) 사이에 질소가스 처리에 의한 연자성체인 FeN 층(150)이 형성되어 있다.Referring to FIG. 5, the antiferromagnetic layer 110, the pinned layer 120, the oxide tunnel barrier 130, and the free layer 140 are sequentially stacked, and between the pinned layer 120 and the oxide tunnel barrier 130. The FeN layer 150, which is a soft magnetic material by nitrogen gas treatment, is formed.

상기 고정층(120)은 CoFe나 NiFe 와 같은 강자성체로 만들어 지며, 상기 FeN 층(150)은 상기 고정층(120)에 질소 가스를 흘러보내 고정층의 표면의 불안정한 Fe 이온과 N 이온을 결합되어 형성된 것이다.The pinned layer 120 is made of a ferromagnetic material such as CoFe or NiFe, the FeN layer 150 is formed by combining the unstable Fe ions and N ions on the surface of the pinned layer by flowing nitrogen gas to the pinned layer 120.

상기의 TMR 소자는 전원이 인가되면 두 강자성체인 고정층(20)과 자유층(40)의 자기 스핀의 방향에 따라 높거나 낮은 자기저항을 차이나게 구별하여 나타냄으로써 MR ratio가 커진다.In the TMR device, when the power is applied, the MR ratio is increased by differentiating high or low magnetoresistance according to the directions of magnetic spins of the pinned layer 20 and the free layer 40 which are two ferromagnetic materials.

이상에서 설명한 바와 같이 본 발명에 따른 TMR 소자는 산화물 터널 장벽 형성시 플라즈마 산화의 부족 또는 과다로부터 고정층이 보호되어 MR ratio가 향상되므로 MRAM 제조에 효과적으로 사용할 수 있게 된다.As described above, the TMR device according to the present invention can be effectively used for MRAM fabrication because the fixed layer is protected from lack or excessive plasma oxidation during oxide tunnel barrier formation.

본 발명은 도면을 참조하여 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 한해서 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments with reference to the drawings, this is merely exemplary, it will be understood by those skilled in the art that various modifications and equivalent embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined only by the appended claims.

Claims (3)

실리콘 기판위에 반강자성층, 고정층, 산화막 터널 장벽과 자유층을 순차적으로 적층하는 터널링 자기저항 소자의 제조방법에 있어서,In the method of manufacturing a tunneling magnetoresistive element in which an antiferromagnetic layer, a pinned layer, an oxide tunnel barrier and a free layer are sequentially stacked on a silicon substrate, 상기 고정층 상에 질소가스를 처리하여 FeN 층을 형성하는 질화단계를 더 포함하며,Further comprising a nitriding step of forming a FeN layer by treating nitrogen gas on the fixed layer, 상기 산화막 터널 장벽을 형성하는 단계는 상기 FeN 층 상에 알루미늄 박막을 형성한 후 플라즈마 산화로 산화막 터널 장벽을 형성하는 단계인 것을 특징으로 하는 터널링 자기저항 소자 제조방법.The forming of the oxide tunnel barrier may include forming an aluminum thin film on the FeN layer and forming an oxide tunnel tunnel by plasma oxidation. 제 1 항에 있어서,The method of claim 1, 상기 질화단계에 이어서, 상기 기판을 가열하는 단계를 더 포함하는 것을 특징으로 하는 터널링 자기저항 소자 제조방법.Subsequent to the nitriding step, further comprising the step of heating the substrate. 실리콘 기판 위에 반강자성층, 고정층, 산화막 터널 장벽과 자유층이 순차적으로 적층되는 터널링 자기저항 소자에 있어서,In a tunneling magnetoresistive element in which an antiferromagnetic layer, a pinned layer, an oxide tunnel barrier, and a free layer are sequentially stacked on a silicon substrate, 상기 고정층과 산화막 터널 장벽 사이에 질소가스 처리에 의한 FeN 층이 포함되어 있는 것을 특징으로 하는 터널링 자기저항 소자.Tunneling magnetoresistance device, characterized in that the FeN layer by nitrogen gas treatment between the fixed layer and the oxide tunnel tunnel barrier.
KR10-2001-0000837A 2001-01-06 2001-01-06 TMR device and the fabricating method thereof KR100382764B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0000837A KR100382764B1 (en) 2001-01-06 2001-01-06 TMR device and the fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0000837A KR100382764B1 (en) 2001-01-06 2001-01-06 TMR device and the fabricating method thereof

Publications (2)

Publication Number Publication Date
KR20020057762A true KR20020057762A (en) 2002-07-12
KR100382764B1 KR100382764B1 (en) 2003-05-09

Family

ID=27690988

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0000837A KR100382764B1 (en) 2001-01-06 2001-01-06 TMR device and the fabricating method thereof

Country Status (1)

Country Link
KR (1) KR100382764B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399436B1 (en) * 2001-03-28 2003-09-29 주식회사 하이닉스반도체 A Magnetic random access memory and a method for manufacturing the same
KR100513722B1 (en) * 2002-11-15 2005-09-08 삼성전자주식회사 Magnetic tunnel junction device and Fabricating method thereof
US7198818B2 (en) 2002-12-03 2007-04-03 Hitachi Global Storage Technologies Netherlands B.V. Fabrication of self-aligned reflective/protective overlays on magnetoresistance sensors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110751A (en) * 1997-01-10 2000-08-29 Fujitsu Limited Tunnel junction structure and its manufacture and magnetic sensor
JPH11126315A (en) * 1997-10-20 1999-05-11 Nec Corp Magneto-resistive sensor and its production
JP3593463B2 (en) * 1998-09-11 2004-11-24 株式会社東芝 Ferromagnetic tunnel effect element and magnetic device using the same
JP2000113419A (en) * 1998-10-01 2000-04-21 Sharp Corp Magnetic head provided with magnetoresistive element
DE10080670T1 (en) * 1999-03-01 2001-06-13 Fujitsu Ltd Magnetic sensor and manufacturing method therefor, ferromagnetic tunnel junction element and magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399436B1 (en) * 2001-03-28 2003-09-29 주식회사 하이닉스반도체 A Magnetic random access memory and a method for manufacturing the same
KR100513722B1 (en) * 2002-11-15 2005-09-08 삼성전자주식회사 Magnetic tunnel junction device and Fabricating method thereof
US7198818B2 (en) 2002-12-03 2007-04-03 Hitachi Global Storage Technologies Netherlands B.V. Fabrication of self-aligned reflective/protective overlays on magnetoresistance sensors

Also Published As

Publication number Publication date
KR100382764B1 (en) 2003-05-09

Similar Documents

Publication Publication Date Title
US20210234092A1 (en) Reduction of Barrier Resistance X Area (RA) Product and Protection of Perpendicular Magnetic Anisotropy (PMA) for Magnetic Device Applications
US10658577B2 (en) Maintaining coercive field after high temperature anneal for magnetic device applications with perpendicular magnetic anisotropy
KR100438342B1 (en) A tunnel magnetoresistance effect device and a portable personal device
KR100995464B1 (en) Magnetoresistive effect element, magnetic memory device, and manufacturing method of magnetoresistive effect element and magnetic memory device
EP1607980B1 (en) A novel capping structure for enhancing dR/R of the MTJ device
KR100407907B1 (en) Thermal anneal method of magnetic tunnel junction, and magnetic tunneling junction fabricated by the method
US7002228B2 (en) Diffusion barrier for improving the thermal stability of MRAM devices
JP5380317B2 (en) Magnetic tunnel junction device and manufacturing method thereof
KR20040043048A (en) Magnetic tunnel junction device and Fabricating method thereof
KR100382764B1 (en) TMR device and the fabricating method thereof
JP2009170926A (en) Ferromagnetic tunnel junction element and manufacturing method thereof
JP2007214573A (en) Magnetoresistive element equipped with diffusion prevention layer
US6364964B1 (en) Manufacturing method of spin valve magnetoresistive effect element and manufacturing method of thin-film magnetic head with the element
KR20040083934A (en) A method for manufacturing of a Magnetic random access memory
KR100597714B1 (en) The improvement method of thermal stability in TMR for MRAM applications
JP2009004692A (en) Magneto-resistance effect element and manufacturing method thereof
JP2004079936A (en) Laminated film having ferromagnetic tunnel junction, manufacturing method thereof, magnetic sensor, magnetic recorder, and magnetic memory unit
JP2001236613A (en) Magnetic sensor and method of manufacture
Saito et al. Effect of bias voltage and interdiffusion in Ir-Mn exchange-biased double tunnel junctions
CN115996579A (en) SOT-MRAM and manufacturing method thereof
KR101208697B1 (en) Magnetic tunnel junction and method for fabricating the same
Han et al. Microfabrication of magnetic tunnel junctions using Al as bottom conduction electrode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100413

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee