KR20020054530A - Manufacturing method of microalloyed steel connecting-rod by fracute splitting - Google Patents

Manufacturing method of microalloyed steel connecting-rod by fracute splitting Download PDF

Info

Publication number
KR20020054530A
KR20020054530A KR1020000083651A KR20000083651A KR20020054530A KR 20020054530 A KR20020054530 A KR 20020054530A KR 1020000083651 A KR1020000083651 A KR 1020000083651A KR 20000083651 A KR20000083651 A KR 20000083651A KR 20020054530 A KR20020054530 A KR 20020054530A
Authority
KR
South Korea
Prior art keywords
connecting rod
weight
silicon
vanadium
manganese
Prior art date
Application number
KR1020000083651A
Other languages
Korean (ko)
Inventor
고영상
Original Assignee
이계안
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계안, 현대자동차주식회사 filed Critical 이계안
Priority to KR1020000083651A priority Critical patent/KR20020054530A/en
Publication of KR20020054530A publication Critical patent/KR20020054530A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/766Connecting rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE: A connecting rod is provided which is made of microalloyed steel comprising carbon, silicon, manganese, vanadium and phosphorus are contained, and a method for manufacturing a connecting rod made of microalloyed steel comprising carbon, silicon, manganese, vanadium and phosphorus using fracture splitting is provided. CONSTITUTION: The connecting rod for automobile is made of microalloyed steel comprising 0.40 to 0.45 wt.% of carbon, 1.5 to 2.5 wt.% of silicon, 0.25 to 0.35 wt.% of manganese, 0.15 to 0.25 wt.% of vanadium, 0.05 to 0.10 wt.% of phosphorus, and a balance of Fe. The method for manufacturing the connecting rod for automobile is manufactured using fracture splitting in which the splits inside of the large end part are bonded after integrally forging rod and cap(40) parts of a connecting rod(20) using microalloyed steel comprising 0.40 to 0.45 wt.% of carbon, 1.5 to 2.5 wt.% of silicon, 0.25 to 0.35 wt.% of manganese, 0.15 to 0.25 wt.% of vanadium, 0.05 to 0.10 wt.% of phosphorus, and a balance of Fe and giving a notch(300) to the inside of a large end part of the forged connecting rod(20) so as to split the large end part.

Description

파단분리 가공을 이용한 비조질강 케넥팅 로드의 제조방법{Manufacturing method of microalloyed steel connecting-rod by fracute splitting}Manufacturing method of microalloyed steel connecting-rod by fracute splitting}

본 발명의 커넥팅 로드의 제조방법에 관한 것으로, 더욱 상세하게는 비조질강을 사용하여 커넥팅 로드를 제조하는 방법에 있어서, 탄소, 규소, 망간, 바나듐 및 인이 포함된 비조질강을 이용하여 커넥팅 로드의 로드 및 캡 부분을 일체형으로 단조한 후 대단부 안쪽에 노치를 주어 쪼갠 후 다시 결합하는 파단분리 가공을 통하여 제조하는 커넥팅 로드의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a connecting rod of the present invention, and more particularly, to a method for manufacturing a connecting rod using non-alloyed steel, the method of manufacturing a connecting rod by using non-alloyed steel containing carbon, silicon, manganese, vanadium and phosphorus. The present invention relates to a method for manufacturing a connecting rod manufactured by breaking and breaking the rod and the cap by integrally forging and then splitting and giving the notch inside the large end.

엔진은 흡기밸브를 통해 흡입된 혼합가스를 연소실 내에서 폭발하여 이 폭발동력으로 피스톤을 직선 왕복 시키게 한다. 피스톤과 피스톤 핀으로 결합된 커낵팅 로드가 피스톤 직선왕복운동을 크랭크 축에 회전동력으로 전달하게 된다.The engine explodes the mixed gas sucked through the intake valve in the combustion chamber and causes the piston to reciprocate linearly with this explosion power. The connecting rod combined with the piston and the piston pin transfers the piston linear reciprocating motion to the crankshaft with rotational power.

종래 커넥팅 로드는 피스톤과 커넥팅 로드를 결합시키는 피스톤 핀이 삽입되고 지지되는 소단부와 크랭크 축을 회전시키는 크랭크 아암과 연결되는 크랭크 핀이 삽입되고 지지되는 대단부와 상기 대단부와 소단부를 이어주는 'I'자 형태의 커넥팅 로드 축으로 구분된다.Conventionally, the connecting rod is a 'I' which connects the large end and the small end with a large end into which the piston pin connecting the piston and the connecting rod is inserted and supported, and a crank pin connected with the crank arm rotating the crank shaft. It is divided into 'shaped connecting rod shaft.

이러한 커넥팅 로드는 피스톤의 왕복운동으로 상하 이동시 좌우 요동되어 대단부의 양쪽에 위치되는 크랭크 아암의 측면에 접촉하게 한다. 그래서 커넥팅 로드의 대단부와 크랭크 아암의 접촉 부위에 충격과 소음이 발생되어 장시간 사용되면 마찰로 인해 접부위가 손상되는 문제점이 있다.This connecting rod swings left and right in the reciprocating motion of the piston to make contact with the side of the crank arm located at both ends of the end. Therefore, when the impact and noise are generated in the contact portion of the connecting rod and the crank arm of the connecting rod, there is a problem that the contact portion is damaged due to friction.

자동차 엔진 부품에서 동력 전달의 중요한 역할을 하고 커넥팅로드(connecting rod)는 일반적으로 엔진작동 중 폭발에 의한 압축하중과 크랭크 운동에 따른 복잡한 인장하중, 굽힘하중을 받게 되므로 강도가 높은 탄소강 소재를 열간 단조하여 제조하고 있다.It plays an important role in power transmission in automotive engine parts, and the connecting rod is generally subjected to compressive load due to explosion and complex tensile and bending loads due to crank movement during the engine operation. To manufacture.

종래 커넥팅 로드용 소재는 탄소강 및 합금강이 많이 사용되고 있다. 탄소 0.42∼0.48 중량%, 규소 0.15∼0.35 중량%, 망간 0.6∼0.9 중량%, 인 0.03 중량% 이하 및 황 0.035 중량% 이하로 첨가된 것을 사용한다. 탄소강으로는 S48C 및 S55C가 사용되고, 합금강으로는 크롬과 몰리브덴의 합금인 합금강 SCM440이 주로 사용한다.Conventional connecting rod material is a carbon steel and alloy steel are used a lot. 0.42 to 0.48 wt% of silicon, 0.15 to 0.35 wt% of silicon, 0.6 to 0.9 wt% of manganese, 0.03 wt% or less of phosphorus, and 0.035 wt% or less of sulfur are used. S48C and S55C are used as carbon steel, and alloy steel SCM440, which is an alloy of chromium and molybdenum, is mainly used as alloy steel.

상기와 같은 탄소강은 탄소 비율이 높아서 열간단조 및 열처리시 표면 탈탄이 발생하고, 표면 탈탄으로 인하여 피로강도가 저하될 뿐만 아니라 단조후, 소입 소려처리를 실시해야 하므로 에너지 소비가 불가피하다.The carbon steel as described above has a high carbon ratio, so that surface decarburization occurs during hot forging and heat treatment, and fatigue strength is reduced due to surface decarburization.

일반적으로 사용되고 있는 커넥팅 로드는 압연소재를 열간단조(hot forging)하고, 재질의 강화를 위해 소입-소려 열처리 (quenching-tempering) 및 다른 열처리가 수행되고 있다. 그러나 상기 소입-소려 열처리 공정을 생략하여 원가절감을 목적으로 고가의 바나듐, 니오븀, 티타늄 등이 첨가된 비조질강(microalloyed steel)의 합금을 개발하여 사용하고 있다.The commonly used connecting rods are hot forging the rolled material, and quenching-tempering and other heat treatments are performed to reinforce the material. However, in order to reduce the cost by omitting the hardening-seal heat treatment process, an alloy of microalloyed steel to which expensive vanadium, niobium, titanium, and the like is added has been developed and used.

종래 탄소강을 이용한 커넥팅 로드의 제조방법은 합금소재를 커넥팅 로드 및 캡 부분을 각각 단조한 후 소입-소려 열처리 공정을 거친 후 15개의 일반 가공 공정을 거친다.In the conventional method of manufacturing a connecting rod using carbon steel, the alloy material is subjected to a quenching-thinning heat treatment process after forging the connecting rod and the cap part, respectively, and then undergoes 15 general processing processes.

커넥팅 로드부와 캡부를 따로 단조함에 따라 기본적으로 2 가지 형태의 단조공정이 필요하게 되고 소입-소려 열처리를 통한 열처리 비용이 발생되며 15개의 일반적인 가공을 수행하여 가공비가 상승하는 문제점이 있다.As the connecting rod part and the cap part are separately forged, two types of forging processes are basically required, heat treatment costs are generated through hardening-concern heat treatment, and processing costs are increased by performing 15 general processing.

이에, 본 발명자는 강도 및 가공성이 우수한 커넥팅 로드를 제조하고자 연구 노력한 결과, 탄소 0.40∼0.45 중량%, 규소 1.5∼2.5 중량%, 망간 0.25∼0.35 중량%, 바나듐 0.15∼0.25 중량% 및 인 0.05∼0.10 중량%가 포함된 비조질강을 이용하여, 커넥팅 로드를 캡 부분과 일체형으로 제조 후 파단분리 가공을 거쳐 커넥팅 로드를 제조하였고, 상기 커넥팅 로드가 기계적 물성이 우수하고 파단분리 가공에 따라 가공 공정이 대폭 단축됨을 알아냄으로써 본 발명의 완성하였다.Accordingly, the present inventors have tried to manufacture a connecting rod excellent in strength and workability, and as a result, 0.40 to 0.45 wt% of carbon, 1.5 to 2.5 wt% of silicon, 0.25 to 0.35 wt% of manganese, 0.15 to 0.25 wt% of vanadium, and 0.05 to phosphorus Using non-coarse steel containing 0.10% by weight, the connecting rod was manufactured integrally with the cap part, and then the connecting rod was manufactured by breaking and separating the connecting rod, and the connecting rod has excellent mechanical properties and a machining process according to the breaking and separating process. The present invention has been completed by finding out that it is greatly shortened.

본 발명의 목적은 탄소, 규소, 망간, 바나듐 및 인이 포함되어 있는 비조질강으로 이루어진 커넥팅 로드를 제공하는데 그 목적이 있다.It is an object of the present invention to provide a connecting rod made of a crude steel comprising carbon, silicon, manganese, vanadium and phosphorus.

또한, 본 발명의 목적은 탄소, 규소, 망간, 바나듐 및 인이 포함되어 있는 비조질강을 이용하여 파단분리 가공을 통해 커넥팅 로드를 제조하는 방법을 제공하는데 그 목적이 있다.It is also an object of the present invention to provide a method for producing a connecting rod through fracture separation processing using an amorphous steel containing carbon, silicon, manganese, vanadium and phosphorus.

도 1은 피스톤, 커넥팅 로드 및 크랭크 샤프트를 나타낸 사시도1 is a perspective view of the piston, connecting rod and crankshaft

도 2는 커넥팅 로드를 나타낸 상세도2 is a detailed view showing a connecting rod

도 3은 본 발명의 파단분리 가공을 나타낸 사시도Figure 3 is a perspective view showing the fracture separation process of the present invention

*도면의 주요부호에 대한 간단한 설명** Brief description of the major symbols in the drawings *

2: 부시4: 캡볼트2: bush 4: cap bolts

6: 오일제트8: 커넥팅 로드 베어링6: oil jet 8: connecting rod bearing

10: 피스톤20:커넥팅로드10: piston 20: connecting rod

30: 크랭크 샤프트40: 캡30: crankshaft 40: cap

100: 소단부200: 대단부100: small end 200: large end

300: 노치 (notch)300: notch

상기한 목적을 달성하기 위하여 본 발명은 탄소 0.40∼0.45 중량%, 규소 1.5∼2.5 중량%, 망간 0.25∼0.35 중량%, 바나듐 0.15∼0.25 중량%, 인 0.05∼0.10 중량% 및 잔부로 Fe가 포함된 비조질강으로 이루어진 커넥팅 로드를 제공한다.In order to achieve the above object, the present invention includes 0.40 to 0.45% by weight of silicon, 1.5 to 2.5% by weight of silicon, 0.25 to 0.35% by weight of manganese, 0.15 to 0.25% by weight of vanadium, 0.05 to 0.10% by weight of phosphorus and the balance of Fe. To provide a connecting rod made of non-alloyed steel.

또한, 본 발명은 탄소 0.40∼0.45 중량%, 규소 1.5∼2.5 중량%, 망간 0.25∼0.35 중량%, 바나듐 0.15∼0.25 중량%, 인 0.05∼0.10 중량% 및 잔부로 Fe가 포함된 비조질강을 이용하여 커넥팅 로드의 로드 및 캡 부분을 일체형으로 단조한 후 대단부 안쪽에 노치를 주어 쪼갠 후 다시 결합하는 파단분리 가공을 통하여 제조하는 커넥팅 로드의 제조방법을 제공한다.In addition, the present invention uses an amorphous steel containing 0.40 to 0.45% by weight of silicon, 1.5 to 2.5% by weight of silicon, 0.25 to 0.35% by weight of manganese, 0.15 to 0.25% by weight of vanadium, 0.05 to 0.10% by weight of phosphorus, and the balance of Fe. By forging the rod and the cap portion of the connecting rod integrally to provide a manufacturing method of the connecting rod to be manufactured through the breaking separation process to split and give again the notch inside the large end.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 커넥팅 로드는 탄소 0.40∼0.45 중량%, 규소 1.5∼2.5 중량%, 망간 0.25∼0.35 중량%, 바나듐 0.15∼0.25 중량%, 인 0.05∼0.10 중량% 및 잔부로 Fe가 포함된 비조질강으로 이루어진다.The connecting rod of the present invention is made of 0.40 to 0.45% by weight of carbon, 1.5 to 2.5% by weight of silicon, 0.25 to 0.35% by weight of manganese, 0.15 to 0.25% by weight of vanadium, 0.05 to 0.10% by weight of phosphorus, and the balance to Fe-containing steel. Is done.

본 발명의 강 조성에 있어서 탄소는 강도를 결정하는 기본원소로서 후공정에서 1200∼1300 ℃로 가열시 표면탈탄을 최소화 하기 위해 강도를 확보할 수 있는 범위를 한정한다.In the steel composition of the present invention, carbon is a basic element for determining the strength, thereby limiting the range in which strength can be secured to minimize surface decarburization when heated to 1200 to 1300 ° C. in a post process.

규소는 탈산제로서 제강시 첨가되나, 본 발명에서는 파단분리시 변형(distorsion)을 최소화하고, 인성을 낮추기 위해 통상적인 탄소강보다 많이 첨가한다.Silicon is added during steelmaking as a deoxidizer, but in the present invention it is added more than conventional carbon steel in order to minimize the distortion during fracture separation and lower the toughness.

망간은 합금의 인성을 증가시키는 효과가 있으며, 본 발명에서는 파단분리 공정을 제조함에 따라 분리된 커넥팅 로드의 재결합시 인성이 높게되면 불균일하게 결합되므로 인성을 낮출 필요가 있다. 본 발명에서는 망간의 함량을 통상적인 커넥팅 로드의 탄소강에 함유된 그것보다 낮춘다.Manganese has an effect of increasing the toughness of the alloy, and in the present invention, when the toughness at the time of recombination of the separated connecting rod according to the manufacture of the fracture separation process, it is necessary to lower the toughness because it is unevenly bonded. In the present invention, the content of manganese is lower than that contained in the carbon steel of a conventional connecting rod.

바나듐은 페라이트 강화원소로서 상기 범위를 함유시키는 것이 페라이트 경도를 HV 150~190 까지 최대화 할 수 있수 있으며, 바나듐 탄화물을 고루 석출시켜 분산강화 및 석출강화로 인장강도를 향상시킨다.Vanadium is a ferrite reinforcing element containing the above range can maximize the ferrite hardness up to HV 150 ~ 190, and evenly precipitates vanadium carbide to improve the tensile strength by strengthening dispersion and precipitation.

인 및 황은 불순물로 존재하며 그 함량이 상기 범위를초과하게 되면 결정입계에 편석하여 강도를 저하시키게 되므로 바람직하지 못하다.Phosphorus and sulfur are present as impurities, and if their content exceeds the above range, they are segregated at the grain boundaries and thus are not preferable.

상기와 같은 강 소재를 가열 단조한 후 공냉처리하고 기계가공을 하더라도 종래 소재를 가열, 단조, 소입 및 소려하여 얻어진 강에 비하여 강도가 우수하므로 열처리를 생략할 수 있다. 이러한 열처리의 생략으로 kg당 150원 이상 원가 절감효과를 얻을 수 있다.Even if the steel material is heat-forged and then air-cooled and machined, the heat treatment can be omitted because the steel is superior in strength to steel obtained by heating, forging, quenching and considering the conventional material. By omitting such heat treatment, a cost reduction effect of more than 150 won per kg can be obtained.

또한, 본 발명은 탄소 0.40∼0.45 중량%, 규소 1.5∼2.5 중량%, 망간 0.25∼0.35 중량%, 바나듐 0.15∼0.25 중량%, 인 0.05∼0.10 중량% 및 잔부로 Fe가 포함된 비조질강을 이용하여 커넥팅 로드의 로드 및 캡 부분을 일체형으로 단조한 후 대단부 안쪽에 노치를 주어 쪼갠 후 다시 결합하는 파단분리 가공을 통하여 제조하는 커넥팅 로드의 제조방법을 제공한다.In addition, the present invention uses an amorphous steel containing 0.40 to 0.45% by weight of silicon, 1.5 to 2.5% by weight of silicon, 0.25 to 0.35% by weight of manganese, 0.15 to 0.25% by weight of vanadium, 0.05 to 0.10% by weight of phosphorus, and the balance of Fe. By forging the rod and the cap portion of the connecting rod integrally to provide a manufacturing method of the connecting rod to be manufactured through the breaking separation process to split and give again the notch inside the large end.

커넥팅 로드 (20)는 도1 및 도2에 나타낸 바와 같이 피스톤 (10)과 크랭크샤프트 (30)를 연결해주는 장치로, 피스톤 쪽을 연결해주는 쪽은 소단부 (100), 크랭크샤프트 쪽을 대단부 (200)라고 한다.The connecting rod 20 is a device for connecting the piston 10 and the crankshaft 30, as shown in Figs. 1 and 2, the side connecting the piston is the small end portion 100, the crankshaft side is a large end It is called (200).

소단부 (100) 쪽은 핀에 의해 피스톤과 연결되며, 대단부 (200)는 도 2에서와 같이 2 부분으로 나뉘어져 크랭크샤프트 (30)와 결합하도록 되어 있다. 이곳은 회전하지 않으면 않되도록 되어있어 각각의 원통형 커넥팅 로드 베어링 (8)이 조립되어 있으며, 접촉면은 안쪽에서 오일제트 (6)의 오일에 의해 윤활되고 있다.The small end portion 100 side is connected to the piston by a pin, the large end portion 200 is divided into two parts as shown in Figure 2 to be coupled to the crankshaft (30). It must be rotated so that each cylindrical connecting rod bearing 8 is assembled, and the contact surface is lubricated by the oil of the oil jet 6 from the inside.

본 발명은 커넥팅 로드 (20) 및 캡 (40)을 일체형으로 단조한 후, 노치 (300)을 이용하여 파단분리 가공을 통해 커넥팅 로드 (20)와 캡 (40)을 절단 후, 재결합하여 커넥팅 로드 (20)를 제조한다 (도 3).After the connecting rod 20 and the cap 40 are integrally forged, the present invention cuts the connecting rod 20 and the cap 40 by breaking the cutting process using the notch 300, and then recombines the connecting rod. 20 is prepared (FIG. 3).

본 발명에 따라 제조된 커넥팅 로드 (20)의 기계적인 물성치는 인장강도 900∼1100 MPa, 항복강도 550∼750 MPa, 충격강도 20∼60 J/㎠, 연신율 8∼20%, 경도 (HV) 280∼330 이다.Mechanical properties of the connecting rod 20 manufactured according to the present invention tensile strength 900 ~ 1100 MPa, yield strength 550 ~ 750 MPa, impact strength 20 ~ 60 J / ㎠, elongation 8 ~ 20%, hardness (HV) 280 It is -330.

본 발명의 파단분리 가공을 통해 제조된 커넥팅 로드 (20)는 비조질강을 사용하여 인성이 낮아 재결합시 양쪽 파면이 완벽하게 결합된다. 이러한 제조방법은 캡 (40)부분을 따로 단조하지 않음에 따라 공정이 단순화 되어 가공비가 현재의 약 25% 정도 감소효과를 가져온다. 또한 완벽한 결합으로 커넥팅로드 베어링의 내구 신뢰성을 향상시킨다.The connecting rod 20 manufactured through the fracture separation process of the present invention has low toughness using non-coarse steel, so that both wavefronts are completely coupled when recombined. This manufacturing method is simplified for the process by not forging the cap 40 separately, resulting in a reduction of about 25% of the current processing cost. The perfect combination also improves the durability of the connecting rod bearings.

이하, 본 발명을 실시예에 의거하여 설명하겠는 바, 이러한 실시예에 의하여 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described based on Examples, but the present invention is not limited to these Examples.

실시예 1 및 비교예 1 : 비조질강 합금 조성물의 제조Example 1 and Comparative Example 1: Preparation of non-coated steel alloy composition

하기 표 1에 나타낸 바와 같은 조성을 이용하여 30 kg의 용해로에서 제조하여 직경 1 M이고 높이 1 M인 원통 잉곳(ingot)을 제조한 다음, 1200 ℃에서 단조 후 공냉하여 물성 측정을 위해 시편을 제조하였다.A cylindrical ingot having a diameter of 1 M and a height of 1 M was prepared by using a composition as shown in Table 1 below, and then a specimen was prepared by measuring air forging at 1200 ° C. and air cooling. .

조성(중량%)Composition (% by weight) 탄소carbon 규소silicon 망간manganese sign sulfur 바나듐vanadium iron 실시예 1Example 1 0.40.4 2.02.0 0.30.3 0.10.1 0.35 미만Less than 0.35 0.20.2 나머지Remainder 비교예 11) Comparative Example 1 1) 0.52∼0.580.52 to 0.58 0.15∼0.350.15 to 0.35 0.60∼0.900.60 to 0.90 0.030 미만Less than 0.030 0.035 미만Less than 0.035 -- 나머지Remainder 1) SPE. :JIS S55C1) SPE. JIS S55C

실시예 2 : 커넥팅 로드의 제조Example 2 Preparation of Connecting Rod

상기 표 1의 조성을 이용하여 잉곳을 제조한 다음, 1200 ℃에서 커넥팅 로드 및 캡을 일체형으로 단조한 후 공냉하고, 커넥팅 로드의 대단부 안쪽을 쐐기 (notch)를 이용하여 절단한 후 다시 재결합 시키는 파단분리 공정을 수행하고, 이후 후가공을 통해 커넥팅 로드를 제조하였다.After manufacturing the ingot using the composition of Table 1, after forging the connecting rod and the cap integrally at 1200 ℃ and air-cooled, breaking the inside of the large end of the connecting rod using a wedge (notch) and then break again Separation process was performed, and then connecting rods were manufactured by post processing.

실험예 : 물성 측정Experimental Example: Measurement of Physical Properties

상기 실시예 1 및 비교예 1에서 제조한 시편을 이용하여 하기와 같은 방법으로 물성을 측정하여 표 2에 나타내었다.Using the specimens prepared in Example 1 and Comparative Example 1 was measured in the physical properties as shown in Table 2 below.

구분division 항복강도(kg/㎟)Yield strength (kg / ㎡) 인장강도(kg/㎟)Tensile Strength (kg / ㎡) 연신율(%)Elongation (%) 경도(HV)Hardness (HV) 실시예 1Example 1 6767 9898 1010 295295 비교예 2Comparative Example 2 6262 8383 1818 273273

따라서, 본 발명에 의해 탄소, 규소, 망간, 바나듐 및 인이 포함된 비조질강을 이용하여 커넥팅 로드의 로드 및 캡 부분을 일체형으로 단조한 후 파단분리 가공을 통하여 커넥팅 로드를 제조하였다. 본 발명의 커넥팅 로드는 강도가 우수하며 파단분리 가공을 통해 제조됨에 따라 가공비가 줄며 공정이 대폭 감소되어 원가 절감의 효과를 유도한다. 또한 파단분리면의 완벽한 결합으로 커넥팅로드 베어링의 내구 신뢰성이 향상되는 효과가 있다.Therefore, according to the present invention, the connecting rod was manufactured by breaking and breaking the rod and the cap of the connecting rod integrally using an uncoated steel including carbon, silicon, manganese, vanadium and phosphorus. The connecting rod of the present invention is excellent in strength and is manufactured through the break-separation process, thereby reducing the processing cost and significantly reducing the process, leading to cost reduction effects. In addition, the durability of the connecting rod bearing is improved by the perfect coupling of the fracture separation surface.

Claims (2)

탄소 0.40∼0.45 중량%, 규소 1.5∼2.5 중량%, 망간 0.25∼0.35 중량%, 바나듐 0.15∼0.25 중량%, 인 0.05∼0.10 중량% 및 잔부로 Fe가 포함된 비조질강으로 이루어진 것임을 특징으로 하는 자동차용 커넥팅 로드.A vehicle characterized by consisting of 0.40 to 0.45% by weight of carbon, 1.5 to 2.5% by weight of silicon, 0.25 to 0.35% by weight of manganese, 0.15 to 0.25% by weight of vanadium, 0.05 to 0.10% by weight of phosphorus, and the balance of unalloyed steel containing Fe. For connecting rod. 탄소 0.40∼0.45 중량%, 규소 1.5∼2.5 중량%, 망간 0.25∼0.35 중량%, 바나듐 0.15∼0.25 중량%, 인 0.05∼0.10 중량% 및 잔부로 Fe가 포함된 비조질강을 이용하여 커넥팅 로드의 로드 및 캡 부분을 일체형으로 단조한 후 대단부 안쪽에 노치를 주어 쪼갠 후 다시 결합하는 파단분리 가공을 통하여 제조하는 것을 특징으로 하는 자동차용 커넥팅 로드의 제조방법.Rod of connecting rod using 0.40 to 0.45% by weight of silicon, 1.5 to 2.5% by weight of silicon, 0.25 to 0.35% by weight of manganese, 0.15 to 0.25% by weight of vanadium, 0.05 to 0.10% by weight of phosphorus, and the balance of Fe-containing steel And forging the cap part integrally, then giving a notch to the inside of the large end portion, and then manufacturing the connecting rod for a vehicle, characterized in that the manufacturing is carried out through the breaking separation process for rejoining.
KR1020000083651A 2000-12-28 2000-12-28 Manufacturing method of microalloyed steel connecting-rod by fracute splitting KR20020054530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000083651A KR20020054530A (en) 2000-12-28 2000-12-28 Manufacturing method of microalloyed steel connecting-rod by fracute splitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000083651A KR20020054530A (en) 2000-12-28 2000-12-28 Manufacturing method of microalloyed steel connecting-rod by fracute splitting

Publications (1)

Publication Number Publication Date
KR20020054530A true KR20020054530A (en) 2002-07-08

Family

ID=27687257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000083651A KR20020054530A (en) 2000-12-28 2000-12-28 Manufacturing method of microalloyed steel connecting-rod by fracute splitting

Country Status (1)

Country Link
KR (1) KR20020054530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656007B1 (en) * 2004-11-29 2006-12-08 현대자동차주식회사 Alloy composition for connecting rod casting and manufacturing method of connecting rod using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656007B1 (en) * 2004-11-29 2006-12-08 현대자동차주식회사 Alloy composition for connecting rod casting and manufacturing method of connecting rod using the same

Similar Documents

Publication Publication Date Title
US8152939B2 (en) Non-heat treated connecting rod and method of manufacturing the same
JP6614393B2 (en) Non-tempered steel bar
WO2012164710A1 (en) Bar steel for non-heat treated connecting rods
JP3416869B2 (en) Low ductility non-heat treated steel with excellent machinability
JPH09111412A (en) Non-heat treated steel having high strength, high yield ratio, and low ductility
PL193827B1 (en) Steel for internal combustion engine rings and internal combustion engine ring made of said steel
US5944920A (en) Piston ring material excellent in workability
US5985044A (en) Forged, non-heat treated, nitrided steel parts and process of making
KR20020054530A (en) Manufacturing method of microalloyed steel connecting-rod by fracute splitting
JP3988661B2 (en) Non-tempered steel
EP0799902B1 (en) Piston ring material excellent in workability
JP4255861B2 (en) Non-tempered connecting rod and method for manufacturing the same
JP3988662B2 (en) Non-tempered steel
JP3988663B2 (en) Non-tempered steel
JP3473500B2 (en) Low ductility non-heat treated steel
JPH1143738A (en) Non-heat treated steel with low ductility for hot forging
JPH06145912A (en) Piston ring material
JPS6323261B2 (en)
JPH11236643A (en) Low ductility non-tempering steel
JP4292375B2 (en) Non-heat treated steel for cracking connecting rod
KR20100049264A (en) Ultra high strength microalloy steel for connecting rod
JPH0512564B2 (en)
JPH0931594A (en) Non-heat treated steel with high strength and low ductility
JP2008088527A (en) Connecting rod and its production method
JPS60106641A (en) Method of improving mechanical characteristic of crank shaft for internal-combustion engine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application