KR20020046581A - A method for manufacturing ultra-thin steel sheet for can with excellent welding workability - Google Patents

A method for manufacturing ultra-thin steel sheet for can with excellent welding workability Download PDF

Info

Publication number
KR20020046581A
KR20020046581A KR1020000076831A KR20000076831A KR20020046581A KR 20020046581 A KR20020046581 A KR 20020046581A KR 1020000076831 A KR1020000076831 A KR 1020000076831A KR 20000076831 A KR20000076831 A KR 20000076831A KR 20020046581 A KR20020046581 A KR 20020046581A
Authority
KR
South Korea
Prior art keywords
less
steel sheet
percent
content
flange
Prior art date
Application number
KR1020000076831A
Other languages
Korean (ko)
Inventor
정양준
유문현
박태엽
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1020000076831A priority Critical patent/KR20020046581A/en
Publication of KR20020046581A publication Critical patent/KR20020046581A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for manufacturing a thin steel plate for tube is provided to prevent the badness of welding caused by the concentration of stress at a shape discontinuous portion generated during a welding process. CONSTITUTION: In the method for manufacturing a thin steel plate for tube, a steel slab is composed of C:0.0020-0.010 wt percent; Si:less than 0.05 wt percent, Mn:0.3-0.6 wt percent; P: less than 0.04 wt percent; S: less than 0.04 wt percent, Al:0.020-0.10 wt percent, N: less than 0.0040 wt percent, Cr:0.08-0.15 wt percent, B:0.0005-0.0050 wt percent(the content of B is determined in relation to C), remainder Fe and other inevitable impurities, and all processes of the method are appropriately controlled to manufacture the thin steel plate for tube having a thickness of less than 0.21mm, HR30T, and a hardness of more than 61.

Description

용접 가공성이 우수한 극박 관용강판의 제조방법{A METHOD FOR MANUFACTURING ULTRA-THIN STEEL SHEET FOR CAN WITH EXCELLENT WELDING WORKABILITY}Manufacturing method of ultra-thin steel sheet excellent in weldability {A METHOD FOR MANUFACTURING ULTRA-THIN STEEL SHEET FOR CAN WITH EXCELLENT WELDING WORKABILITY}

본 발명은 식관 또는 음료관 등에 적용되는 극박 관용강판의 제조방법에 관한 것으로, 보다 상세하게는 용접부 근방의 플랜지 가공성이 우수한 판두께 0.21mm이하의 극박 관용강판의 제조방법에 관한 것이다.The present invention relates to a method for producing an ultrathin tubular steel sheet applied to a food pipe or a beverage tube, and more particularly, to a method for producing an ultrathin tubular steel sheet having a thickness of 0.21 mm or less having excellent flange workability near a welded portion.

강판표면에 주석도금한 주석도금강판 또는 전해크롬처리산 처리를 한 크롬강판(TFS ; Tin Free Steel)과 같은 관용강판은, 식관 또는 음료관에 널리 사용된다. 이러한 식관 및 음료관은 그 제조방법의 차이에서 쓰리피스(3-Piece)관과 투피스(2-Piece)관으로 분류되는데, 상기 3-피스관은 관 바디(Body)의 접합방법의 차이에 따라 용접관,접착관,납땜관 등으로 분류되지만, 접합부의 접합대(Lap)가 작고 또한 접합강도가 강하여 고속제관에 적합하다는 등의 이유에서 용접관이 주류를 이룬다.Conventional steel sheets, such as tin plated steel sheets tin-plated on the surface of steel sheets or chromium steel sheets (TFS; Tin Free Steel) subjected to electrochromic acid treatment, are widely used in food or beverage tubes. These food pipes and beverage pipes are classified into three-piece pipes and two-piece pipes according to the difference in the manufacturing method thereof, and the three-piece pipes are classified according to the difference in the method of joining the pipe body. Although it is classified into a welded pipe, a welded pipe, a soldered pipe, and the like, the welded pipe is mainstream because of the small joining part (Lap) of the joining part and the strong joining strength, which is suitable for high-speed manufacturing.

최근에는 이와 같은 용접관용 강판에 있어서, 관의 경량화, 비용절감을 목적으로서 소재가 되는 강판 자체의 게이지 다운(Gauge Down)이 한층 요구되고 있다.In recent years, such a steel plate for welded pipes is required to further gauge down the steel sheet itself as a raw material for the purpose of lightening the tube and reducing the cost.

그러나, 강판의 판 두께를 얇게 하여 강판을 극박 경질화하면, 파넬링(Panneling) 강도 등 관강도의 저하가 초래되고 플랜지(Flange)균열이 발생하기 쉽기 때문에 종래 이상으로 플랜지 및 용접 가공성이 우수한 극박 강판이 요구된다.However, when the steel sheet is made extremely thin by thinning the sheet thickness of the steel sheet, it is easy to cause a decrease in tube strength such as paneling strength and flange cracks are easily generated. Steel sheet is required.

특히, 용접관에서는 관 바디 접합부의 판 두께가 접합부 이외의 부위와 비교하여 두꺼워지기 때문에 용접부 근방에 응력집중이 발생하기 쉽다.In particular, in welded tubes, the plate thickness of the tube body joint becomes thicker than that of the joint except for the stress concentration in the vicinity of the weld.

용접시 입열,가압에 의하여 조직 및 기계특성이 변화된 부분(접합부 및 그 근방), 즉, 열영향부와 용접의 영향을 실질적으로 받지 않는 부분(모재)과의 경계부는 형상적으로 응력이 집중하는 부위와 거의 동일한 위치가 되는 경우가 많기 때문에 이 부분은 실질적으로 네킹 및 플랜지 가공에 대하여 불리하며, 용접관 제관공정에서 문제가 되는 플랜지 균열은 용접부 근방에서 생기는 경우가 많다.When welding, the part where the structure and mechanical properties changed due to heat input and pressure (junction and its vicinity), that is, the boundary between the heat-affected part and the part (base material) which is not substantially affected by the welding, is stressed in shape. This part is substantially disadvantageous to necking and flange processing because it is often almost the same position as the site, and flange cracks, which are a problem in the weld pipe making process, are often generated near the weld.

또, 용접시의 열영향부에 의하여 용접부의 조직변화가 발생하고 용접부 이외의 모재부와 용접부의 가공성 불균일성이 생기는 등의 이유에서 용접부 및 그 근방에서 플랜지 균열이 발생하는 일이 많다.In addition, flange cracks frequently occur in the welded portion and the vicinity thereof due to the change in the structure of the welded portion due to the heat-affected portion at the time of welding, and the unevenness in workability of the base material portion and the welded portion other than the welded portion.

따라서, 종래부터 용접 가공성이 우수한 극박 관용강판의 제조방법이 제안되고 있다. 예를 들면, 일본특개평2-118028호에서는 C: ≤0.004%, Nb: ≤0.01% 의 Nb첨가 극저탄소강을 소둔온도 750∼800℃에서 연속소둔하고 조질압연에서 가공경화를 가하여 조질도 T4 이상의 용접관용 극박강판을 제조하는 방법을 제시하고 있다. 그러나, 이 기술에서는 Nb첨가를 필수로 하고 있기 때문에 재결정온도가 높고,750℃ 이상의 고온소둔을 실시해야 하므로 제조코스트가 높아지는 등 문제점이 있었다. 또한, 판두께 0.20mm 이하의 극박 관용강판의 제조에 있어서는 냉연후의 판두께도 통상보다 얇아지기 때문에 이와 같은 고온소둔을 행하면 사행 등을 일으키기 쉽고,연속소둔라인 통판성이 현저하게 열화하여 생산성의 저하,즉 제조코스트의 증가를 가져온다. 그러므로 소재의 게이지 다운에 의하여 관의 코스트 다운을 도모한다는 본래의 목적을 달성하기 어려워진다.Therefore, the manufacturing method of the ultra-thin conventional steel sheet excellent in weldability is conventionally proposed. For example, Japanese Patent Application Laid-Open No. 2-118028 discloses an Nb-added ultra low carbon steel of C: ≤0.004% and Nb: ≤0.01% at continuous annealing temperature of 750-800 ° C, and subjected to work hardening at temper rolling to give a roughness T4. The above method of manufacturing the ultra-thin steel sheet for welded pipes is proposed. However, in this technique, since the addition of Nb is essential, the recrystallization temperature is high and the high temperature annealing must be performed at 750 ° C. or higher. In addition, in the production of ultra-thin conventional steel sheet having a plate thickness of 0.20 mm or less, the cold-rolled sheet thickness is also thinner than usual, so when such high temperature annealing is performed, it is easy to cause meandering and the like. This leads to an increase in manufacturing cost. Therefore, it is difficult to achieve the original purpose of achieving cost down of the pipe by gauge down of the material.

또한, 일본특개평3-294432호 및 일본 특개평7-109527호에서는 C: ≤0.0060%, N: > 0.0060%의 극저탄소강에 2차 냉간압연을 실시하고 판두께가 0.15mm 이하,HR30T가 62이상의 용접관용 극박강판을 제조하는 방법을 개시하고 있다. 그러나, 이들 기술에서는 0.0060%를 초과하는 다량의 N이 함유되어 있기 때문에 내시효성이 떨어지는 문제점을 가지고 있다. 즉, 주석도금후의 리플로우(Reflow)처리,도장소부,필름 라미네이트시 등의 열이력 또는 제관까지의 상온에서의 장시간 방치에 의한 시효열화가 크고,용접전의 롤 포밍(Roll Forming)에 의한 관 바디 성형시 플루팅(Flutting)이 발생하기도 하고 성형 형상이 불안정하여 편차가 발생하는 문제점을 가지고 있었다.In Japanese Patent Laid-Open No. 3-294432 and Japanese Patent Laid-Open No. 7-109527, secondary cold rolling is performed on ultra low carbon steels of C: ≤0.0060% and N:> 0.0060%, and the plate thickness is 0.15mm or less and HR30T Disclosed is a method for manufacturing at least 62 ultra-thin steel sheets for welded pipes. However, these techniques have a problem of poor aging resistance because they contain a large amount of N exceeding 0.0060%. That is, there is a large deterioration of aging due to reflow treatment after tin plating, heat history during coating place, film lamination, or long time standing at room temperature up to pipe making, and by roll forming before welding. There was a problem that the fluctuation (Flutting) occurs in the body molding and the molding shape is unstable and the deviation occurs.

또 다른 기술로서, 극저 탄소강에 B를 첨가한 관용강판을 개시하고 있는 일본 특개평5-263143호, 일본 특개평5-271755호, 일본 특개평5-295427호, 및 일본 특개평6-192744호 등이 있으나, 이들은 모두 T3이하의 연질강판이며, 또한 단순히 연질화 또는 질소시효의 방지를 목적으로서 붕소을 첨가하고 있는데 지나지 않고 용접부 근방의 플랜지 가공성에 대한 붕소의 효과에 대하여 아무런 고려가 되어 있지 않고 용접부 근방의 플랜지 가공성 그 자체에 대해서도 아무런 고려가 되어 있지 않다.As another technique, Japanese Patent Laid-Open Publication Nos. 5-263143, Japanese Laid-Open Patent Publication No. 5-271755, Japanese Laid-Open Patent Publication No. 5-295427, and Japanese Laid-Open Publication No. 6-192744, which disclose a conventional steel sheet in which B is added to ultra low carbon steel. Although these are all soft steels of T3 or less, and are simply added boron for the purpose of preventing soft nitration or nitrogen aging, and no consideration is given to the effect of boron on flange workability near the welds. No consideration is given to the flange workability itself in the vicinity.

따라서, 상기한 종래기술들로는 최근 요구되고 있는 용접부 근방의 용접 가공성이 우수한 판두께 0.21mm이하, HR30T가 61이상인 경질 용접관용 극박강판을 제조할 수 없다.Therefore, the above-mentioned conventional techniques cannot produce ultra-thin steel sheets for hard welded pipes having a plate thickness of 0.21 mm or less and HR30T of 61 or more, which are excellent in weldability near the welds, which are recently required.

이에, 본 발명의 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 강중 B의 함량을 C와의 관계로부터 도출해내고 제조공정을 적절히 제어함으로써, 용접에 의한 형상 불연속부의 응력 집중에 의한 용접 가공성 불량을 대폭적으로 개선할 수 있는 두께 0.21mm이하, HR30T경도 61 이상의 극박 관용강판의 제조방법을 제공하는데, 그 목적이 있다.Accordingly, the inventors of the present invention have repeatedly conducted research and experiments to solve the above problems, and propose the present invention based on the results. The present invention derives the content of steel B from the relationship with C and manufactures the process. It is an object of the present invention to provide a method for producing an ultrathin tubular steel sheet having a thickness of 0.21 mm or less and an HR30T hardness of 61 or more, which can significantly improve the weldability defect due to the stress concentration at the shape discontinuous portion by welding.

도 1은 탄소함량에 따른 B함량과 플랜지 균열 발생율의 관계를 나타내는 그래프1 is a graph showing the relationship between the B content and the flange crack incidence according to the carbon content

상기한 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, C: 0.0020~0.010%, Si: 0.05% 이하, Mn: 0.3~0.6%, P: 0.04% 이하, S: 0.04% 이하, Al: 0.020~0.10%, N: 0.0040% 이하, Cr: 0.08~0.15%이 함유되고, B은 0.0005~0.0050%이면서 5×10-6/[C%]~1×10-5/[C%]%을 만족하여 첨가되고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브 재가열후 Ar3점 이상의 온도에서 사상압연하고, 산세 및 냉간압연한 다음 재결정온도 이상에서 연속소둔하고 조질압연하는 것을 포함하여 이루어지는 용접 가공성이 우수한 극박 관용강판의 제조방법에 관한 것이다.By weight%, C: 0.0020 to 0.010%, Si: 0.05% or less, Mn: 0.3 to 0.6%, P: 0.04% or less, S: 0.04% or less, Al: 0.020 to 0.10%, N: 0.0040% or less, Cr : 0.08 ~ 0.15% is contained, B is 0.0005 ~ 0.0050% and added to satisfy 5 × 10 -6 / [C%] ~ 1 × 10 -5 / [C%]%, balance Fe and other unavoidable impurities The present invention relates to a method for producing an ultra-thin steel sheet having excellent weldability, which includes rolling after slab reheating at a temperature of at least 3 Ar, pickling and cold rolling, followed by continuous annealing at above a recrystallization temperature, and temper rolling. .

또한, 본 발명은 두께가 0.21mm 이하이고 HR30T가 61이상인 관용강판의 제조방법에 관한 것이다.In addition, the present invention relates to a method for producing a conventional steel sheet having a thickness of 0.21 mm or less and HR30T of 61 or more.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명의 발명자들은 용접부 근방에서 플랜지 균열이 발생하기 쉬운 원인을 상세하게 조사하고, 이를 해결하기 위한 방법에 대하여 연구 및 실험한 결과, 용접부는 다른 부위와 비교하여 판 두께가 두꺼워 응력집중을 일으키기 쉽기 때문에, 모재부와 용접 열영향부의 조직균일성을 높이면 플랜지 균열의 발생을 억제할 수있다는 것을 알아내었다.The inventors of the present invention have investigated in detail the cause of flange cracking in the vicinity of the weld in detail, and researches and experiments on a method for resolving the flange, the weld is thicker than the other parts, it is easy to cause stress concentration Therefore, it has been found that the occurrence of flange cracks can be suppressed by increasing the tissue uniformity of the base material portion and the weld heat affected zone.

상기 용접 열영향부는 그 조직변화 거동에서 변태를 동반하는 조직변화를 일으키는 나게트(Nugget)부와 변태를 동반하지 않는 재결정 등의 변화를 일으키는 주변부로 대별된다. 적정한 전류범위에서 심(Seam)용접이 되는 경우, 용접 중앙부의 나게트부에서는 가장 고온이 되므로 소재의 조직은 오스테나이트 변태되어 오스테나이트 단상 또는 페라이트와 오스테나이트의 2상으로 되고 그 후 냉각되어 실온에서 안정되는 상으로 변태한다.The weld heat affected zone is roughly divided into a nugget that causes tissue change with transformation in the tissue change behavior and a peripheral portion that causes changes such as recrystallization without transformation. In the case of seam welding in the proper current range, the temperature of the material is the highest in the nagette part of the welding center, so the structure of the material is transformed into austenite and becomes single phase of austenite or two phases of ferrite and austenite, and then cooled to room temperature. Transform into a stable phase.

한편, 나게트부의 용접후 조직은 소재의 조건(입경,가공변형의 대소,석출물 크기 등) 및 용접조건(승온속도,최고 도달온도,냉각속도 등) 등에 기여하지만, 일반적인 용접관 공정의 조건범위에서는 주로 소재성분, 특히 탄소량에 의존한다. 즉, 탄소량이 너무 많으면, 이 부분에서는 저온변태 상이 많이 석출되어 과도하게 경화되어 버리는 것이다. 따라서, 접합부 중앙의 조직을 억제하기 위해서는 탄소의 첨가량을 적정한 범위로 하는 것이 필요하다.On the other hand, the post-weld structure of the nagget portion contributes to the material conditions (particle size, size of processing deformation, precipitate size, etc.) and welding conditions (heating rate, maximum attainment temperature, cooling rate, etc.) Depends mainly on the material composition, especially the carbon content. That is, when there is too much carbon amount, in this part, many low temperature transformation phases will precipitate and it will harden excessively. Therefore, in order to suppress the structure of the junction center, it is necessary to make the addition amount of carbon into an appropriate range.

본 발명의 발명자들은 이와 같은 관점으로부터 검토한 결과, C량이 0.01% 를 초과하면 급격하게 저온변태상의 석출물이 많아져서 조직의 균일성을 불량하게 한다는 것을 알았다. 이에, 나게트부가 과도하게 경화되지 않는 0.01% 이하의 C범위에서 열영향부의 결정립 조대화를 억제할 수 있는 방법을 검토한 결과, B를 적정량 첨가하는 것이 극히 유효하다는 것을 알아내었다. 또한, 탄소량을 극저 탄소영역까지 저감함에 의해, 용접시 열영향에 의한 경질로서 취약한 저온변태상의 생성을 회피함과 동시에, 적정량의 B를 첨가함으로써 극저 탄소화에 수반되는 용접부 및 그 근방의 조립화를 억제하는 것이 용접 가공성 개선에 유효하다 것을 알았다.The inventors of the present invention have studied from this point of view, and found that when the amount of C exceeds 0.01%, precipitates of low temperature transformation rapidly increase, resulting in poor tissue uniformity. As a result of examining the method of suppressing the grain coarsening of the heat-affected portion in the C range of 0.01% or less where the nagget portion is not excessively hardened, it was found that adding an appropriate amount of B is extremely effective. In addition, by reducing the amount of carbon to the ultra-low carbon region, it avoids the formation of a low temperature transformation phase that is vulnerable to hardening due to the heat effect during welding, and at the same time, by adding an appropriate amount of B, the welding part accompanying ultra-low carbonization and its assembly It was found that suppressing fire is effective for improving weldability.

이를 위한 실험결과, B를 첨가하지 않은 강의 경우, C량이 0.01% 정도까지는 탄소량의 저감에 의하여 용접 균열발생율은 저하되지만, 0.0050% 이하가 되면 다시 급격하게 용접 균열발생율이 증가하는 결론을 얻을 수 있었다. 이것은 탄소량이 비교적 많은 경우에는 용접부에 저온변태상이 생성되기 때문에 플랜지 가공성이 열화되고, 탄소량이 적어지면 용접부 및 그 근방이 조립화되어 국부 수축현상이 생겨 플랜지 균열이 발생하기 쉽다는 것을 의미한다.As a result of this experiment, in the case of the steel without B, the weld crack incidence is lowered by the amount of carbon up to 0.01%, but the weld crack incidence is rapidly increased when the amount is less than 0.0050%. there was. This means that in the case where the carbon content is relatively high, the flange workability is deteriorated because the low temperature transformation phase is generated in the welded portion, and when the carbon amount decreases, the welded portion and the vicinity thereof are assembled, so that local shrinkage occurs and flange cracking is likely to occur.

따라서, 탄소량의 제어만으로는 충분한 용접 가공성을 없고, 특히 탄소량이 0.01% 이하인 극저 탄소영역에서는 B첨가에 의한 용접 가공성 개선효과가 뚜렷해진다는 것을 알았다.Accordingly, it has been found that the control of the carbon amount alone does not provide sufficient weldability, and in particular, the effect of improving the weldability due to the addition of B becomes apparent in an extremely low carbon region having a carbon content of 0.01% or less.

이것은 B첨가에 의한 모재부와 용접부의 조직 균일성이 향상되었기 때문인데, B는 페라이트 입계에 편석되어 열영향부의 입성장을 억제하고, 재결정온도를 상승시켜 열영향부의 재결정을 억제할 뿐 아니라, 용접부에 있어 변태점이상의 고온에 도달한 부위에 있어서 오스테나이트립을 미세화시키는 등의 복합효과를 나타낸다.This is because the uniformity of the structure of the base material and the welded part is improved by the addition of B. B is segregated at the ferrite grain boundary to suppress the grain growth of the heat affected zone and to increase the recrystallization temperature to suppress the recrystallization of the heat affected zone. A composite effect, such as making austenite grains refine | miniaturize in the site | part which reached high temperature above transformation point in a weld part, is exhibited.

그러나, 상기 B의 함량이 너무 많거나 적어도 용접 가공성이 열화되는 경향이 있기 때문에, 최적의 함량범위가 존재한다는 것을 알 수 있다.However, it can be seen that there is an optimum content range because the content of B is too high or at least the weldability tends to deteriorate.

또한, 상기 B의 함량은, C의 함량과도 관계가 있는데, C의 함량이 적은 경우에는 용접부 근방의 조립화를 억제하고 플랜지 가공성을 개선하기 위하여 비교적많은 B를 첨가할 필요가 있고 C량이 비교적 많은 경우에는 최소량의 B 첨가로도 그 효과를 발휘할 수 있는 것이다.In addition, the content of B is also related to the content of C. When the content of C is small, it is necessary to add a relatively large amount of B in order to suppress the assembly of the vicinity of the welded part and to improve the flange workability. In many cases, the effect can be achieved even with the addition of a minimum amount of B.

이하, 강 성분 및 제조공정에 대하여 설명한다.Hereinafter, a steel component and a manufacturing process are demonstrated.

C는 용접부 근방의 조직을 억제하여 용접부 근방의 플랜지 가공성을 향상시키는 원소로서, 그 함량이 0.0020% 미만이면 용접부의 조직이 조립화되기 쉬워지고 B를 첨가하여도 용접부와 모재부의 조직 불균일성을 억제하는 것이 곤란하여 양호한 용접 가공성을 얻을 수 없다. 또한, 상기 C의 함량이 0.0020% 미만인 경우에 있어서 0.21mm이하의 용접관용 극박강판으로서 요구되는 HR30T ≥61 경도가 되도록 하기 위해서는, 과도한 Mn, P 등의 강화원소 첨가되어야 하고 고압하율의 2차 압연을 해야하며, 용접 가공성을 열화시키지 않고 용접관으로서 필요한 판넬링(Panneling)강도를 얻는 것이 곤란하다.C is an element that suppresses the structure near the weld and improves the flange workability near the weld. If the content is less than 0.0020%, the structure of the weld is easy to assemble, and the addition of B suppresses the nonuniformity of the weld and the base metal. It is difficult to obtain good weldability. In addition, in the case where the content of C is less than 0.0020%, in order to make the HR30T ≥ 61 hardness required as the ultra-thin steel sheet for welding pipes of 0.21 mm or less, excessive reinforcing elements such as Mn and P must be added and secondary rolling with high pressure reduction rate It is difficult to obtain the required paneling strength as a weld tube without deteriorating the weldability.

한편, C의 함량이 0.01% 이상이면, 용접시 열영향부에 저온변태 생성상이 형성되기 어려워져서 용접부의 취화와 동시에 모재부와의 조직 균일성이 저하되기 때문에 용접 가공성이 열화된다. 또한,용접시 입열에 의하여 경질의 상을 많이 석출시켜 네크 가공성에 악영향을 미친다.On the other hand, if the content of C is 0.01% or more, it is difficult to form low-temperature transformation phases in the heat affected zone during welding, so that the weld uniformity and the structure uniformity with the base material portion are degraded. In addition, a large amount of hard phases are precipitated by heat input during welding, which adversely affects the neck workability.

따라서, 상기 C의 함량은 0.0020~0.010%로 설정하는 것이 바람직하다.Therefore, the content of C is preferably set to 0.0020 to 0.010%.

Si은 불순물로서 강중에 잔류하여 강판을 취화시켜 내식성을 열화시키는 원소이므로, 이러한 악영향을 회피하기 위해서는, 그 함량범위를 0.05% 이하로 제한하는 것이 바람직하다.Since Si is an element which remains in steel as an impurity to embrittle steel sheet and degrades corrosion resistance, it is preferable to limit the content range to 0.05% or less in order to avoid such an adverse effect.

Mn은 강중 유황을 MnS로서 석출시킴으로써 슬라브의 열간균열을 방지함과 동시에, 고용강화원소로서 관의 강도를 확보하는 원소이다. 이와 같이 유황을 석출 고정하여 강판강도,경도를 확보하기 위해서는, 0.3% 이상 첨가해야 하지만, 과잉 첨가되면, 강판의 강도향상에는 유리하나 소입성이 증가하여 용접부가 취화하기 쉬워져 가공성의 열화를 초래하므로, 그 상한은 0.6%로 제한하는 것이 바람직하다.Mn is an element that prevents hot cracking of the slab by depositing sulfur in steel as MnS, and at the same time secures the strength of the tube as a solid solution strengthening element. Thus, in order to precipitate and fix the sulfur to secure the steel sheet strength and hardness, 0.3% or more should be added. However, when excessively added, it is advantageous to improve the strength of the steel sheet, but the hardenability increases, so that the welded part becomes brittle, resulting in deterioration of workability. Therefore, the upper limit is preferably limited to 0.6%.

P도 Mn과 같은 치환형 고용원소로서, Mn 이상으로 큰 강화능을 갖는데, 강판의 고강도화를 도모하기 위해서는 유효하지만 페라이트 입계에 편석하여 입계를 취화시켜서 플렌지 가공성 저하를 가져온다. 또한, 내식성도 저하시키기 때문에, 그 함량은 0.04% 이하로 제한하는 것이 바람직하다.P is a substituted solid solution element similar to Mn, and has a large reinforcing ability of Mn or more, which is effective for achieving high strength of the steel sheet, but segregates at the ferrite grain boundary to embrittle the grain boundary, resulting in a decrease in flange formability. Moreover, since corrosion resistance is also reduced, it is preferable to limit the content to 0.04% or less.

S은 슬라브의 열간균열을 방지하기 위해 0.04% 이하로 관리해야 한다. 또한, 상기 S의 함량이 0.04%를 초과하면 열간취성을 일으키기 쉽게 된다.S should be controlled below 0.04% to prevent hot cracking of the slab. In addition, when the content of S exceeds 0.04%, it is easy to cause hot brittleness.

Al은 강중 질소를 AlN으로서 석출시키기 위하여 첨가되는 원소로서, 그 함량이 0.02% 미만인 경우에는 첨가한 B의 대부분이 BN을 형성하여 B첨가에 의한 플렌지 가공성 개선효과가 약해지는 문제가 있다. 또한, 상기 Al의 함량이 0.1%를 초과하면 Al 개재물이 발생되기 쉽기 때문에, 0.02~0.10%로 첨가하는 것이 바람직하다.Al is an element added to precipitate nitrogen in the steel as AlN, and when the content is less than 0.02%, most of the added B forms BN, so that the effect of improving the flange workability due to the addition of B is weakened. In addition, since the Al inclusion easily occurs when the content of Al exceeds 0.1%, it is preferable to add it at 0.02 to 0.10%.

N는 용접부 근방의 조립화를 억제하여 플렌지 가공성을 향상시키는 B의 첨가효과를 충분히 발휘시키기 위해서, 그 함량이 적을수록 바람직하다. 즉, 강중 N가 많을 경우에는 Al, B의 함량을 적정화하여도 BN이 형성되기 쉬워 B 첨가효과가 약해지며 용접 가공성의 개선효과를 충분히 발휘할 수 없는 경우가 있게 된다. 또한, N가 다량 존재하면 질소시효에 의해 롤포밍(Roll Forming)시 플루팅(Flutting)현상이 발생하기도 하고, 성형 형상이 불안정하여 편차가 발생하는 등의 문제점이 나타난다. 따라서, 상기 N의 함량은 0.0040% 이하로 제한하는 것이 바람직하다.N is so preferable that N is sufficient in order to fully exhibit the addition effect of B which suppresses granulation of the weld part vicinity and improves flange workability. That is, when there is much N in steel, even if it optimizes content of Al and B, BN will be easy to form and the effect of B addition will become weak and the improvement effect of weldability may not be fully exhibited. In addition, when a large amount of N is present, fluctuation may occur during roll forming due to nitrogen aging, and the shape may be unstable, causing variations. Therefore, the content of N is preferably limited to 0.0040% or less.

Cr은 강화를 위해 첨가되는 원소로서, 그 함량이 0.08% 미만인 경우는 HRT30T 경도 61이상에 대응하는 강화효과를 얻기 곤란하며, 0.15%를 초과하면 강판의 강화효과는 증가하지만,크롬량의 증가에 따른 제조원가의 상승을 초래하므로, 그 성분 범위는 0.08~0.15% 로 한정하는 것이 바람직하다.Cr is an element added for reinforcement. If the content is less than 0.08%, it is difficult to obtain a reinforcing effect corresponding to HRT30T hardness of 61 or more. If the content exceeds 0.15%, the reinforcing effect of the steel sheet is increased, but the amount of chromium is increased. Since it raises the manufacturing cost, it is preferable to limit the component range to 0.08 to 0.15%.

B는 본 발명에서 가장 중요한 원소로서, 페라이트 입계에 편석된 B는 용접부 근방의 조대화를 억제하고 용접부와 모재부의 조직 균일성 및 가공성 균일성을 높혀 용접부 근방에서의 플렌지 균열발생을 저감시키는 역할을 하는데, 그 함량범위는 C의 함량을 고려하여 설정하는 것이 바람직하다. 본 발명에서는, 상기 B의 함량과 C의 함량과의 관계에 대한 많은 실험을 거듭하고, 도 1과 같은 결과를 얻게 되었다. 즉, 도 1은 C의 함량을 0.0020~0.010% 범위에서 설정하고, B의 함량에 따른 플랜지균열발생율을 나타낸 그래프로서, 본 발명의 발명자들은 이러한 결과로부터, C량에 대응한 최적의 B량을 하기 관계식(1)과 같이 도출하였다.B is the most important element in the present invention, B segregated at the ferrite grain boundary suppresses coarsening in the vicinity of the welded part and increases the uniformity of structure and workability of the welded part and the base metal part, thereby reducing the occurrence of flange cracks near the welded part. However, the content range is preferably set in consideration of the content of C. In the present invention, a number of experiments were repeated about the relationship between the content of B and the content of C, and the results as shown in FIG. 1 were obtained. That is, Figure 1 is a graph showing the flange crack incidence rate according to the content of B and setting the content of C in the range of 0.0020 ~ 0.010%, the inventors of the present invention from this result, the optimum amount of B corresponding to the amount of C It was derived as in the following relation (1).

[관계식 1][Relationship 1]

B(%): 5×10-6/[C%] ~ 1×10-5/[C%]B (%): 5 × 10 -6 / [C%] to 1 × 10 -5 / [C%]

상기한 B의 함량이 5×10-6/[C%] 미만인 경우에는, 제품의 제관특성이 열화되어, 이를 방지하기 위해서는 열간압연의 권취온도를 높혀야 하기 때문에, 바람직하지 못하다. 한편, 상기 B의 함량이 1×10-5/[C%]를 초과하면, 균열기점이 되는 붕소산화물의 형성 및 저온변태상의 생성이 촉진되어 용접 가공성이 저하된다. 또한, 재결정온도가 현저하게 상승하고 합금철 비용도 증가하는 문제가 있다.When the content of B is less than 5 × 10 −6 / [C%], the tube making property of the product is deteriorated, and in order to prevent this, the winding temperature of hot rolling must be increased, which is not preferable. On the other hand, when the content of B exceeds 1 × 10 −5 / [C%], formation of boron oxide serving as a crack origination and formation of low temperature transformation phase are promoted, and weldability is deteriorated. In addition, there is a problem that the recrystallization temperature is significantly increased and the ferroalloy cost also increases.

한편, 본 발명에서 B은 상기한 관계식(1)의 함량을 만족시킴과 동시에, 0.0005~0.0050%범위내로 첨가되는 것이 바람직하다. 그 이유는, B의 함량이 0.0005% 미만이면 제품의 제관특성이 열화되어 제공공정중 열연 권취온도를 높여야 하는 문제가 생기며, 또한 0.005%를 초과하면 균열기점이 되는 붕소산화물이 형성되고 저온변태상의 생성이 촉진되어 용접 가공성이 저하되기 때문이다.On the other hand, in the present invention, while satisfying the content of the above relation (1), B is preferably added within the range of 0.0005 to 0.0050%. The reason is that if the B content is less than 0.0005%, the tube manufacturing characteristics of the product are deteriorated, so that the hot-rolling coiling temperature needs to be increased during the providing process. If the content of B is more than 0.005%, boron oxide, which is the starting point of cracking, is formed and the low temperature transformation This is because the production is accelerated and the weldability decreases.

상기와 같이 조성된 강 슬라브를 재가열한 후 조압연을 거치거나 또는 생략하고 직접 열간사상압연기에 삽입하여 열간압연을 실시한다. 이 때, 열간사상압연온도가 Ar3점 미만이면 권취온도에 대응해 열연강판의 판두께 표층의 결정립이 조대화되기도 하고, 판두께 중앙부에 가공조직이 존재하는 등의 혼립조직를 얻기 쉽다. 또한, 최종제품의 조직도 혼립이 되기 쉽기 때문에, 그 결과 재질편차가 커지고 플랜지 가공성도 열화되므로, 상기 사상압연온도는 Ar3점 이상으로 설정하는 것이 바람직하다. 한편, 상기 슬라브 가열은 통상의 온도범위인 1100∼1250℃에서 실시하는 것이 바람직하다.After reheating the steel slab formed as described above, the rough rolling is carried out or omitted, and directly inserted into a hot rolling mill to perform hot rolling. At this time, when the hot rolling temperature is less than 3 Ar, the grain size of the surface layer of the hot rolled steel sheet may be coarsened in response to the coiling temperature, and it is easy to obtain a mixed structure such that a processing structure exists in the center of the plate thickness. In addition, since the structure of the final product tends to be mixed, as a result, the material deviation increases and the flange workability deteriorates. Therefore, the finishing rolling temperature is preferably set to Ar 3 or more. On the other hand, the slab heating is preferably carried out at 1100 ~ 1250 ℃ which is a normal temperature range.

이후, 상기 열연판은 통상의 방법으로, 권취한 다음, 산세 및 냉간압연하고 연속소둔한 다음 조질압연한다. 이 때, 바람직한 권취온도는 500∼700℃이며, 상기 냉간압연 및 조질압연의 압하율도 특별히 규정할 필요는 없고, 열간사상 판두께, 및 제품 판두께에 맞게 통상의 방법에 따라서 실시한다. 한편, 상기 냉간압연 후 소둔은, 생산성 및 제조비용의 관점에서 연속소둔으로 실시하는 것이 바람직하며, 소둔온도는 재결정온도 이상으로 설정하는 것이 바람직하다. 그 이유는, 상기 소둔온도가 재결정온도 미만이면, 부분적으로 미세 결정조직이 존재하고 재질 및 조직의 균일성이 저하되어 용접 가공성이 열화되기 때문이다.Thereafter, the hot rolled sheet is wound in a conventional manner, followed by pickling and cold rolling, continuous annealing and then temper rolling. At this time, a preferable winding temperature is 500-700 degreeC, and the reduction ratio of the said cold rolling and temper rolling does not need to specify especially, According to a conventional method according to hot-thin plate | board thickness and a product plate | board thickness, it implements. On the other hand, it is preferable to perform annealing after cold rolling by continuous annealing from a viewpoint of productivity and manufacturing cost, and it is preferable to set annealing temperature more than recrystallization temperature. The reason is that when the annealing temperature is lower than the recrystallization temperature, the microcrystalline structure is partially present, the uniformity of the material and the structure is lowered, and the weldability is deteriorated.

상기와 같이 하여 제조된 냉연강판은, 두께가 0.21mm이하인 박강판으로 되며, HR30T는 61 이상을 나타낸다.The cold rolled steel sheet produced as mentioned above becomes a thin steel sheet whose thickness is 0.21 mm or less, and HR30T shows 61 or more.

이후, 상기 강판에는 극박 주석도금 또는 주석-니켈도금후 화성처리 등의 각종 표면처리가 실시된다. 본 발명에서는 이러한 표면처리의 종류는 특히 한정하지 않으며, 어떤 표면처리를 실시하여도 본 발명의 효과는 충분히 발휘된다.Thereafter, the steel sheet is subjected to various surface treatments such as ultrathin tin plating or tin-nickel plating and then chemical conversion. In the present invention, the kind of such surface treatment is not particularly limited, and any effect of the surface treatment is sufficiently exhibited.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표1과 같이 조성되는 강 슬라브를 1,180℃까지 가열한 후 870℃에서 열간사상압연하고,710℃에서 권취하였다. 그 후, 산세 및 냉간압연하여 0.17∼0.21mm두께의 강판을 각각 제조하고, 극박주석도금 및 화성처리를 실시한 다음, HR30T경도를 측정하였다. 그 결과, 관강도를 확보할 수 있는 수준인 HR30T ≥61이면 O로, HR30T < 61이면 ×로 표기하였다.The steel slab, as shown in Table 1 below, was heated to 1,180 ° C, hot rolled at 870 ° C, and wound up at 710 ° C. Thereafter, pickling and cold rolling were performed to prepare steel sheets having a thickness of 0.17 to 0.21 mm, respectively, ultrathin tin plating and chemical conversion treatment were performed, and then HR30T hardness was measured. As a result, if HR30T ≥ 61, which is a level that can secure the tube strength, it is expressed as O, and HR30T <61, ×.

한편, 상기와 같이 하여 제조된 강판에 대하여, 도장소부 및 블랭킹한 후 관 바디(Body)의 심용접을 실시하여 250CC 음료관으로 가공하였다. 이후, 관 에지부의 넥킹 가공후 플랜지 가공을 하였다.On the other hand, the steel sheet manufactured as described above was subjected to core welding of the tube body after blanking and blanking, and processed into a 250CC beverage tube. Then, flange processing was performed after the necking process of the pipe edge part.

플랜지 가공은 재료간의 가공성 차이를 명확하게 검출하기 위하여 통상보다 엄격한 가공을 실시하였다. 즉,관 에지부의 원주방향의 신율이 25% 에 상당하는 플랜지 가공을 실시하고, 플랜지 균열발생율(플랜지 균열관수/플랜지 가공관수)에 의한 플랜지 가공성을 평가하였다. 그 결과, 플랜지 균열발생율이 3% 이하이면 고객사에서 제관시에 문제없이 플랜지 가공을 실시할 수 있으므로 3% 이하를 양호라고 평가하였는데, 하기 표 2에는 1% 이하를 ◎, 3% 이하를 ㅇ, 3% 초과를 ×라고 표기하였다.In order to clearly detect the difference in workability between materials, flange processing was performed more severely than usual. That is, flange work whose circumferential elongation of a pipe edge part corresponds to 25% was performed, and the flange workability by the flange crack incidence rate (flange crack irrigation / flange work irrigation) was evaluated. As a result, if the flange cracking rate is 3% or less, the customer can perform the flange processing without problems during the manufacturing process, so 3% or less was evaluated as good. In Table 2 below, 1% or less and 3% or less were evaluated. More than 3% was marked with x.

용접성 평가는, 상용의 용접기를 사용하여 용접부를 육안으로 관찰하여 스프레쉬(Splash)가 확인되지 않는 최대의 용접전류에서 용접접합부에 대한 티어링시험(Tearing Test)에서 용접부의 파단 유무를 시험하였다. 그 결과, 티어링시험(Tearing Test)후 용접부 파단이 발생되면 ×로, 파단없이 양호하면 ㅇ라고 표기하였다.The weldability was evaluated by visual observation of the weld using a commercially available welder to test the fracture of the weld in a tearing test on the weld at the maximum welding current at which no splash was observed. As a result, after the tearing test (Tearing Test) if the weld break is generated by ×, and if good without breaking was indicated as ㅇ.

상기 평가들의 결과를 하기 표 2에 나타내었다.The results of the evaluations are shown in Table 2 below.

구분division 강 성분(중량%)Steel component (% by weight) CC SiSi MnMn PP SS NN AlAl BB CrCr 발명예1Inventive Example 1 0.00250.0025 0.010.01 0.350.35 0.0210.021 0.0210.021 0.00190.0019 0.0430.043 0.00350.0035 0.090.09 발명예2Inventive Example 2 0.00280.0028 0.010.01 0.390.39 0.0180.018 0.0160.016 0.00210.0021 0.0350.035 0.00270.0027 0.100.10 발명예3Inventive Example 3 0.00300.0030 0.010.01 0.360.36 0.0100.010 0.0130.013 0.00210.0021 0.0310.031 0.00250.0025 0.120.12 발명예4Inventive Example 4 0.00360.0036 0.020.02 0.410.41 0.0090.009 0.0080.008 0.00200.0020 0.0380.038 0.00200.0020 0.120.12 발명예5Inventive Example 5 0.00410.0041 0.010.01 0.320.32 0.0170.017 0.0090.009 0.00180.0018 0.0410.041 0.00200.0020 0.110.11 발명예6Inventive Example 6 0.00540.0054 0.040.04 0.450.45 0.0210.021 0.0110.011 0.00130.0013 0.0340.034 0.00130.0013 0.120.12 발명예7Inventive Example 7 0.00570.0057 0.020.02 0.560.56 0.0090.009 0.0130.013 0.00150.0015 0.0410.041 0.00120.0012 0.100.10 발명예8Inventive Example 8 0.00610.0061 0.020.02 0.350.35 0.0130.013 0.0170.017 0.00170.0017 0.0510.051 0.00120.0012 0.080.08 발명예9Inventive Example 9 0.00790.0079 0.010.01 0.390.39 0.0310.031 0.0170.017 0.00110.0011 0.0510.051 0.00070.0007 0.110.11 발명예10Inventive Example 10 0.00910.0091 0.020.02 0.380.38 0.0180.018 0.0160.016 0.00110.0011 0.0350.035 0.00070.0007 0.090.09 비교예1Comparative Example 1 0.00110.0011 0.010.01 0.350.35 0.0150.015 0.0180.018 0.00190.0019 0.0280.028 0.00480.0048 0.080.08 비교예2Comparative Example 2 0.00260.0026 0.030.03 0.370.37 0.0210.021 0.0250.025 0.00240.0024 0.0150.015 0.110.11 비교예3Comparative Example 3 0.01290.0129 0.010.01 0.320.32 0.0140.014 0.0130.013 0.00180.0018 0.0220.022 0.00050.0005 0.100.10 비교예4Comparative Example 4 0.00350.0035 0.020.02 0.350.35 0.0120.012 0.0150.015 0.00540.0054 0.0280.028 0.00230.0023 0.110.11 비교예5Comparative Example 5 0.00400.0040 0.020.02 0.390.39 0.0170.017 0.0190.019 0.00240.0024 0.0290.029 0.00080.0008 0.090.09 비교예6Comparative Example 6 0.00420.0042 0.010.01 0.340.34 0.0120.012 0.0250.025 0.00180.0018 0.0370.037 0.00130.0013 비교예7Comparative Example 7 0.00490.0049 0.020.02 0.680.68 0.0200.020 0.0170.017 0.00250.0025 0.0380.038 0.00150.0015 0.100.10 비교예8Comparative Example 8 0.00500.0050 0.020.02 0.320.32 0.0160.016 0.0190.019 0.00190.0019 0.0410.041 0.00250.0025 0.110.11 비교예9Comparative Example 9 0.00620.0062 0.030.03 0.350.35 0.0150.015 0.0220.022 0.00150.0015 0.0350.035 0.00050.0005 0.100.10 비교예10Comparative Example 10 0.00690.0069 0.020.02 0.340.34 0.0140.014 0.0210.021 0.00170.0017 0.0510.051 0.00190.0019 0.120.12

구분division 판두께(mm)Plate thickness (mm) 경도(HR30T)Hardness (HR30T) 플랜지가공성Flange Machinability 용접성Weldability 발명예1Inventive Example 1 0.210.21 OO OO 발명예2Inventive Example 2 0.200.20 발명예3Inventive Example 3 0.190.19 발명예4Inventive Example 4 0.190.19 OO 발명예5Inventive Example 5 0.170.17 발명예6Inventive Example 6 0.170.17 발명예7Inventive Example 7 0.180.18 OO 발명예8Inventive Example 8 0.200.20 발명예9Inventive Example 9 0.170.17 발명예10Inventive Example 10 0.210.21 비교예1Comparative Example 1 0.170.17 XX XX XX 비교예2Comparative Example 2 0.180.18 OO 비교예3Comparative Example 3 0.210.21 비교예4Comparative Example 4 0.180.18 비교예5Comparative Example 5 0.170.17 비교예6Comparative Example 6 0.210.21 XX OO OO 비교예7Comparative Example 7 0.190.19 OO XX XX 비교예8Comparative Example 8 0.200.20 비교예9Comparative Example 9 0.210.21 비교예10Comparative Example 10 0.190.19 *HR30T: 61이상이면 'O'로, 61미만이면 'X'로 표시*플랜지균열 발생율(플랜지가공성): 1% 이하이면 '◎'로, 1~3%이면 'O'로, 3%초과하면 'X'로 표시*용접성: 양호하면 'O'로, 불량하면 'X'로 표시* HR30T: Displayed as 'O' if 61 or more, 'X' if less than 61 * Flange cracking rate (flange workability): '◎' if 1% or less, 'O' if 1% or less, and 3% or more Is displayed as 'X' * Weldability: 'O' if good, 'X' if bad

상기 표2에 나타난 바와 같이, 본 발명의 발명예(1)~(10)은 모두 경도(HR30T)가 61 이상이고, 플랜지 가공성 및 용접성도 우수한 것을 알 수 있다.As shown in Table 2, Examples (1) to (10) of the present invention are all hardness (HR30T) of 61 or more, it can be seen that the flange workability and weldability is also excellent.

그러나, C의 함량이 낮은 비교예(1)은 HR30T경도가 57로서 경도가 떨어지며, 용접부의 조직이 조립화되어 용접부와 모재부의 조직불균일에 의한 용접성 및 플랜지 가공성이 열화되었다. 또한, C함량이 많은 비교예(3)은 HR30T 64로서 적정한 경도를 나타내었으나, 용접부의 취화와 모재부와의 조직불균일로 인한 용접 및 플랜지 가공성이 열화되었다.However, Comparative Example (1) having a low content of C had a HR30T hardness of 57, which was low in hardness, and the welded structure was degraded, resulting in poor weldability and flange workability due to nonuniformity in the welded portion and the base metal. In addition, the comparative example (3) having a high C content exhibited an appropriate hardness as HR30T 64, but the weldability and flange workability deteriorated due to the brittleness of the welded portion and the uneven structure of the base material portion.

B가 첨가되지 않은 비교예(2)와 B량이 상기한 관계식(1)을 만족시키지 못하는 비교예(5), (8),(9), 및 (10)은 용접부와 모재부의 조직균일성이 낮아 플랜지 가공성 및 용접성이 떨어진다는 것이 확인되었다.Comparative Examples (2) without B added and Comparative Examples (5), (8), (9), and (10) in which the amount of B did not satisfy the above relational expression (1), had the uniformity of the structure of the welded part and the base material part. Low flange workability and weldability were confirmed.

N가 과잉 함유된 비교예(4)는 용접가공성을 향상시키는 붕소가 BN으로 되어 붕소첨가 효과가 저하되어 용접성 및 가공성이 열화되었다.In the comparative example (4) which contained N excessively, boron which improves weldability turns into BN, the boron addition effect fell, and weldability and workability deteriorated.

경도 강화원소인 Cr이 첨가되지 않은 비교예(6)은 HR30T경도가 54로서 관강도 확보가 불가능하였다Comparative Example (6), in which Cr was not added as a hardness strengthening element, had a HR30T hardness of 54, making it impossible to secure tube strength.

또한, Mn을 과잉으로 첨가한 비교예(7)은 소입성이 증가되어 용접부의 취화로 가공성이 열화되었다.Moreover, the comparative example (7) which added Mn excessively increased hardenability and deteriorated workability by the brittleness of a weld part.

상기한 바와 같은 본 발명에 의하면, C량에 대응한 최적의 B량을 설정하여 용접관의 용접부 및 열영향부의 조직을 제어함으로써, 용접 가공성 불량을 대폭적으로 개선한 극박 관용강판을 효율적으로 제조할 수 있는 효과가 있는 것이다.According to the present invention as described above, by setting the optimum amount of B corresponding to the amount of C to control the structure of the welded portion and the heat affected zone of the welded tube, it is possible to efficiently manufacture the ultra-thin conventional steel sheet which greatly improves the weldability defects. It can be effective.

Claims (2)

중량%로, C: 0.0020~0.010%, Si: 0.05% 이하, Mn: 0.3~0.6%, P: 0.04% 이하, S: 0.04% 이하, Al: 0.020~0.10%, N: 0.0040% 이하, Cr: 0.08~0.15%이 함유되고, B은 0.0005~0.0050%이면서 5×10-6/[C%]~1×10-5/[C%]%을 만족하여 첨가되고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브 재가열후 Ar3점 이상의 온도에서 사상압연하고, 산세 및 냉간압연한 다음 재결정온도 이상에서 연속소둔하고 조질압연하는 것을 포함하여 이루어지는 용접 가공성이 우수한 극박 관용강판의 제조방법By weight%, C: 0.0020 to 0.010%, Si: 0.05% or less, Mn: 0.3 to 0.6%, P: 0.04% or less, S: 0.04% or less, Al: 0.020 to 0.10%, N: 0.0040% or less, Cr : 0.08 ~ 0.15% is contained, B is 0.0005 ~ 0.0050% and added to satisfy 5 × 10 -6 / [C%] ~ 1 × 10 -5 / [C%]%, balance Fe and other unavoidable impurities Method for producing ultra-thin steel sheet with excellent weldability, including re-heating steel slab, which is composed of hot-rolled at a temperature of at least 3 Ar, pickling and cold rolling, followed by continuous annealing at above recrystallization temperature and temper rolling. 제 1항에 있어서, 상기 관용강판은 두께가 0.21mm이하이고 HR30T가 61이상인 것을 특징으로 하는 용접 가공성이 우수한 극박 관용강판의 제조방법The method of claim 1, wherein the conventional steel sheet has a thickness of 0.21 mm or less and HR30T of 61 or more.
KR1020000076831A 2000-12-15 2000-12-15 A method for manufacturing ultra-thin steel sheet for can with excellent welding workability KR20020046581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000076831A KR20020046581A (en) 2000-12-15 2000-12-15 A method for manufacturing ultra-thin steel sheet for can with excellent welding workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000076831A KR20020046581A (en) 2000-12-15 2000-12-15 A method for manufacturing ultra-thin steel sheet for can with excellent welding workability

Publications (1)

Publication Number Publication Date
KR20020046581A true KR20020046581A (en) 2002-06-21

Family

ID=27682107

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000076831A KR20020046581A (en) 2000-12-15 2000-12-15 A method for manufacturing ultra-thin steel sheet for can with excellent welding workability

Country Status (1)

Country Link
KR (1) KR20020046581A (en)

Similar Documents

Publication Publication Date Title
EP1431407B1 (en) Steel plate exhibiting excellent workability and method for producing the same
KR100615380B1 (en) Steel sheet for can and manufacturing method thereof
JP2005240172A (en) High strength thin steel sheet having excellent workability and surface property and method for manufacturing the same
JP2008274332A (en) Steel sheet for can, and its manufacturing method
JP5076544B2 (en) Manufacturing method of steel sheet for cans
JPH08246060A (en) Production of steel sheet for can
JP7488901B2 (en) Tin-plated base sheet for processing and its manufacturing method
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
CN111511949B (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP3379375B2 (en) Ultra-thin steel sheet for weld cans, weld can, and method for producing ultra-thin steel sheet for weld cans with excellent flangeability
JPH07118792A (en) High-strength hot rolled steel plate and its production
JP2003041345A (en) Steel pipe of welded thin sheet and manufacturing method therefor
JP2003286544A (en) Thin-walled steel pipe showing excellent hydroforming property and its manufacturing process
KR20020046581A (en) A method for manufacturing ultra-thin steel sheet for can with excellent welding workability
KR20190078231A (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
KR20190049154A (en) Hot rolled steel sheet with excellent weldability and method for manufacturing thereof
JP5315928B2 (en) Cold rolled steel sheet for drums and method for producing the same
KR101988765B1 (en) Hot rolled steel sheet with excellent durability and method for manufacturing thereof
CN115135795A (en) High-strength tin-plated raw plate and manufacturing method thereof
JPH09302420A (en) Manufacture of steel sheet for can, excellent in uniformity of material
KR100470651B1 (en) A method for manufacturing high strength steel sheet for 3-piece can with superior formability
JPH0762448A (en) Manufacture of ultra thin steel sheet for vessel
JPH0688133A (en) Production of extra thin steel sheet for can excellent in flanging workability and earing property

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination