KR20020042397A - Process for preparing 1,3-alkanediol from 3-hydroxyester compounds - Google Patents

Process for preparing 1,3-alkanediol from 3-hydroxyester compounds Download PDF

Info

Publication number
KR20020042397A
KR20020042397A KR1020010033142A KR20010033142A KR20020042397A KR 20020042397 A KR20020042397 A KR 20020042397A KR 1020010033142 A KR1020010033142 A KR 1020010033142A KR 20010033142 A KR20010033142 A KR 20010033142A KR 20020042397 A KR20020042397 A KR 20020042397A
Authority
KR
South Korea
Prior art keywords
catalyst
reaction
alkanediol
compound
solvent
Prior art date
Application number
KR1020010033142A
Other languages
Korean (ko)
Other versions
KR100453296B1 (en
Inventor
이병노
장은주
이정호
김형록
한요한
신현관
이호선
Original Assignee
윤종용
삼성전자 주식회사
김충섭
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사, 김충섭, 한국화학연구원 filed Critical 윤종용
Priority to EP01307942A priority Critical patent/EP1211234A3/en
Priority to CN01136549.8A priority patent/CN1355160A/en
Priority to JP2001364617A priority patent/JP2002226414A/en
Priority to US09/995,798 priority patent/US6617477B2/en
Publication of KR20020042397A publication Critical patent/KR20020042397A/en
Priority to US10/212,671 priority patent/US6617478B2/en
Application granted granted Critical
Publication of KR100453296B1 publication Critical patent/KR100453296B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: Provided is a process for producing 1,3-alkanediol from a 3-hydroxy ester compound by using a hydrogenation catalyst having high activity and high selectivity. CONSTITUTION: The 1,3-alkanediol is produced by hydrogenating the 3-hydroxy ester compound such as 3-hydroxy methyl propanoate in the presence of the catalyst in a mixed solvent comprising an alcohol solvent and a solvent having a higher boiling point than the 1,3-alkanediol by a liquid-gas phase method, wherein the catalyst is produced by adding an alkali precipitant, such as an alkali carbonate or sodium hydroxide, to a water solution of copper salts to produce particles and then aging by adding colloidal silica. The catalyst has a weight ratio of copper oxide(CuO) and silica(SiO2) being 9:1-5:5.

Description

3-하이드록시에스터 화합물로부터 1,3-알칸디올을 제조하는 방법 {Process for preparing 1,3-alkanediol from 3-hydroxyester compounds}Process for preparing 1,3-alkanediol from 3-hydroxyester compound

본 발명은 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 제조하는 방법에 관한 것으로, 보다 상세하게는 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 고수율로 제조하기 위한 수소화 촉매 및 이 촉매 하에서 3-하이드록시에스터 화합물을 수소화시키는 방법에 관한 것이다.The present invention relates to a method for preparing 1,3-alkanediol from 3-hydroxyester compound, and more particularly to a hydrogenation catalyst for preparing 1,3-alkanediol from high yield of 3-hydroxyester compound. And a method for hydrogenating a 3-hydroxyester compound under this catalyst.

1,3-알칸디올은 폴리에스테르의 합성원료로 뿐만 아니라, 코팅이나 유기합성의 중간체로 사용되는 등 용도가 다양한 제품으로, 지금까지의 제조방법으로는 에폭사이드 화합물을 하이드로포밀화(Hydroformylation)하여 3-하이드록시알데히드 유도체를 합성하고 이것을 수소화하여 1,3-알칸디올을 합성하는 방법(미국특허 제 5,770,776, 제 5,723,389, 제 5,731,478, 제 5,777,182)과 아크롤레인을 수화반응시켜 3-하이드록시프로판알을 합성하고 이것을 수소화시키는 방법(유럽특허 577,972, 미국특허 제 5,093,537) 및 글리세롤로부터 생물학적인 방법으로 1,3-알칸디올을 제조하는 방법(유럽특허 361,082, 독일특허 3,734,764) 등이 알려져 있고, 상업적으로는 에틸렌옥사이드의 하이드로포밀화 반응에 의해 3-하이드록시프로판알을 합성하고, 이것을 수소화시키는 공정이 쉘사에 의해 상업화되어 생산중에 있다. 그러나, 3-하이드록시프로판알을 중간체로 하는 합성방법의 경우, 알데히드 자체가 불안정하여 올리고머가 형성되거나 부산물인 아세탈 생성 등으로 원하는 1,3-프로판디올로 수소화가 완전히 진행되지 않거나 최종제품의 품질이 저하되는 문제가 있는 것으로 알려지고 있다.1,3-alkanediol is not only a synthetic raw material of polyester but also used as a coating or as an intermediate of organic synthesis.It has various uses.Hydroformylation of epoxide compounds has been carried out. Synthesis of 3-hydroxyaldehyde derivative and hydrogenation thereof to synthesize 1,3-alkanediol (US Pat. Nos. 5,770,776, 5,723,389, 5,731,478, 5,777,182) and hydration of acrolein to 3-hydroxypropanal Synthesis and hydrogenation thereof (European Patent 577,972, U.S. Patent No. 5,093,537), and a method for producing 1,3-alkanediol by biological method from glycerol (European Patent 361,082, German Patent 3,734,764) and the like are known, The process of synthesize | combining 3-hydroxypropanal by the hydroformylation reaction of ethylene oxide and hydrogenating it by Shell company It has been commercialized during production. However, in the synthesis method using 3-hydroxypropanal as an intermediate, the aldehyde itself is unstable and oligomers are formed or hydrogenation does not proceed completely with desired 1,3-propanediol due to the formation of by-product acetal or the quality of the final product. It is known that this problem is reduced.

한편, 다른 제조방법으로는 에폭사이드 화합물을 일산화탄소 및 알콜과 함께 반응시키는 카르보에스터화 반응에 의해서 3-하이드록시에스터 화합물을 합성하고, 이 화합물의 에스터기를 수소화시켜 1,3-알칸디올 화합물을 만드는 방법도 가능하나, 이 방법으로 1,3-알칸디올을 제조하는 공정은 아직까지 공업화된 예가 없다. 이것은 3-하이드록시에스터 화합물이 구리-크롬산화물 촉매나 구리-아연산화물 혹은 레니니켈(Raney Ni)과 같은 통상의 에스터기의 수소화 촉매 상에서 매우 비선택적으로 반응하기 때문이다.In another method, a 3-hydroxyester compound is synthesized by a carboesterification reaction in which an epoxide compound is reacted with carbon monoxide and an alcohol, and the ester group of the compound is hydrogenated to produce a 1,3-alkanediol compound. It is possible to make it, but the process for producing 1,3-alkanediol by this method has not yet been industrialized. This is because the 3-hydroxyester compound reacts very non-selectively on hydrogenation catalysts of conventional ester groups such as copper-chromium oxide catalysts or copper-zinc oxides or Raney Ni.

반면, 일반적인 에스터화합물이나 카르보닐화합물 또는 C4이상의 디카복실산에스터 화합물 예를 들어, 알킬말레이트나 사이클로헥산디카복실산에스터 등으로 부터 상응하는 모노알콜이나 1,4-부탄디올, 1,4-사이클로헥산디메탄올 등을 제조하기 위한 기상 또는 액상 공정용 불균일 수소화 촉매에 대해서는 많이 알려져 있고 공업적으로 유용하게 이용되고 있다. 미국특허 제 5,406,004에서는 상기 반응에 이용되는 대표적인 에스터기의 수소화 촉매공정이 개시되어 있다. 예컨데, 구리함유촉매로 Cu-Al2O3나, 환원된 CuO/ZnO (Cu:Zn=0.4:1∼2:1), 환원된 구리-크로마이트(Cu:Cr=0.1:1∼4:1)계 촉매가 있고, CuO/ZnO촉매나 구리-크로마이트 촉매를 바륨이나 망간, 희토류 금속(란탄, 사마륨, 토륨, 세륨, 이트륨 등), 또는 마그네슘, 칼슘 등의 원소로 0.1∼15wt% 범위에서 개량된 촉매가 공지되어 있고, 경우에 따라서는 알루미나, 지르코니아 등의 지지체를 사용하는 촉매 등이 있다. 위에 언급한 촉매들은 상업적으로 이용 가능한 촉매들이다. 그 외에 Pd-Zn(미국특허 제 5,185,476), Cu-TiO2(미국특허 제 4,929,777), Re-Cu-Zn(유럽특허 제 373,946), Zn-Ru계(미국특허 제 4,443,639) 및 Pd, Pt, Ru 함유 촉매 등이 알려져 있다.On the other hand, the corresponding monoalcohol, 1,4-butanediol, 1,4-cyclohexane from a general ester compound, a carbonyl compound, or a C 4 or more dicarboxylic acid ester compound such as alkyl maleate or cyclohexanedicarboxylic acid ester A heterogeneous hydrogenation catalyst for gaseous or liquid phase processes for producing dimethanol is known and industrially useful. U. S. Patent No. 5,406, 004 discloses a hydrogenation catalytic process of a typical ester group used in the reaction. For example, Cu-Al 2 O 3 with a copper-containing catalyst, reduced CuO / ZnO (Cu: Zn = 0.4: 1 to 2: 1), and reduced copper-chromite (Cu: Cr = 0.1: 1 to 4: 1) type catalyst, and the CuO / ZnO catalyst or the copper-chromite catalyst is in the range of 0.1 to 15 wt% based on barium, manganese, rare earth metals (lanthanum, samarium, thorium, cerium, yttrium, etc.) or elements such as magnesium and calcium. A catalyst improved in the above is known, and in some cases, a catalyst using a support such as alumina or zirconia may be used. The catalysts mentioned above are commercially available catalysts. Others include Pd-Zn (US Pat. No. 5,185,476), Cu-TiO 2 (US Pat. No. 4,929,777), Re-Cu-Zn (European Patent 373,946), Zn-Ru (US Pat. No. 4,443,639) and Pd, Pt, Ru containing catalysts are known.

카르보닐기를 함유한 화합물, 특히 에스터 화합물로부터 대응하는 알콜을 제조하기 위해 구리함유 촉매 및 귀금속 촉매가 상기와 같이 많이 개발되었지만, 본 발명의 대상 기질화합물과 같이 특별히 β-위치에 하이드록실기를 함유한 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 제조하는데 유용한 촉매공정이 제안된 경우는 거의 없으며, WO 00/18712에 3-하이드록시프로판산메틸로부터 1,3-프로판디올을 제조하는데 있어 Cu/ZnO계 촉매가 유일하게 공지되고 있으나 공업적으로 의미있는 정도의 성능을 보이지 못하고 있다.Although many copper-containing catalysts and precious metal catalysts have been developed as described above to prepare corresponding alcohols from carbonyl group-containing compounds, in particular ester compounds, as in the substrate compounds of the present invention, hydroxyl groups in particular at the β-position are contained. A catalytic process which is useful for the preparation of 1,3-alkanediols from 3-hydroxyester compounds is rarely proposed, and WO 00/18712 describes the preparation of 1,3-propanediol from methyl 3-hydroxypropanoates. Cu / ZnO-based catalysts are the only known catalysts, but they do not show industrially meaningful performance.

β-위치에 하이드록시기가 치환된 유사한 화합물인 사과산이나 사과산에스터(Malic Ester)로부터 1,2,4-부탄트리올을 제조하기 위한 촉매로 미국특허 제 4,973,769호에서는 Cu-Al2O3계 촉매의 제조방법이, WO 99/38613호에서는Ru-Re계 촉매가 제안되어 있으나, 위 공정의 경우 트리올화합물을 제조하기 위한 반응조건으로 100∼300기압 정도의 고압을 요구하고 있어 본 발명 대상 화합물을 제조하기 위한 공정에 적용하기에는 무리가 있다.A catalyst for the preparation of 1,2,4-butanetriol from malic acid or malic ester, which is a similar compound substituted with a hydroxyl group at the β-position. In US Pat. No. 4,973,769, a Cu-Al 2 O 3 based catalyst WO 99/38613 proposes a Ru-Re-based catalyst, but in the above process, a high pressure of about 100 to 300 atmospheres is required as a reaction condition for preparing a triol compound. It is unreasonable to apply it to the process for manufacturing.

또한, Cu/ZnO 수소화 촉매 상에서 3-하이드록시프로판산메틸 화합물을 환원시키는 데 있어 WO 00/18712에서는 메탄올과 같은 알콜용매 하에서 반응시키는 방법을 제시하고 있다. 알콜은 반응물인 3-하이드록시에스터 화합물 자체의 락톤화 및 에스터기가 분해되는 것을 억제시키는 긍정적 작용이 예상되지만, 고정상 촉매반응기의 수소가스 흐름 하에서 끓는점이 낮은 알콜은 반응조건에서 가스상으로 존재하기 때문에 높은 전환율에서 고선택성을 유지시킨다거나 촉매의 장기 반응 안정성을 확보하는데 도움을 주지 못한다. 상기 발명의 실시예에서 보면 높은 전환율에서 선택성 감소가 심각하게 나타나고 있다. 또한, 반응물인 3-하이드록시에스터 화합물과 생성물인 1,3-알칸디올은 화학적 특성이나 끊는점 차이가 크지 않기 때문에 전환율이 낮을 때 반응물과 생성물의 분리, 정제가 어려워 공정적으로 문제가 된다.In addition, WO 00/18712 proposes a reaction under an alcoholic solvent such as methanol in the reduction of methyl 3-hydroxypropanoate on a Cu / ZnO hydrogenation catalyst. Alcohol is expected to have a positive effect of inhibiting the lactonation of the reactant 3-hydroxyester compound itself and the decomposition of the ester group, but the alcohol having a low boiling point under the hydrogen gas flow in the fixed-phase catalytic reactor is high in the gas phase under the reaction conditions. It does not help to maintain high selectivity in conversion or to ensure long-term reaction stability of the catalyst. In the embodiment of the invention there is a significant decrease in selectivity at high conversion rates. In addition, since the 3-hydroxyester compound and the product 1,3-alkanediol, which are reactants, do not have a large difference in chemical properties or break point, it is difficult to separate and purify the reactants and products when the conversion rate is low.

일반적인 에스터화합물의 수소화 반응에 비해 β-위치가 하이드록실기로 치환된 3-하이드록시에스터 화합물의 수소화 촉매/공정의 문제점은 반응물이 화학적으로나 열적으로 매우 불안정하여 β-위치에 있는 하이드록실기가 쉽게 탈수되고, 생성된 불포화에스터 화합물은 환원되어 포화에스터화합물이나 또는 에스터기가 환원된 대응하는 모노알콜로 쉽게 부반응화하는 것이다. 또한, 3-하이드록시에스터 화합물의 분자내 반응생성물인 β-락톤 화합물은 열적으로 불안정하여 분해되거나중합물인 락톤폴리머가 되며, 그 외 반응물의 분자간 반응이나 또는 수소화생성물인 1,3-알칸디올 화합물과의 축합반응으로 다양한 에스터화물이나 락톤화합물로 부반응화한다. 이러한 부반응화 정도는 반응온도에 민감하기 때문에 반응온도를 높혀서 반응속도를 조절하는데 한계가 있으며, 낮은 반응온도에서 적절한 활성을 유지하기 위해 고압을 유지하는 것은 공업적으로 문제가 된다.The problem of the hydrogenation catalyst / process of the 3-hydroxyester compound in which the β-position is substituted with a hydroxyl group compared to the hydrogenation reaction of the general ester compound is that the reactant is very unstable chemically and thermally so that the hydroxyl at the β-position Easily dehydrated, the resultant unsaturated ester compound is reduced to easily sidereact with a saturated ester compound or a corresponding monoalcohol with reduced ester group. In addition, the β-lactone compound, an intramolecular reaction product of the 3-hydroxyester compound, is thermally unstable to become a decomposed or polymerized lactone polymer, and the intermolecular reaction or other hydrogenation product of 1,3-alkanediol compound. Condensation reaction with and side reactions with various esterates or lactone compounds. Since the degree of side reaction is sensitive to the reaction temperature, there is a limit in controlling the reaction rate by increasing the reaction temperature, and maintaining a high pressure to maintain proper activity at a low reaction temperature is an industrial problem.

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 온화한 반응조건에서도 고활성, 고선택성을 보이는 새로운 수소화 촉매를 사용한 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 제조하는 방법을 제공하는 것이다.An object of the present invention is to solve the problems of the prior art as described above, to prepare 1,3-alkanediol from a 3-hydroxyester compound using a novel hydrogenation catalyst showing high activity and high selectivity even under mild reaction conditions. To provide a way.

즉, 본 발명은, 구리염 수용액에 알칼리족 탄산염이나 수산화나트륨과 같은 알칼리성 침전제를 가하여 입자를 생성시키고, 여기에 콜로이달실리카를 가하여 숙성시켜 제조된 촉매 상에서 3-하이드록시에스터 화합물을 수소화 반응시켜 1,3-알칸디올을 고수율로 제조하는 방법을 제공하는 것이다.That is, according to the present invention, an alkaline precipitant such as an alkali carbonate or sodium hydroxide is added to an aqueous copper salt solution to generate particles, and then hydrogenated to a 3-hydroxyester compound on a catalyst prepared by adding colloidal silica to aged. It is to provide a method for producing 1,3-alkanediol in high yield.

이하에서 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 제조하는 수소화 공정에 실리카로 안정화된 구리촉매를 적용한다. 상기 촉매의 주성분은 산화물 상태의 구리로서 그 함량은 20 내지 99 중량%, 바람직하게는 50 내지 95중량%이고, 상기 촉매에 포함된 실리카의 함량은 1 내지 80중량%, 바람직하게는 5 내지 50중량% 이다. 상기와 같은 실리카로 안정화된 산화구리 촉매는 CuO-SiO2로 표시할 수 있으나 통상의 실리카 담체에 구리를 담지시키는 방법으로는 본원 발명이 목표로 하는 성능을 발현하는 촉매를 제조할 수 없으며, 10nm이하의 미세 산화구리 전구체입자를 실리카로 안정화시키는 특별한 방법으로 제조하여야 고활성을 나타낸다. 보다 상세하게는 구리염수용액에 알칼리족 탄산염이나 수산화나트륨과 같은 알칼리성 침전제를 가하여 입자를 생성시키고 여기에 콜로이달실리카를 가하여 숙성시키는 방법으로 제조된다. 따라서, 본원 발명의 촉매 중에 포함된 실리카는 필수성분으로서 통상적으로 사용되는 담체와는 구별된다.In the present invention, a silica stabilized copper catalyst is applied to a hydrogenation process for preparing 1,3-alkanediol from 3-hydroxyester compound. The main component of the catalyst is copper in an oxide state, the content of which is 20 to 99% by weight, preferably 50 to 95% by weight, and the content of silica contained in the catalyst is 1 to 80% by weight, preferably 5 to 50%. Weight percent. The copper oxide catalyst stabilized with silica may be represented by CuO-SiO 2 , but a method of supporting copper on a conventional silica carrier may not produce a catalyst expressing a target performance of the present invention, and 10 nm. The following fine copper oxide precursor particles are prepared by a special method of stabilizing with silica to exhibit high activity. More specifically, it is prepared by adding an alkaline precipitant such as an alkali carbonate or sodium hydroxide to the copper salt solution to generate particles, and adding the colloidal silica to this to mature. Therefore, the silica included in the catalyst of the present invention is distinguished from the carrier normally used as an essential component.

촉매를 성형하는 방법으로는 압출법이나 타정법, 또는 내화성담체에 담지시키는 방법 등을 사용할 수 있다. 성형된 촉매는 200~800℃ 바람직하게는 300~700℃에서 2~10시간 동안 소성한다.As a method of shaping the catalyst, an extrusion method, a tableting method, or a method of supporting the refractory carrier may be used. The molded catalyst is calcined at 200 to 800 ° C., preferably at 300 to 700 ° C., for 2 to 10 hours.

소성된 산화물 상태의 촉매는 수소나 수소함유 기체를 이용하여 150~450℃에서 1~20시간 정도 활성화시킨 뒤에 사용하는 것이 좋다. 일반적으로 이러한 활성화 과정은 소성된 산화물 상태의 촉매를 반응기에 충진하고 수소 또는 수소함유 기체를 질소나 알곤 등으로 희석시킨 기체를 흘려 보내면서 실시하며, 이 때 촉매의 환원과정에서 발생하는 열에 의해 촉매가 열화를 입지 않도록 수소농도, 기체유량, 승온속도 등을 적절히 조절한다.The calcined oxide catalyst is preferably used after being activated for about 1 to 20 hours at 150 to 450 ° C. using hydrogen or a hydrogen-containing gas. In general, this activation process is carried out by filling a calcined oxide catalyst in the reactor and flowing a gas diluted with hydrogen or a hydrogen-containing gas with nitrogen or argon, and by the heat generated during the reduction of the catalyst. Adjust the hydrogen concentration, gas flow rate, temperature increase rate, etc. so as not to cause deterioration.

상기 수소화 촉매는 수소화 활성이나 또는 선택성을 증진시키기 위해서 적어도 일개 성분 이상의 촉진제(promoter)를 조합시켜서 사용할 수 있다. 유용한 촉진제 성분은 레늄(Re), 루테늄(Ru), 팔라듐(Pd), 백금(Pt), 로듐(Rh), 은(Ag), 셀레늄(Se), 텔루늄(Te), 몰리브덴(Mo) 및 망간(Mn) 등이 있으며, 사용량은 구리 대비 0.001∼10몰%, 바람직하게는 0.003내지 7몰%로 하는 것이 바람직하다.The hydrogenation catalyst may be used in combination of at least one component or more promoter to enhance the hydrogenation activity or selectivity. Useful accelerator components include rhenium (Re), ruthenium (Ru), palladium (Pd), platinum (Pt), rhodium (Rh), silver (Ag), selenium (Se), tellurium (Te), molybdenum (Mo) and Manganese (Mn) and the like, and the amount of use is preferably 0.001 to 10 mol%, preferably 0.003 to 7 mol% relative to copper.

상기의 수소화 촉매는 활성이나 선택성을 개선시키기 위해서 알킬실란화합물을 사용하여 개질시켜 사용할 수 있다. 이때 실리카의 하이드록실기는 알킬실란화합물에 의하여 마스킹되며, 촉매는 친수성에서 소수성 특성을 나타내게 된다. 사용되는 알킬실란화합물은 트리알콕시모노알킬실란, 디알콕시디알킬실란 또는 모노알콕시트리알킬실란 화합물 등이 있다. 상기 실란화합물은 알킬기는 탄소수가 1∼30 이고, 알콕시기는 C5이하의 선형 또는 비선형 알콕시기, 보다 바람직하게는 메톡시 또는 에톡시기인 것을 사용하는 것이 바람직하다. 이러한 화합물의 예로는 트리메톡시프로필실란, 트리메톡시옥틸실란, 디메톡시디메틸실란, 디메톡시메틸프로필실란, 디메톡시메틸옥틸실란, 메톡시트리메틸실란, 메톡시디메틸프로필실란, 메톡시디메틸옥틸실란 등이 있다.The hydrogenation catalyst may be modified by using an alkylsilane compound in order to improve activity or selectivity. In this case, the hydroxyl group of the silica is masked by the alkylsilane compound, and the catalyst exhibits hydrophobicity in hydrophilicity. Alkylsilane compounds used include trialkoxy monoalkylsilanes, dialkoxydialkylsilanes or monoalkoxytrialkylsilane compounds. The silane compound preferably has an alkyl group having 1 to 30 carbon atoms and an alkoxy group having a C 5 or less linear or nonlinear alkoxy group, more preferably a methoxy or ethoxy group. Examples of such compounds include trimethoxypropylsilane, trimethoxyoctylsilane, dimethoxydimethylsilane, dimethoxymethylpropylsilane, dimethoxymethyloctylsilane, methoxytrimethylsilane, methoxydimethylpropylsilane, methoxydimethyloctylsilane Etc.

본 발명의 수소화 반응에 사용되는 3-하이드록시에스터 화합물은 다음 화학식 1 또는 2로 표현된다.The 3-hydroxyester compound used in the hydrogenation reaction of the present invention is represented by the following formula (1) or (2).

상기 화학식 1 및 2에서 R1, R2및 R은 각각 독립적으로 수소원자, C1~C20까지의 포화된 가지가 없는 지방족 탄화수소, 가지가 있는 지방족 탄화수소, 포화된 고리화 탄화수소, 고리를 포함하는 사슬형 탄화수소 또는 상기 탄화수소들 중에서 적어도 하나 이상의 탄소사슬의 수소가 에스터, 하이드록실기, 알콕시기 등으로 치환된 탄화수소이다.R 1 , R 2, and R in Formulas 1 and 2 each independently represent a hydrogen atom, a C 1 to C 20 saturated branched aliphatic hydrocarbon, branched aliphatic hydrocarbon, saturated cyclized hydrocarbon, and a ring. Or a hydrocarbon in which at least one hydrogen in the carbon chain is substituted with an ester, a hydroxyl group, an alkoxy group, or the like.

상기 화학식 1 및 2에서 에스터기의 R은 바람직하게는 메틸, 에틸, n-프로필, 이소프로필, n-부탄, 이소부탄, t-부탄, 시클로헥산, 시클로헥산메틸 등이다.R in the formulas (1) and (2) is preferably methyl, ethyl, n-propyl, isopropyl, n-butane, isobutane, t-butane, cyclohexane, cyclohexanemethyl and the like.

상기 3-하이드록시에스터 화합물의 바람직한 예로는 메틸(혹은 에틸) 3-하이드록시프로피오네이트, 3-하이드록시부틸산에스터, 3-하이드록시펜탄산에스터, 3-하이드록시헵탄산에스터, 3-하이드록시옥탄산에스터, 3-하이드록시노난산에스터, 3-하이드록시데칸산에스터, 2-메틸-3-하이드록시프로판산에스터, 2-메틸-3-하이드록시부탄산에스터, 2-메틸-3-하이드록시펜탄산에스터, 2-메틸-3-하이드록시헥산산에스터, 2-메틸-3-하이드록시헵탄산에스터, 2-메틸-3-하이드록시옥탄산에스터, 2-메틸-3-하이드록시노난산에스터, 2-메틸-3-하이드록시데칸산에스터, 2-에틸-3-하이드록시부탄산에스터, 2-에틸-3-하이드록시펜탄산에스터, 2-에틸-3-하이드록시헥산산에스터, 2-에틸-3-하이드록시헥산산에스터, 2-에틸-3-하이드록시헵탄산에스터, 2-메틸-3-하이드록시옥탄산에스터, 2-에틸-3-하이드록시노난산에스터, 2-에틸-3-하이드록시데칸산에스터 등이 있다.Preferred examples of the 3-hydroxyester compound include methyl (or ethyl) 3-hydroxypropionate, 3-hydroxybutyl acid ester, 3-hydroxypentanoic acid ester, 3-hydroxyheptanoic acid ester, 3- Hydroxyoctanoic acid ester, 3-hydroxynonanoic acid ester, 3-hydroxydecanoic acid ester, 2-methyl-3-hydroxypropanoic acid ester, 2-methyl-3-hydroxybutanoic acid ester, 2-methyl- 3-hydroxypentanoic acid ester, 2-methyl-3-hydroxyhexanoic acid ester, 2-methyl-3-hydroxyheptanoic acid ester, 2-methyl-3-hydroxyoctanoic acid ester, 2-methyl-3- Hydroxynonanoic acid ester, 2-methyl-3-hydroxydecanoic acid ester, 2-ethyl-3-hydroxybutanoic acid ester, 2-ethyl-3-hydroxypentanoic acid ester, 2-ethyl-3-hydroxy Hexanoic acid ester, 2-ethyl-3-hydroxyhexanoic acid ester, 2-ethyl-3-hydroxyheptanoic acid ester, 2-methyl-3-hydroxyoctanoic acid ester, 2-ethyl-3-hydroxynonanoic acid ester, 2-ethyl-3-hydroxydecanoic acid ester, etc. are mentioned.

상기와 같은 수소화 촉매를 사용하여 상기 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 제조하는 방법으로는 액상슬러리법, 액-기상법 또는 기상법 등을 적용할 수 있다.As a method for producing 1,3-alkanediol from the 3-hydroxyester compound using the hydrogenation catalyst as described above, a liquid slurry method, a liquid-gas method, or a gas phase method may be applied.

본 발명의 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 제조하는 방법에서는 3-하이드록시에스터만을 수소기체와 함께 촉매상에 공급하여 반응시킬 수 있으나, 3-하이드록시에스터 반응물 자체 또는 반응물과 생성물간의 락톤화 및 축합반응 등으로 인한 부반응화를 억제하고, 또한 반응 중 촉매와 접촉하는 반응물의 농도를 조절하여 반응 활성 및 선택성을 증진시키며, 높은 전환율 하에서 선택성이 급격히 감소되는 것을 완화시키기 위해, 수소화 반응 형태에 따라 3-하이드록시에스터 화합물을 알콜용매 또는 알콜과 끊는점이 반응물이나 생성물보다 높은 고비점 용매의 혼합용매에 용해시켜 공급하는 것이 좋다.In the method for preparing 1,3-alkanediol from the 3-hydroxyester compound of the present invention, only 3-hydroxyester can be reacted by supplying the catalyst with hydrogen gas on the catalyst, but the 3-hydroxyester reactant itself or the reactant To suppress side reactions due to lactonation and condensation reaction between the product and the product, and to adjust the concentration of the reactants in contact with the catalyst during the reaction to enhance the reaction activity and selectivity, and to mitigate the sharp decrease in selectivity under high conversion Depending on the type of hydrogenation reaction, the 3-hydroxyester compound may be dissolved in an alcohol solvent or a mixed solvent of a high boiling point solvent having a higher breaking point than the reactant or product.

액-기상법으로 3-하이드록시에스터 화합물을 수소화시키고자 하는 경우, 3-하이드록시에스터 화합물은 알콜과 고비점 용매의 혼합용매에 용해된 상태로 투입되며, 이때 알콜과 고비점 용매는 5:95∼90:10(w/w), 바람직하게는10:90∼70:30(w/w)로 혼합하여 사용되고, 3-하이드록시에스터 화합물의 농도는 전체 용액 중 2~95중량%이며, 바람직하게는 5~90중량%이다.In the case of hydrogenation of the 3-hydroxyester compound by liquid-gas method, the 3-hydroxyester compound is added in a dissolved state of a mixed solvent of alcohol and a high boiling point solvent, wherein the alcohol and the high boiling point solvent are 5:95. ˜90: 10 (w / w), preferably 10:90 to 70:30 (w / w), and the concentration of the 3-hydroxyester compound is 2 to 95% by weight in the total solution, preferably Preferably 5 to 90% by weight.

액-기상 반응법에서는, 반응기에 촉매를 충진하고 비교적 낮은 분압의 수소기체와 3-하이드록시에스터 함유 용액을 같은 방향의 흐름하에 유입시켜, 기체상인 수소와 액체상인 3-하이드록시에스터 화합물간에 반응이 일어나도록 하며, 이러한 방법은 체류시간을 원활하게 조절할 수 있다는 장점을 갖는다.In the liquid-phase reaction method, a catalyst is charged into a reactor and a relatively low partial pressure of hydrogen gas and a 3-hydroxyester-containing solution are introduced under the same direction of flow to react between hydrogen in the gas phase and 3-hydroxyester compound in the liquid phase. This method has the advantage that the residence time can be smoothly controlled.

액-기상 유통식 반응시 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 합성하기 위한 적절한 반응조건은 반응온도가 100 내지 250℃, 바람직하게는 120 내지 200℃이고, 반응압력은 50 내지 3,000psig, 바람직하게는 150 내지 2,000psig이다. 3-하이드록시에스터 용액의 공급속도는 3-하이드록시에스터 화합물만을 기준하여 계산할 때 LHSV가 0.01~5hr-1, 바람직하게는 0.03~3hr-1의 범위가 되도록 조절하며, 수소 사용량은 수소대 3-하이드록시에스터 화합물의 몰비가 10~300:1 바람직하게는 20~200:1의 범위가 되도록 조절한다.Appropriate reaction conditions for the synthesis of 1,3-alkanediol from 3-hydroxyester compound in liquid-phase flow reaction are reaction temperature of 100 to 250 ° C, preferably 120 to 200 ° C, and reaction pressure of 50 to 3,000 psig, preferably 150 to 2,000 psig. 3-hydroxy ester is adjusted so that the feed rate of 3-hydroxy ester compound based solely on the LHSV is 0.01 ~ 5hr -1, preferably in the range of 0.03 ~ 3hr -1 when calculating the solution, and hydrogen consumption is platoon 3 The molar ratio of the hydroxyester compound is adjusted to be in the range of 10 to 300: 1, preferably 20 to 200: 1.

이와 달리, 기상법으로 3-하이드록시에스터 화합물을 수소화시키고자 하는 경우, 3-하이드록시에스터 화합물은 알콜용매에 용해된 상태로 투입되며, 이때 3-하이드록시에스터 화합물과 알콜의 혼합비는 10:90~90:10(w/w)이며, 바람직하게는 30:70~70:30(w/w)이다.On the other hand, when the 3-hydroxyester compound is hydrogenated by gas phase method, the 3-hydroxyester compound is added in a dissolved state in an alcohol solvent, and the mixing ratio of the 3-hydroxyester compound and the alcohol is 10:90. 90:10 (w / w), Preferably it is 30: 70-70: 30 (w / w).

기상 반응법에서는, 반응기에 촉매를 충진하고 비교적 높은 분압의 수소기체와 3-하이드록시에스터 함유 용액을 같은 방향의 흐름하에 유입시키며, 3-하이드록시에스터 화합물은 기화된 상태에서 수소 기체와 반응하게 된다.In the gas phase reaction method, a catalyst is charged to a reactor and a relatively high partial pressure of hydrogen gas and a 3-hydroxyester-containing solution are introduced under the same direction of flow, and the 3-hydroxyester compound reacts with hydrogen gas in a vaporized state. do.

기상 반응시 3-하이드록시에스터 화합물로부터 1,3-알칸디올을 합성하기 위한 적절한 반응조건은 반응온도가 130 내지 200℃, 바람직하게는 140 내지 200℃이고, 반응압력은 100 내지 3,000psig, 바람직하게는 200 내지 1,500psig이다. 3-하이드록시에스터 용액의 공급속도는 3-하이드록시에스터 화합물만을 기준하여 계산할 때 LHSV가 0.02~1.0hr-1, 바람직하게는 0.05~0.20hr-1의 범위가 되도록 조절하며, 수소 사용량은 수소대 3-하이드록시에스터 화합물의 몰비가 300~3,000:1, 바람직하게는 500~1,500:1의 범위가 되도록 조절한다. 이와 같은 조건에서 기상 반응을 수행하면, 선택도의 감소 없이 최고 99% 이상의 고전환율을 달성하는 것이 가능하다.Suitable reaction conditions for synthesizing 1,3-alkanediol from 3-hydroxyester compound in gas phase reaction are 130-200 ° C, preferably 140-200 ° C, and reaction pressure 100-3,000 psig, preferably Preferably from 200 to 1500 psig. Adjusted to 3-hydroxy ester in the feed rate in the range of LHSV is 0.02 ~ 1.0hr -1, preferably 0.05 ~ 0.20hr -1 when calculating, based only the 3-hydroxy ester compound of the solution, and hydrogen consumption is The molar ratio of the large 3-hydroxyester compound is adjusted to be in the range of 300 to 3,000: 1, preferably 500 to 1,500: 1. By carrying out the gas phase reaction under such conditions, it is possible to achieve high conversions of up to 99% or more without reducing the selectivity.

상기에서 사용가능한 알콜은 특별히 한정되지는 않으나 반응 후 분리, 정제를 원활하게 하기 위해서 메탄올, 에탄올, 프로판올, 이소프로판올, n-부탄올, 이소부탄올, t-부탄올 등 C5이하의 선형 또는 비선형 알콜을 사용하는 것이 좋다. 특히, 기상법을 채택하는 경우에는 1,3-알칸디올 보다 비점이 낮은 저비점 알콜, 바람직하게는 메탄올을 사용하는 것이 좋다.The alcohol usable above is not particularly limited, but C 5 or less linear or nonlinear alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol and t-butanol are used to facilitate separation and purification after the reaction. Good to do. In particular, when the gas phase method is adopted, it is preferable to use a low boiling alcohol, preferably methanol, having a lower boiling point than 1,3-alkanediol.

고비점 용매도 3-하이드록시에스터 화합물과 잘 섞이고 끊는점이 높으며, 생성되는 1,3-알칸디올과의 끊는점 차이가 커서 분리ㆍ정제에 문제가 없는 것이면 어느 것이라도 사용할 수 있으나, 테트라그림[Tetra(ethylene glycol) dimethyl ether: 이하 TEGDME]이나 펜타에틸렌글리콜디메틸에테르 또는 술포란(sulfolane) 등의 에테르화합물이 바람직하다.High boiling point solvents are well mixed with 3-hydroxyester compounds and have a high break point, and any difference can be used as long as the break point with the resulting 1,3-alkanediol is large and there is no problem in separation and purification. Tetra (ethylene glycol) dimethyl ether: hereinafter, TEGDME], pentaethylene glycol dimethyl ether, or sulfolane (ether compound) such as sulfolane is preferable.

본 발명에 의한 수소화 촉매 하에서 상기한 반응조건의 범위내에서 3-하이드록시에스터 화합물로부터 1,3-알칸디올의 제조시 일회 관통(per pass) 전환율은 30~99%, 바람직하게는 60~98% 범위내가 되도록 반응조건을 조절하며, 더욱 바람직하게는 80∼98% 범위내에서 조절한다. 전환율을 99%이상으로 유지시키기 위해 반응조건을 가혹하게 한 경우 선택성이 떨어져 좋지 않다. 3-하이드록시에스터 화합물의 전환율을 높이기 위해서 생성물중의 일부를 분리한 후, 정제과정을 거치지 않고 재순환시키거나, 분리ㆍ정제 후 미반응 3-하이드록시에스터 화합물 및 축합반응 부산물을 함께 재순환하여 반응시키는 방법을 택할 수 있다.Under the hydrogenation catalyst according to the present invention, in the preparation of 1,3-alkanediol from 3-hydroxyester compound within the range of the reaction conditions described above, the one-time per pass conversion is 30 to 99%, preferably 60 to 98 The reaction conditions are adjusted to fall within the range of%, more preferably within the range from 80 to 98%. If the reaction conditions are severe in order to maintain the conversion rate above 99%, the selectivity is poor. In order to increase the conversion rate of the 3-hydroxyester compound, a part of the product is separated and recycled without being purified, or after the separation and purification, the unreacted 3-hydroxyester compound and the condensation reaction by-product are recycled together. You can choose how to make it.

본 발명은 아래의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기 실시예는 본 발명의 예시 목적에 불과하며, 발명의 영역을 제한하고자 하는 것은 아니다.The invention can be more clearly understood by the following examples, the following examples are merely for the purpose of illustrating the invention, and are not intended to limit the scope of the invention.

실시예 1Example 1 ::

(1) 수소화 촉매 CuO(70중량%)-SiO2(30중량%)의 제조(1) Preparation of Hydrogenation Catalyst CuO (70 wt.%)-SiO 2 (30 wt.%)

질산구리[Cu(NO3)2ㆍ3H2O] 60.0g을 400ml의 증류수에 녹인 용액에 16중량%의 수산화나트륨 수용액 124ml을 가하여 침전시켰다. 침전용액에 콜로이달 실리카수용액 루독스(Ludox)AS-40(암모늄안정형, 실리카 40중량% 함유)를 21.2g 가한 뒤 70-80℃에서 4시간 숙성시켰다. 침전된 슬러리 용액을 증류수로 세척하고 120℃에서12시간동안 건조한 후, 분말을 가압하여 성형하고 파쇄 후 20-40메쉬 크기로 분별하였다. 이것을 450℃, 공기 분위기 하에서 6시간 소성시켰다. 소성된 촉매산화물을 XRD로 분석한 결과(XRD line broading method) 산화구리의 결정크기는 4.5nm였으며, BET 비표면적은 172m2/g이었다.60.0 g of copper nitrate [Cu (NO 3 ) 2 .3H 2 O] was dissolved in 400 ml of distilled water, and 124 ml of 16 wt% aqueous sodium hydroxide solution was added to precipitate. 21.2 g of colloidal silica aqueous solution Ludox AS-40 (stable ammonium, containing 40% by weight of silica) was added to the precipitated solution, and then aged at 70-80 ° C. for 4 hours. The precipitated slurry solution was washed with distilled water and dried at 120 ° C. for 12 hours, and the powder was compacted by pressing and fractionated to a size of 20-40 mesh after crushing. This was baked at 450 degreeC and air atmosphere for 6 hours. The calcined catalyst oxide was analyzed by XRD (XRD line broading method) and the crystal size of copper oxide was 4.5 nm and the BET specific surface area was 172 m 2 / g.

(2) 촉매환원(2) catalytic reduction

소성된 산화물 상태의 촉매 3.0g을 튜브형 반응기(외경 1.27cm, 길이 25cm)에 충전시키고 5% H2/N2혼합가스를 흘려보내면서 서서히 승온하여 300℃에서 6시간 환원시켰다.3.0 g of the calcined oxide catalyst was charged in a tubular reactor (1.27 cm outer diameter, 25 cm long), and gradually heated up while flowing a 5% H 2 / N 2 mixed gas, and reduced at 300 ° C. for 6 hours.

(3) 3-하이드록시프로판산메틸의 수소화 반응(3) Hydrogenation of methyl 3-hydroxypropanoate

상기와 같이 촉매를 환원 활성화시킨 후, 반응기 온도를 150℃로 맞추고 수소기체를 사용하여 압력을 900psig로 조절하였다. 이후 수소기체의 유량을 90ml/min로 조절하여 반응기로 흘려보내면서 3-하이드록시프로판산메틸(HPM), 메탄올 및 TEGDME가 20:20:20(w/w/w)로 혼합된 반응물을 HPLC펌프를 사용하여 0.015ml/min로 수소기체의 흐름과 같은 방향으로 주입하여 반응시켰다. 생성물은 반응압력과 같은 가압 하에서 10ml정도를 포집하여 GC로 분석하였다. 반응시작 50시간 경과후 반응결과는 전환율은 90.26%, 1,3-프로판디올의 선택율은 88.51%였다.After reducing activation of the catalyst as described above, the reactor temperature was adjusted to 150 ° C. and the pressure was adjusted to 900 psig using hydrogen gas. After adjusting the flow rate of the hydrogen gas to 90ml / min and flowing into the reactor, the reaction mixture of methyl 3-hydroxypropanoate (HPM), methanol and TEGDME 20:20:20 (w / w / w) HPLC The reaction was performed by injecting in the same direction as the flow of hydrogen gas at 0.015 ml / min using a pump. The product was collected by 10C under the same pressure and analyzed by GC. 50 hours after the start of the reaction, the conversion was 90.26% and the selectivity of 1,3-propanediol was 88.51%.

비교실시예 1Comparative Example 1 ::

반응물 중 고비점 용매 TEGDME를 혼합하지 않고3-하이드록시프로판산메틸(HPM)과 메탄올이 20:80(w/w)로 혼합된 반응물을 0.016ml/min 속도로 주입하는 것을 제외하고는 실시예 1의 (3)과 동일하게 수소화 반응시켰다. 반응결과, HPM의 전환율은 81.21%, 1,3-프로판디올의 선택율은 74.60%이었다.Except for injecting a reactant mixed with 3-hydroxypropanoate (HPM) and methanol at 20:80 (w / w) at a rate of 0.016 ml / min without mixing the high boiling solvent TEGDME in the reaction. The hydrogenation reaction was carried out in the same manner as in (3). As a result, the conversion rate of HPM was 81.21%, and the selectivity of 1,3-propanediol was 74.60%.

실시예 2Example 2 ::

CuO(80중량%)-SiO2(20중량%)의 촉매를 실시예 1의 (1)에서와 같은 방법으로 제조하였다. 450℃로 소성한 촉매분말 10.0g에 Re2O70.163g을 아세톤에 녹인 용액을 가하여 볼밀링하였다. 볼밀링 후 실온에서 아세톤을 날려보내고 120℃에서 건조하였다. 건조된 촉매분말을 가압 성형하고 20∼40 메쉬 크기로 파쇄, 분급하여 촉매를 제조하였다. 제조된 촉매 3.0g을 반응기에 충전하고 실시예 1의 (2)에서와 같은 방법으로 200℃이하 온도에서 환원하고, 이후 수소만을 사용하여 가압 하에서 활성화시켰다. 제조된 촉매를 사용하여 표 1에서와 같은 조건으로 수소화반응을 실시하였다. 반응 결과는 표 1에서와 같다.A catalyst of CuO (80 wt.%)-SiO 2 (20 wt.%) Was prepared in the same manner as in Example (1). A solution in which 0.163 g of Re 2 O 7 was dissolved in acetone was added to 10.0 g of the catalyst powder calcined at 450 ° C., and ball milling. After ball milling acetone was blown off at room temperature and dried at 120 ° C. The catalyst was prepared by press molding the dried catalyst powder, crushing and classifying into 20-40 mesh size. 3.0 g of the prepared catalyst was charged to a reactor and reduced at a temperature below 200 ° C. in the same manner as in Example (2), and then activated under pressure using only hydrogen. The hydrogenation reaction was carried out under the same conditions as in Table 1 using the prepared catalyst. The reaction results are shown in Table 1.

실시예 3-8Example 3-8 ::

실시예 1의 (1)에서와 같은 방법으로 CuO(80중량%)-SiO2(20중량%) 촉매를 제조하고 300℃로 일차 소성하였다. 여기에 Pd, Ru, Ag, Se, Te 및 Mo 성분을 각각 가하여 실시예 3에서와 같은 방법으로 촉매를 제조하였다. 이때 Pd의 전구체 화합물로는 질산팔라듐(Pd(NO3)22.5H2O)을 물에 녹여서 사용하였고, Ru는 루테늄카르보닐화합물(Ru3(CO)12)을 에탄올에 녹여서 사용하였으며, Ag, Se 및 Te는 각각 질산은(AgNO3), 셀렌산암모늄((NH4)2SeO4), 텔루늄산암모늄((NH4)2TeO4) 및 몰리브덴산암모늄((NH4)6Mo7O24·4H2O)을 물에 녹여서 사용하였다. 120℃에서 건조한 후 450℃에서 6시간 소성하고, 실시예 1의 (2)에서와 같이 환원한 후 표 1에서와 같은 조건으로 수소화반응을 실시하였다. 반응 결과는 표 1에서와 같다.In the same manner as in Example 1 (1), a CuO (80 wt%)-SiO 2 (20 wt%) catalyst was prepared and first calcined at 300 ° C. Pd, Ru, Ag, Se, Te and Mo components were added thereto to prepare a catalyst in the same manner as in Example 3. In this case, Pd was used as a precursor compound by dissolving palladium nitrate (Pd (NO 3 ) 2 2.5H 2 O) in water, and Ru was used by dissolving ruthenium carbonyl compound (Ru 3 (CO) 12 ) in ethanol. , Se and Te are silver nitrate (AgNO 3 ), ammonium selenate ((NH 4 ) 2 SeO 4 ), ammonium tellurium ((NH 4 ) 2 TeO 4 ) and ammonium molybdate ((NH 4 ) 6 Mo 7 O 24. 4H 2 O) was used after dissolving in water. After drying at 120 ° C. and calcining at 450 ° C. for 6 hours, reduction was carried out as in Example 1 (2), and then hydrogenated under the same conditions as in Table 1. The reaction results are shown in Table 1.

실시예 9Example 9 ::

실시예 1의 (1)에 있어서 질산구리[Cu(NO3)2ㆍ3H2O]만을 녹인 수용액 대신에 질산구리와 질산망간[Mn(NO3)2·6H2O]을 녹인 수용액에 수산화나트륨 수용액을 가하여 침전시킨 것을 제외하고는, 실시예 1의 (1)에서와 같은 방법으로 Mn0.61Cu10SiO2촉매를 제조하였다. 이와 같이 제조된 촉매를 실시예 1의 (2)에서와 같은 방법으로 환원한 후, 표 1에서와 같은 조건으로 수소화반응을 실시하였다. 반응 결과는 표 1에서와 같다.Hydroxide in an aqueous solution in which copper nitrate and manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] were dissolved in place of an aqueous solution in which only copper nitrate [Cu (NO 3 ) 2 ㆍ 3H 2 O] was dissolved in Example 1 (1). A Mn 0.61 Cu 10 SiO 2 catalyst was prepared in the same manner as in (1) of Example 1, except that the aqueous solution was precipitated by addition of aqueous sodium solution. The catalyst thus prepared was reduced in the same manner as in Example (2), and then hydrogenated under the same conditions as in Table 1. The reaction results are shown in Table 1.

촉매1) Catalyst 1) 반응 조건Reaction conditions 전환율(%)% Conversion 선택율(%)% Selectivity 온도(℃)Temperature (℃) 압력(psi)Pressure (psi) H2공급속도(ml/min)H 2 feed rate (ml / min) 반응물공급속도2)(ml/min)Reactant feed rate 2) (ml / min) 실시예 2Example 2 Re0.067Cu10SiO2 Re 0.067 Cu 10 SiO 2 150150 900900 9090 0.0150.015 94.194.1 88.1288.12 실시예 3Example 3 Pd0.040Cu10SiO2 Pd 0.040 Cu 10 SiO 2 150155150155 1,0001,0001,0001,000 90909090 0.0150.0200.0150.020 94.8691.9794.8691.97 89.6388.3689.6388.36 실시예 4Example 4 Ru0.038Cu10SiO2 Ru 0.038 Cu 10 SiO 2 150155155150155155 1,0001,0001,0001,0001,0001,000 909090909090 0.0150.0200.0250.0150.0200.025 97.0692.9885.4297.0692.9885.42 85.7287.3788.0885.7287.3788.08 실시예 5Example 5 Ag0.022Cu10SiO2 Ag 0.022 Cu 10 SiO 2 155155 900900 9090 0.0150.015 96.7096.70 84.2884.28 실시예 6Example 6 Se0.018Cu10SiO2 Se 0.018 Cu 10 SiO 2 150150 1,0001,000 9090 0.0150.015 92.0392.03 87.0487.04 실시예 7Example 7 Te0.067Cu10SiO2 Te 0.067 Cu 10 SiO 2 150150 1,0001,000 9090 0.0150.015 94.8194.81 87.3387.33 실시예 8Example 8 Mo0.07Cu10SiO2 Mo 0.07 Cu 10 SiO 2 150155150155 1,0001,0001,0001,000 90909090 0.01750.01750.01750.0175 92.5597.9292.5597.92 88.0185.4388.0185.43 실시예 9Example 9 Mn0.61Cu10SiO2 Mn 0.61 Cu 10 SiO 2 150145150145 1,0001,0001,0001,000 90909090 0.01750.01750.01750.0175 96.6982.9096.6982.90 88.7887.7088.7887.70

1) Cu와 촉진제의 원자비만 표시1) Display only atomic ratio of Cu and accelerator

2) HPM:MeOH:TEGDME = 20:20:60(w/w/w)2) HPM: MeOH: TEGDME = 20:20:60 (w / w / w)

실시예 10Example 10 ::

CuO(80중량%)-SiO2(20중량%)촉매를 실시예 1의 (1)에서와 같은 방법으로 제조하였다. 450℃에서 6시간 소성한 촉매분말 10.0g을 알곤가스 분위기 하에서 건조한 후 톨루엔에 분산시키고, 여기에 트리메톡시옥틸실란 1.5g을 가하고, 톨루엔이 환류되는 조건에서 2시간동안 반응시킨 후 실온에서 톨루엔으로 세척하고 건조시켰다. 가압, 성형 후 20-40메쉬 크기로 파쇄, 분별한 후, 촉매 3.0g을 반응기에 충전시키고 200℃까지 천천히 승온하면서 5% H2/N2혼합가스로 일차 환원하였다. 이 후 수소만을 사용하여 900psig까지 가압하고, 반응기 온도를 150℃로 맞추고 실시예 1에서와 동일한 조건으로 수소화 반응을 실시하였다. 반응결과는 표 2에서와 같다.A CuO (80 wt.%)-SiO 2 (20 wt.%) Catalyst was prepared in the same manner as in Example (1). 10.0 g of the catalyst powder calcined at 450 ° C. for 6 hours was dried in an argon gas atmosphere, dispersed in toluene, 1.5 g of trimethoxyoctylsilane was added thereto, and reacted for 2 hours under reflux of toluene, followed by toluene at room temperature. Washed and dried. After crushing and fractionating to a size of 20-40 mesh after pressurization and molding, 3.0 g of the catalyst was charged into the reactor and firstly reduced to 5% H 2 / N 2 mixed gas while slowly raising the temperature to 200 ° C. Thereafter, the mixture was pressurized to 900 psig using only hydrogen, the reactor temperature was adjusted to 150 ° C., and hydrogenation reaction was performed under the same conditions as in Example 1. The reaction results are shown in Table 2.

반응 조건Reaction conditions HPM전환율(%)HPM Conversion Rate (%) PDO선택율(%)PDO Selectivity (%) 반응물공급속도1)(ml/min)Reactant feed rate 1) (ml / min) 수소공급속도(ml/min)Hydrogen supply rate (ml / min) 온도(℃)Temperature (℃) 압력(psig)Pressure (psig) 0.0150.015 9090 150150 950950 97.4197.41 87.5087.50 0.0170.017 9090 150150 1,0001,000 98.2998.29 87.1587.15 0.01850.0185 9090 150150 1,0001,000 94.7294.72 88.8688.86 0.02250.0225 9090 155155 1,0001,000 98.2498.24 86.2686.26 0.0250.025 9090 155155 1,0001,000 95.3995.39 86.2386.23

1) HPM:MeOH:TEGDME = 20:20:60(w/w/w)1) HPM: MeOH: TEGDME = 20:20:60 (w / w / w)

실시예 11Example 11 ::

CuO(80중량%)-SiO2(20중량%)촉매를 실시예 1의 (1)과 같은 방법으로 제조 후, 촉매 3.0g을 반응기에 충전하고 실시예 1의 (2)와 같은 방법으로 활성화시켰다. 155℃, 1000psig의 반응조건에서 수소기체는 90ml/min 유속으로, 3-하이드록시부탄산메틸, 메탄올 및 TEGDME가 20:20:60(w/w/w)로 혼합된 반응물은 0.015ml/min 유속으로 같은 방향으로 유입시키면서 반응시켰다. 3-하이드록시부탄산메틸의 전환율은 82.85%이었고 1,3-부탄디올로의 선택도는 74.35%이었다.After preparing CuO (80% by weight) -SiO 2 (20% by weight) catalyst in the same manner as in Example 1 (1), 3.0 g of catalyst was charged to the reactor and activated in the same manner as in (2) of Example 1 I was. Hydrogen gas at a flow rate of 90 ml / min at a reaction condition of 155 ° C and 1000 psig, and 0.015 ml / min of a reactant mixed with 3-hydroxybutyrate, methanol and TEGDME at 20:20:60 (w / w / w) The reaction was carried out while flowing in the same direction at the flow rate. The conversion of methyl 3-hydroxybutyrate was 82.85% and the selectivity to 1,3-butanediol was 74.35%.

실시예 12Example 12 ::

CuO-Mn-SiO2촉매를 실시예 9에서와 같은 방법으로 제조하고 환원한 후, 반응기에 3-하이드록시프로판산메틸과 메탄올이 40:60(w/w)으로 혼합된 반응물을 유입시키면서 표 3에서와 같은 조건으로 기상 수소화반응을 실시하였다. 반응결과는 표 3에서와 같다.After the CuO-Mn-SiO 2 catalyst was prepared and reduced in the same manner as in Example 9, a table was introduced while introducing a reactant containing methyl 3-hydroxypropanoate and 40:60 (w / w) into the reactor. Gas phase hydrogenation was carried out under the same conditions as in step 3. The reaction results are shown in Table 3.

반응조건Reaction condition HPM전환율(%)HPM Conversion Rate (%) 선택율(%)% Selectivity 온도(℃)Temperature (℃) 압력(psig)Pressure (psig) LHSV(hr-1)LHSV (hr -1 ) H2/HPM(몰/몰)H 2 / HPM (mol / mol) PDOPDO 1-프로판올1-propanol 메틸 프로피오네이트Methyl propionate 기타Etc 155155 600600 0.0960.096 900900 98.7798.77 88.7988.79 7.237.23 2.292.29 1.691.69 155155 600600 0.1070.107 810810 97.4697.46 89.1289.12 6.046.04 2.322.32 2.522.52 153153 750750 0.1070.107 850850 99.1399.13 89.0789.07 6.616.61 2.802.80 1.521.52 153153 750750 0.0960.096 950950 99.3599.35 89.0689.06 6.746.74 2.552.55 1.111.11 160160 450450 0.1290.129 670670 95.0895.08 85.9885.98 7.717.71 3.723.72 2.592.59 160160 600600 0.1290.129 670670 97.9497.94 86.0786.07 8.08.0 3.543.54 2.392.39

3-하이드록시에스터 화합물을 수소화시켜 1.3-알칸디올을 제조하는 방법에 있어, 본 발명의 촉매 및 반응계 하에서 고활성, 고선택적으로 1.3-알칸디올의 제조가 가능하다.In the process for producing 1.3-alkanediols by hydrogenating 3-hydroxyester compounds, it is possible to produce 1.3-alkanediols with high activity and high selectivity under the catalyst and reaction system of the present invention.

Claims (16)

구리염 수용액에 알칼리성 침전제를 가하여 입자를 생성시키고, 여기에 콜로이달실리카를 가하여 숙성시켜 제조된 촉매 상에서 3-하이드록시에스터 화합물을 수소화 반응시켜 1,3-알칸디올을 제조하는 방법.A method of producing 1,3-alkanediol by hydrogenating a 3-hydroxyester compound on a catalyst prepared by adding an alkaline precipitant to an aqueous copper salt solution, followed by aging by adding colloidal silica. 제1항에 있어서, 상기 알칼리성 침전제는 알칼리족 탄산염 또는 수산화나트륨인 것을 특징으로 하는 방법.The method of claim 1 wherein the alkaline precipitant is an alkali carbonate or sodium hydroxide. 제1항에 있어서, 상기 촉매로 산화구리(CuO) 대 실리카(SiO2)의 중량비가 9:1 내지 5:5 범위인 것을 사용하는 방법.The method of claim 1, wherein the catalyst has a weight ratio of copper oxide (CuO) to silica (SiO 2 ) in the range of 9: 1 to 5: 5. 제1항에 있어서, 상기 촉매에 레늄(Re), 팔라듐(Pd), 루테늄(Ru), 플라티늄(Pt), 로듐(Rh), 은(Ag), 셀레늄(Se), 텔루늄(Te), 몰리브덴(Mo) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 1가지 이상의 원소를 구리 대비 0.001∼10몰% 포함시켜 사용하는 방법.According to claim 1, wherein the catalyst is rhenium (Re), palladium (Pd), ruthenium (Ru), platinum (Pt), rhodium (Rh), silver (Ag), selenium (Se), tellurium (Te), Method for using at least one element selected from the group consisting of molybdenum (Mo) and manganese (Mn) containing 0.001 to 10 mol% compared to copper. 제1항에 있어서, 상기 촉매를 알킬기의 탄소수가 C1∼C30범위이고, 알콕시기가 메톡시 또는 에톡시기인 트리알콕시모노알킬실란, 디알콕시디알킬실란 또는 모노알콕시트리알킬실란 화합물로 개질하여 사용하는 방법.The catalyst according to claim 1, wherein the catalyst is modified with a trialkoxy monoalkylsilane, dialkoxydialkylsilane or monoalkoxytrialkylsilane compound wherein the alkyl group has a carbon number ranging from C 1 to C 30 and the alkoxy group is a methoxy or ethoxy group. How to use. 제1항 내지 5항 중 어느 하나의 항에 있어서, 상기 3-하이드록시에스터화합물이 3-하이드록시프로판산메틸인 방법.The method according to any one of claims 1 to 5, wherein the 3-hydroxyester compound is methyl 3-hydroxypropanoate. 제1항 내지 5항 중 어느 하나의 항에 있어서, 상기 수소화 반응을 알콜용매와 비점이 1,3-알칸디올보다 높은 고비점 용매의 혼합용매 하에서 액-기상법으로 수행하는 방법.The method according to any one of claims 1 to 5, wherein the hydrogenation reaction is carried out by a liquid-based method under a mixed solvent of an alcohol solvent and a high boiling point solvent having a boiling point higher than that of 1,3-alkanediol. 제7항에 있어서, 상기 고비점 용매로 테트라그림[Tetra(ethylene glycol) dimethyl ether], 펜타에틸렌글리콜디메틸에테르 또는 술포란(sulfolane)을 사용하고, 상기 알콜 대 고비점 용매의 비가 5:95∼90:10(w/w)인 방법.The method of claim 7, wherein tetra (ethylene glycol) dimethyl ether, pentaethylene glycol dimethyl ether or sulfolane is used as the high boiling point solvent, and the ratio of the alcohol to the high boiling point solvent is from 5:95 to 9. 90:10 (w / w). 제7항에 있어서, 상기 3-하이드록시에스터 화합물이 상기 혼합용매에 2~95중량%의 농도로 용해되는 방법.The method according to claim 7, wherein the 3-hydroxyester compound is dissolved in the mixed solvent at a concentration of 2 to 95% by weight. 제7항에 있어서, 상기 수소화 반응을 고정상 반응기를 사용하여 반응온도가 100℃ 내지 250℃이고, 반응압력이 50 내지 3,000psig인 조건에서 수행하는 방법.The method of claim 7, wherein the hydrogenation reaction is carried out using a fixed bed reactor at a reaction temperature of 100 ° C. to 250 ° C. and a reaction pressure of 50 to 3,000 psig. 제10항에 있어서, 상기 수소화 반응에 유입되는 수소와 3-하이드록시에스터화합물의 몰비가 10:1∼300:1인 조건에서 수행하는 방법.The process according to claim 10, wherein the molar ratio of hydrogen and 3-hydroxyester compound introduced into the hydrogenation reaction is 10: 1 to 300: 1. 제1항 내지 5항 중 어느 하나의 항에 있어서, 상기 수소화 반응을 비점이 1,3-알칸디올보다 낮은 저비점 알콜용매 하에서 기상법으로 수행하는 방법.The method according to any one of claims 1 to 5, wherein the hydrogenation reaction is carried out by a gas phase method under a low boiling alcohol solvent having a boiling point lower than that of 1,3-alkanediol. 제 12항에 있어서, 상기 저비점 알콜용매가 메탄올인 방법.13. The method of claim 12, wherein the low boiling alcohol solvent is methanol. 제 12항에 있어서, 상기 알콜용매 대 3-하이드록시에스터 화합물의 비가 10:90 내지 90:10(w/w)인 방법.13. The method of claim 12, wherein the ratio of alcohol solvent to 3-hydroxyester compound is from 10:90 to 90:10 (w / w). 제12항에 있어서, 상기 수소화 반응을 고정상 반응기를 사용하여 반응온도가 130℃ 내지 200℃이고, 반응압력이 100 내지 3,000psig인 조건에서 수행하는 방법.The method of claim 12, wherein the hydrogenation reaction is carried out using a fixed bed reactor at a reaction temperature of 130 ° C. to 200 ° C. and a reaction pressure of 100 to 3,000 psig. 제15항에 있어서, 상기 수소화 반응에 유입되는 수소와 3-하이드록시에스터 화합물의 몰비가 300:1∼3,000:1인 조건에서 수행하는 방법.The process according to claim 15, wherein the molar ratio of hydrogen and 3-hydroxyester compound introduced into the hydrogenation reaction is 300: 1 to 3,000: 1.
KR10-2001-0033142A 2000-11-29 2001-06-13 Process for preparing 1,3-alkanediol from 3-hydroxyester compounds KR100453296B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01307942A EP1211234A3 (en) 2000-11-29 2001-09-18 Process for preparing 1,3-alkandiols from 3-hydroxyesters
CN01136549.8A CN1355160A (en) 2000-11-29 2001-10-16 Method for preparation of 1,3-alkamediol by 3-carboxy ester
JP2001364617A JP2002226414A (en) 2000-11-29 2001-11-29 Method for producing 1,3-alkanediol from 3-hydroxy ester compound
US09/995,798 US6617477B2 (en) 2000-11-29 2001-11-29 Process for preparing 1,3-alkanediols from 3-hydroxyesters
US10/212,671 US6617478B2 (en) 2000-11-29 2002-08-06 Process for preparing a 1,3-alkandiol from 3-hydroxyester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20000071643 2000-11-29
KR1020000071643 2000-11-29

Publications (2)

Publication Number Publication Date
KR20020042397A true KR20020042397A (en) 2002-06-05
KR100453296B1 KR100453296B1 (en) 2004-10-15

Family

ID=27678672

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0033142A KR100453296B1 (en) 2000-11-29 2001-06-13 Process for preparing 1,3-alkanediol from 3-hydroxyester compounds

Country Status (1)

Country Link
KR (1) KR100453296B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431898B1 (en) * 2001-08-04 2004-05-17 애경유화 주식회사 A copper-silica catalyst useful for hydrogenation of a carbonyl group-containing compound or dehydrogenation of a cycloalcohol and a preparation thereof
KR100457416B1 (en) * 2001-11-01 2004-11-18 삼성전자주식회사 Process for preparing 1,3-alkanediols from 3-hydroxyester compounds
US20160030928A1 (en) * 2014-07-31 2016-02-04 Samsung Electronics Co., Ltd. Method for preparing hydrogenation catalyst and method for preparing diols from lactones using the hydrogenation catalyst
CN116459846A (en) * 2023-05-09 2023-07-21 中国科学院兰州化学物理研究所 Hydroxy ester hydrogenation nano Cu-based catalyst and preparation method and application thereof
CN117510305A (en) * 2023-11-07 2024-02-06 中国科学院兰州化学物理研究所 Method for preparing high-concentration 1, 3-propylene glycol with high space-time yield

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045938B2 (en) * 1981-04-30 1985-10-12 宇部興産株式会社 Method for producing oxalic acid diester hydrogenation catalyst
JPS58193735A (en) * 1982-05-06 1983-11-11 Ube Ind Ltd Production of catalyst for hydrogenation of lower hydroxycarboxylic ester
US4885411A (en) * 1987-11-27 1989-12-05 Gaf Corporation Hydrogenation process for converting lactones to diols
GB9324782D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
US5684214A (en) * 1994-09-30 1997-11-04 Shell Oil Company Process for preparing 1,3-propanediol
KR100548142B1 (en) * 1996-05-30 2006-05-29 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 How to prepare 1,3-alkanediol

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431898B1 (en) * 2001-08-04 2004-05-17 애경유화 주식회사 A copper-silica catalyst useful for hydrogenation of a carbonyl group-containing compound or dehydrogenation of a cycloalcohol and a preparation thereof
KR100457416B1 (en) * 2001-11-01 2004-11-18 삼성전자주식회사 Process for preparing 1,3-alkanediols from 3-hydroxyester compounds
US20160030928A1 (en) * 2014-07-31 2016-02-04 Samsung Electronics Co., Ltd. Method for preparing hydrogenation catalyst and method for preparing diols from lactones using the hydrogenation catalyst
US9381498B2 (en) 2014-07-31 2016-07-05 Samsung Electronics Co., Ltd. Method for preparing hydrogenation catalyst and method for preparing diols from lactones using the hydrogenation catalyst
CN116459846A (en) * 2023-05-09 2023-07-21 中国科学院兰州化学物理研究所 Hydroxy ester hydrogenation nano Cu-based catalyst and preparation method and application thereof
CN116459846B (en) * 2023-05-09 2024-03-26 中国科学院兰州化学物理研究所 Hydroxy ester hydrogenation nano Cu-based catalyst and preparation method and application thereof
CN117510305A (en) * 2023-11-07 2024-02-06 中国科学院兰州化学物理研究所 Method for preparing high-concentration 1, 3-propylene glycol with high space-time yield

Also Published As

Publication number Publication date
KR100453296B1 (en) 2004-10-15

Similar Documents

Publication Publication Date Title
US6617477B2 (en) Process for preparing 1,3-alkanediols from 3-hydroxyesters
EP2561928A2 (en) Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid
JPH0557251B2 (en)
US8598372B2 (en) Method for producing cyclicised compounds from organic acids having from 4 to 6 carbon atoms
KR20120005018A (en) Method for producing 1,6-hexanediol
EP2781498A1 (en) Method for producing alkanediol
JPH05255157A (en) Manufacture of 1,2-propylene glycol
KR20010033761A (en) Process for the preparation of neopentyl glycol
KR101470038B1 (en) Process for hydrogenating methylolalkanals
KR100453296B1 (en) Process for preparing 1,3-alkanediol from 3-hydroxyester compounds
KR100457416B1 (en) Process for preparing 1,3-alkanediols from 3-hydroxyester compounds
US20080194398A1 (en) Ruthenium-copper chromite hydrogenation catalysts
KR100659913B1 (en) Alcohol production method
KR100431898B1 (en) A copper-silica catalyst useful for hydrogenation of a carbonyl group-containing compound or dehydrogenation of a cycloalcohol and a preparation thereof
JP2813770B2 (en) Ethanol production method
US5874652A (en) Process for hydrogenating aqueous aldehyde mixtures
RU2261242C2 (en) Method of production of 1.3-diol
KR100496324B1 (en) Process for preparing 1,3-propandiols from alkyl-3-hydroxypropionates
US6617478B2 (en) Process for preparing a 1,3-alkandiol from 3-hydroxyester
KR100538979B1 (en) Method for the preparation of 1,4-butanediol from maleic ester
JP2004034021A (en) Hydrogenation catalyst, and method for producing 1,3-propanediol by using the catalyst
KR20040047957A (en) Method for the Decomposition of Ammonium Formates in Reaction Mixtures Containing Polyol
KR100528839B1 (en) Preparation of phthalide from phthalic anhydride
KR101432638B1 (en) A PROCESS FOR PREPARING 1,5-PENTANEDIOL AND δ-VALEROLACTONE FROM TETRAHYDROFURFURYL ALCOHOL
KR100528837B1 (en) Method for the preparation of gamma-butyrolactone from maleic ester

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080918

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee