KR20020036930A - Permeable inorganic repair material composition of concrete building and its manufacturing method - Google Patents

Permeable inorganic repair material composition of concrete building and its manufacturing method Download PDF

Info

Publication number
KR20020036930A
KR20020036930A KR1020000067024A KR20000067024A KR20020036930A KR 20020036930 A KR20020036930 A KR 20020036930A KR 1020000067024 A KR1020000067024 A KR 1020000067024A KR 20000067024 A KR20000067024 A KR 20000067024A KR 20020036930 A KR20020036930 A KR 20020036930A
Authority
KR
South Korea
Prior art keywords
permeable
concrete
weight
sol
present
Prior art date
Application number
KR1020000067024A
Other languages
Korean (ko)
Inventor
이경정
Original Assignee
이경정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이경정 filed Critical 이경정
Priority to KR1020000067024A priority Critical patent/KR20020036930A/en
Publication of KR20020036930A publication Critical patent/KR20020036930A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0006Alkali metal or inorganic ammonium compounds
    • C04B2103/0008Li
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00043Anhydrous mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Abstract

PURPOSE: A permeable inorganic repairing material composition comprising alkali-based silicate, TiO2-sol, silica-sol and permeable surfactant is provided to protect concrete construction resulting from waterproofing and rust prevention, and repair cracking and water leakage parts of construction without crushing. CONSTITUTION: The permeable inorganic repairing material composition comprises 10-35wt.% of sodium silicate with a SiO2/Na2O mole ratio of 3.4 or more, 2.5-22wt.% of lithium polysilicate, 20-30wt.% of colloidal silica with 5-20 nanometer size, 0.1-1.5wt.% of TiO2 sol, 0.05-0.35wt.% of permeable surfactant based on non-ionic or anionic fluoride, and optionally anti-gelation agent.

Description

콘크리트 건축물의 침투성 무기보수재 조성물 및 그 제조방법{.}Permeable inorganic repair material composition for concrete building and its manufacturing method {.}

본 발명은 콘크리트 건축구조물의 침투성 결로 무기 보수재에 관한 것으로 보다 상세하게는 콘크리트 건축구조물에 있어서 지하층, 베란다, 목욕탕, 수영장, 물탱크 저수조, 폐수처리장과 같이 누수가 일어날 확률이 높은 곳에 적용될 수 있으며, 또한 지반침하 및 구조적응력, 외부환경에 의한 건축물의 균열 부위의 보수시에도 적용할 수 있는 콘크리트 구조물의 침투성 무기계 보수재에 관한 것이다. 일반적인 보수공법은 크게 표면피복공법, 주입공법, 충전공법으로 분류할 수 있다.The present invention relates to the permeable condensation inorganic repair materials of concrete building structures, and more particularly, it can be applied to the places where there is a high probability of leakage, such as underground floors, verandas, bathrooms, swimming pools, water tank reservoirs, wastewater treatment plants, In addition, the present invention relates to a permeable inorganic water-retaining material for concrete structures that can be applied to repairing cracks in buildings due to ground subsidence, structural stress, and external environment. The general repair method can be largely classified into surface coating method, injection method, and filling method.

표면피복공법인 경우 건축구조물의 균열이 클 때와 작을 때에 따라 사용재료가 약간 다를 수가 있으나 대부분의 보수재료는 고분자 재료나 유기산을 이용하고 있다. 이들 재료가 이용될 경우 콘크리트와의 수축팽창률에 차이가 크고 시간경과에 따라 경화됨으로써 박리(들뜸)를 유발하며, 충격에 의해 쉽게 파괴되는 문제점을 지니고 있다. 이들 재료는 성능이 저하된 콘크리트의 내구성을 향상시키는 목적보다는 구조물의 성능저하 요인으로부터 보호하려는 목적으로 사용되고 있다.In the case of the surface coating method, the materials used may be slightly different depending on whether the construction structure is large or small, but most repair materials use polymer materials or organic acids. When these materials are used, the shrinkage expansion ratio with the concrete is large and hardens with time, causing peeling (lifting) and having a problem of being easily broken by an impact. These materials are used to protect against deterioration factors of the structure rather than to improve the durability of the degraded concrete.

균열주입공법인 경우 균열주입재는 에폭시계 합성수지로서 수축이 작고 조기에 강도가 발휘되어 접착력이 우수하기 때문에 가장 많이 사용되고 있으나 콘크리트와는 매우 상이한 탄성계수 및 수축팽창률로 인하여 균열보수 후 재균열이 발생하는 등의 문제점이 지니고 있다.In the case of the crack injection method, the crack injection material is epoxy synthetic resin, which is most commonly used because of its small shrinkage and early strength, and excellent adhesion.However, crack cracking occurs after crack repair due to very different elastic modulus and shrinkage expansion rate. Has a problem.

충전공법인 경우 사용하는 재료는 에폭시계 모르터 또는 아크릴계 모르터등을 사용하고 있다. 이 충전공법은 구조체의 결함부를 제거한 후, 에폭시계 또는 아크릴계 수지를 사용하여 시멘트 모르터와 일정한 배합비로 혼합한 후 구조체의 결함부에 충전, 시공하는 보수공법으로 습윤면의 시공이 가능하며, 시공성, 단기접착성 등이 우수하여 확실한 물리적 보수가 가능하지만, 콘크리트의 표층강화 및 방수기능 이상의 성능 즉, 중성화, 염해, 동해, 화학적 부식 등의 열화요인별 화학적 처리 기술은 구축되어 있지 못하며, 유기질계 및 무기질계 재료가 함께 사용되므로써 장지적으로 모체와의 일체화가 문제가 발생할 수 있다.In the case of the filling method, an epoxy mortar or an acrylic mortar is used as the material to be used. This filling method removes the defects of the structure, mixes it with the cement mortar using an epoxy or acrylic resin at a constant mixing ratio, and then fills and installs the defective parts of the structure. Although it has excellent short-term adhesion, it can be surely repaired physically.However, it has not been able to establish the chemical treatment technology for each deterioration factor such as neutralization, salt damage, east sea, chemical corrosion, etc. Since inorganic materials are used together, integration with the mother may be problematic.

따라서 본 발명의 목적은 기존에 사용하고 있는 일반적인 표면피복공법, 주입공법, 충전공법의 단점을 극복하고 내구성능이 저하된 콘크리트의 성능을 회복시키면서 방수 및 콘크리트를 보호해 줄 수 있는 침투성 무기계 보수재를 제공하는데 있다.Accordingly, an object of the present invention is to overcome the disadvantages of the conventional surface coating method, injection method, filling method used in the existing and to provide a permeable inorganic water-based repair material that can protect the waterproof and concrete while restoring the performance of the degraded concrete performance It is.

상기 목적을 달성하기 위하여 본 발명의 콘크리트 구조물의 침투성 무기계 보수재의 조성물은 10 중량 % 내지 35 % 중량 %의 SiO2/Na2O Mole ratio(wt %)가 3.4 이상의 sodium silicate와, 22 중량 % 내지 2.5 중량 %의 Lithium polysilicate와, 30 중량 % 내지 20 중량 %의 5에서 20 nm의 크기를 갖는 Colloidal silica와, 0.1 중량 % 내지 1.5 중량 %의 TiO2sol와, 0.05 중량 % 내지 0.35 중량 %의 침투성 비이온 또는 음이온 불소계 계면활성제가 함유하는 것을 특징으로 한다.In order to achieve the above object, the composition of the permeable inorganic repair material of the concrete structure of the present invention has a SiO 2 / Na 2 O Mole ratio (wt%) of 10% by weight to 35% by weight of sodium silicate of 3.4 or more, and 22% by weight to 2.5% by weight of Lithium polysilicate, 30% by weight to 20% by weight of colloidal silica having a size of 5 to 20 nm, 0.1% to 1.5% by weight of TiO 2 sol, and 0.05% to 0.35% by weight of permeability It is characterized by containing a nonionic or anionic fluorine-type surfactant.

또한, 본 발명의 콘크리트 구조물의 침투성 무기계 보수재 조성물의 제조방법은 10 중량 % 내지 35 % 중량 %의 SiO2/Na2O Mole ratio(wt %)가 3.4 이상의 sodium silicate와, 22 중량 % 내지 2.5 중량 %의 Lithium polysilicate와, 30 중량 % 내지 20 중량 %의 5에서 20 nm의 크기를 갖는 Colloidal silica와, 0.1 중량 % 내지 1.5 중량 %의 TiO2sol와,%와, 0.05 중량 % 내지 0.35 중량 %의 침투성 비이온 또는 음이온 불소계 계면활성제를 균등하게 혼합한 것을 특징으로 한다.In addition, the method for producing a permeable inorganic repair material composition of the concrete structure of the present invention is 10 wt% to 35% wt% SiO 2 / Na 2 O Mole ratio (wt%) of sodium silicate of 3.4 or more, 22 wt% to 2.5 wt% % Lithium polysilicate, 30% to 20% by weight of Colloidal silica having a size of 5 to 20 nm, 0.1% to 1.5% by weight of TiO 2 sol,%, 0.05% to 0.35% by weight It is characterized by equally mixing permeable nonionic or anionic fluorine-based surfactants.

도 1은 본 발명의 침투성 무기보수재로 처리하기 이전의 건축구조물 표면에 나타나는 X-ray 회절분석기의 스펙트럼1 is a spectrum of an X-ray diffractometer appearing on the surface of a building structure before treatment with the penetrating inorganic repair material of the present invention.

도 2는 본 발명의 침투성 무기보수재를 건축구조물 표면에 처리한 후에 나타나는 X-ray 회절분석기의 스펙트럼.2 is a spectrum of an X-ray diffractometer after treatment of the permeable inorganic repair material of the present invention on the building structure surface.

도 3은 본 발명의 침투성 무기보수재를 건축구조물 표면에 시공하였을 때 콘크리트 표면에 net-work가 형성된 것을 나타낸 전자현미경 사진.3 is an electron micrograph showing that the net-work is formed on the concrete surface when the permeable inorganic repair material of the present invention is applied to the building structure surface.

상기한 본 발명의 목적은 보수재로 사용하고 있는 고분자나 지방산에 의한 이질적인 재료의 박리 문제점 발생과 건축구조물의 보수를 하기 위한 시공상 콘크리트 파쇄에 따른 주위 건축물의 성능저하를 방지하기 위하여 결로부분의 파쇄없이콘크리트와 팽창계수가 비슷한 본 발명의 무기계 보수재를 콘크리트 표면에 이용하여 무기산화 피막의 gelation에 의한 net work를 형성할 수 있는 알칼리계 silicate, TiO2-sol, Silica- sol 및 침투성 계면활성제로 구성되는 콘크리트 무기보수재에 의해 달성된다.The purpose of the present invention described above is to break the condensation part in order to prevent the deterioration of the performance of the surrounding buildings due to the concrete crushing during construction to repair the heterogeneous material due to the polymer or fatty acid used as a repair material and to repair the building structure. Consists of alkali-based silicate, TiO 2 -sol, Silica-sol and permeable surfactant that can form net work by gelation of inorganic oxide film by using inorganic repairing material of the present invention having similar expansion coefficient with concrete on concrete surface Is achieved by the concrete inorganic repair materials.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

실시예 1Example 1

SiO2/Na2O Mole ratio(wt %)가 3.4 이상의 sodium silicate 10 중량 %10% by weight of sodium silicate with SiO 2 / Na 2 O Mole ratio (wt%) of 3.4 or more

Lithium polysilicate 22 중량 %Lithium polysilicate 22% by weight

Colloidal silica(5 nm) 30 중량 %Colloidal silica (5 nm) 30 wt%

TiO2-sol 0.1 중량 %TiO 2 -sol 0.1 wt%

침투성 불소계 계면활성제 0.05 중량 %Permeable Fluorine-Based Surfactant 0.05% by weight

상기 성분들은 대기상태에서 균등하게 혼합하여 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하였다. 이와같은 성분을 함유하고 있는 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하여 침투성 보수재의 물리적 특성을 파악하기 위해 후술하는 방법에 따라 물리적 특성시험(침투두께, 물흡수력, 염소이온 침투력, 화학적저항성)을 측정하여 비교, 평가하였다.The components were mixed evenly in the air to prepare the permeable inorganic repair material for the concrete structure of the present invention. In order to prepare the permeable inorganic water-retaining material of the concrete structure of the present invention containing such a component, the physical property test (penetration thickness, water absorption power, chlorine ion penetration power, chemical resistance) was carried out according to the method described below. It measured, compared, and evaluated.

실시예 2Example 2

SiO2/Na2O Mole ratio(wt %)가 3.4 이상의 sodium silicate 35 중량 %35% by weight of sodium silicate with SiO 2 / Na 2 O Mole ratio (wt%) of 3.4 or more

Lithium polysilicate 2.5 중량 %Lithium polysilicate 2.5 wt%

Colloidal silica(5 nm) 10 중량 %Colloidal silica (5 nm) 10% by weight

TiO2-sol 1.5 중량 %TiO 2 -sol 1.5 wt%

침투성 불소계 계면활성제 0.35 중량 %Permeable Fluorinated Surfactant 0.35 wt%

상기 성분들은 대기상태에서 균등하게 혼합하여 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하였다. 이와같은 성분을 함유하고 있는 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하여 침투성 보수재의 물리적 특성을 파악하기 위해 후술하는 방법에 따라 물리적특성시험(침투두께, 물흡수력, 염소이온 침투력, 화학적저항성)을 측정하여 비교, 평가하였다.The components were mixed evenly in the air to prepare the permeable inorganic repair material for the concrete structure of the present invention. In order to prepare the permeable inorganic water-retaining materials for concrete structures of the present invention containing such components, physical properties tests (penetration thickness, water absorption power, chlorine ion penetration power, chemical resistance) were carried out according to the method described below. It measured, compared, and evaluated.

실시예 3Example 3

SiO2/Na2O Mole ratio(wt %)가 3.7 이상의 sodium silicate 10 중량 %10% by weight of sodium silicate with a SiO 2 / Na 2 O Mole ratio (wt%) of at least 3.7

Lithium polysilicate 22 중량 %Lithium polysilicate 22% by weight

Colloidal silica(5 nm) 30 중량 %Colloidal silica (5 nm) 30 wt%

TiO2-sol 0.1 중량 %TiO 2 -sol 0.1 wt%

침투성 불소계 계면활성제 0.05 중량 %Permeable Fluorine-Based Surfactant 0.05% by weight

상기 성분들은 대기상태에서 균등하게 혼합하여 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하였다. 이와같은 성분을 함유하고 있는 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하여 침투성 보수재의 물리적 특성을 파악하기 위해 후술하는 방법에 따라 물리적특성시험(침투두께, 물흡수력, 염소이온 침투력, 화학적저항성)을 측정하여 비교, 평가하였다.The components were mixed evenly in the air to prepare the permeable inorganic repair material for the concrete structure of the present invention. In order to prepare the permeable inorganic water-retaining materials for concrete structures of the present invention containing such components, physical properties tests (penetration thickness, water absorption power, chlorine ion penetration power, chemical resistance) were carried out according to the method described below. It measured, compared, and evaluated.

실시예 4Example 4

SiO2/Na2O Mole ratio(wt %)가 3.7 이상의 sodium silicate 35 중량 %35% by weight of sodium silicate with SiO 2 / Na 2 O Mole ratio (wt%) of at least 3.7

Lithium polysilicate 2.5 중량 %Lithium polysilicate 2.5 wt%

Colloidal silica(20 nm) 10 중량 %Colloidal silica (20 nm) 10 wt%

TiO2-sol 1.5 중량 %TiO 2 -sol 1.5 wt%

침투성 불소계 계면활성제 0.35 중량 %Permeable Fluorinated Surfactant 0.35 wt%

상기 성분들은 대기상태에서 균등하게 혼합하여 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하였다. 이와같은 성분을 함유하고 있는 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하여 침투성 보수재의 물리적 특성을 파악하기 위해 후술하는 방법에 따라 물리적특성시험(침투두께, 물흡수력, 염소이온 침투력, 화학적저항성)을 측정하여 비교, 평가하였다.The components were mixed evenly in the air to prepare the permeable inorganic repair material for the concrete structure of the present invention. In order to prepare the permeable inorganic water-retaining materials for concrete structures of the present invention containing such components, physical properties tests (penetration thickness, water absorption power, chlorine ion penetration power, chemical resistance) were carried out according to the method described below. It measured, compared, and evaluated.

실시예 5Example 5

SiO2/Na2O Mole ratio(wt %)가 3.4 이상의 sodium silicate 20 중량 %20% by weight of sodium silicate with SiO 2 / Na 2 O Mole ratio (wt%) of 3.4 or more

Lithium polysilicate 2.5 중량 %Lithium polysilicate 2.5 wt%

Colloidal silica(20 nm) 10 중량 %Colloidal silica (20 nm) 10 wt%

TiO2-sol 1.5 중량 %TiO 2 -sol 1.5 wt%

침투성 불소계 계면활성제 0.35 중량 %Permeable Fluorinated Surfactant 0.35 wt%

상기 성분들은 대기상태에서 균등하게 혼합하여 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하였다. 이와같은 성분을 함유하고 있는 본 발명의 콘크리트 구조물 침투성 무기계 보수재를 제조하여 침투성 보수재의 물리적 특성을 파악하기 위해 후술하는 방법에 따라 물리적특성시험(침투두께, 물흡수력, 염소이온 침투력, 화학적저항성)을 측정하여 비교, 평가하였다.The components were mixed evenly in the air to prepare the permeable inorganic repair material for the concrete structure of the present invention. In order to prepare the permeable inorganic water-retaining materials for concrete structures of the present invention containing such components, physical properties tests (penetration thickness, water absorption power, chlorine ion penetration power, chemical resistance) were carried out according to the method described below. It measured, compared, and evaluated.

상기 실시예에서 pH가 상당히 높으면 Colloidal silica가 gelation이 생성될 확률이 높기 때문에 gelation 방지제를 첨가해 주거나 급속한 첨가나 교반을 하여 gel화를 방지하는 것이 유리하며, 가능한한 pH를 낮춰주는 것이 바람직하다. 콘크리트 표면과의 반응성 및 침투성을 향상시키기 위해 비이온 또는 음이온 불소계 계면활성제를 이용하는 것이 바람직하다.In the above embodiment, if the pH is considerably high, colloidal silica has a high probability of generating gelation. Therefore, it is advantageous to prevent gelation by adding a gelation inhibitor or by rapid addition or stirring, and preferably lower the pH as much as possible. It is preferable to use a nonionic or anionic fluorine-based surfactant to improve the reactivity and permeability with the concrete surface.

그리고, SiO2/Na2O Mole ratio(wt %)가 3.4 이상의 sodium silicate의 함량이 35 중량 % 이상이면 점도가 상당히 증가되기 때문에 침투성 불소계 계면활성제를 첨가하여도 콘크리트 구조물표면 깊숙히 침투가 미흡하기 때문에 바람직하지 못하고, 10 중량 % 이하이면 점도가 없기 때문에 침투력은 좋으나 콘크리트 표면과의 반응성이 저조하기 때문에 바람직하지 못하다.In addition, if the SiO 2 / Na 2 O Mole ratio (wt%) of 3.4 or more sodium silicate is more than 35% by weight, the viscosity is significantly increased, so even though the permeable fluorine-based surfactant is added, the penetration into the surface of the concrete structure is insufficient. It is not preferable, and if it is 10 wt% or less, the penetration force is good because there is no viscosity, but it is not preferable because the reactivity with the concrete surface is low.

또, Colloidal silca는 가능한한 작은 입자를 사용하는 것이 보수재의 기능에 바람직하나 평균입자크기가 5 nm이하를 사용할 경우 gel화가 촉진될 가능성이 있기 때문에 바람직하지 못하다.In addition, colloidal silca is preferable to use as small particles as possible, but it is not preferable because gelation may be promoted when the average particle size is 5 nm or less.

알칼리계 silicate는 무향, 불연성이며, 내열성을 가지고 있는 무기 바인더이다. 이 물질은 고분자 강화용, 코팅용, 유리 표면 처리용으로 사용하는 것이다. 그러나 고분자 및 지방산의 보수재로 이용될 경우 온도 강화에 의한 유기물의 분해 및 손상의 우려가 크며, 콘크리트와 이질인 특성으로 인하여 결합력이 저하된다.특히 4계절이 뚜렷한 국내의 경우 수축, 팽창률이 다르기 때문에 박리현상을 일으켜 보수재라는 의미를 상실하게 된다.Alkali-based silicates are fragrance-free, non-flammable, heat-resistant inorganic binders. This material is used for polymer reinforcement, coating and glass surface treatment. However, when used as a repair material for polymers and fatty acids, there is a high risk of decomposition and damage of organic matters due to temperature strengthening, and the bonding strength decreases due to the heterogeneous properties of concrete. It causes peeling and loses the meaning of repairing material.

따라서 본 발명자는 콘크리트 구조물 표면에 알칼리계 Silicate를 코팅을 하였을 경우 결합력이 매우 우수한 피막층이 형성되면서 불용성의 calcium silicate가 생성되어 콘크리트의 공극을 채워 주기 때문에 방수역활 및 콘크리트의 표면을 보호한다는 것을 확인하였다.Therefore, the present inventors confirmed that when alkali-silicate is coated on the surface of the concrete structure, an insoluble calcium silicate is formed while the coating layer having excellent bonding strength is formed to fill the pores of the concrete, thereby protecting the waterproof role and the surface of the concrete. .

Silica-sol은 입자들의 표면적이 큰 이유로 제지의 미끄럼방지 및 첨가제로, 비닐이나 왁스의 소수성 성질에 젖음 효과로, 양이온 녹말의 효과적인 침전제로 사용하는등 폭넓은 용도로 사용하고 있는 물질이다. Silica-sol은 건조과정이나 산도(pH)의 변화, 온도의 변화에 따라 gelation이 되면서 net-work를 형성하게 된다.Silica-sol is a non-slip and additive of paper because of the large surface area of particles. It is used in a wide range of applications such as wetting effect on hydrophobic properties of vinyl and wax and as an effective precipitant for cationic starch. Silica-sol forms net-work by gelation according to drying process, pH (pH) change and temperature change.

따라서 본 발명자는 콘크리트 구조물 표면에 Silica-sol을 코팅을 한 후 건조하였을 경우 매우 조밀한 silica 피막이 형성되어 산(acid)에 매우 안정된 보호피막이 형성되어 산성비 또는 외부의 환경에 의한 콘크리트의 중성화를 방지할 수 있다는 것을 확인하였다.Therefore, the present inventors form a very dense silica film when the silica structure is coated and then dried on the surface of the concrete structure to form a very stable protective film against acid to prevent neutralization of concrete due to acid rain or external environment. Confirmed that it can.

시험편 제작Test piece production

보수재의 시험을 하기 위하여 콘크리트 혼합은 MTC-M1-79의 방법에 수행을 하였으며, 혼합된 콘크리트는 15개의 작은 슬라브(150 ×150 ×150 cm)와 9개의 큰 슬라브(300 ×300 ×300 cm)의 틀을 만든 후 ASTM C192 방법에 의해 채워, 여유분을 포함한 시험에 필요한 시편을 제작하였다. 모든 시료들은 14일 동안 양생을 하였으며, 공시료(Blank sample)를 포함하여 본 발명의 침투성 무기 보수재가 처리된 것과 상호 비교하였다. 실험결과는 실시예 1∼5의 결과를 평균값으로 하였다.In order to test the repair materials, concrete mixing was carried out according to the method of MTC-M1-79, and the mixed concrete was composed of 15 small slabs (150 × 150 × 150 cm) and 9 large slabs (300 × 300 × 300 cm). After the mold was made and filled by ASTM C192 method, the test specimen including the margin was prepared. All samples were cured for 14 days and compared with those treated with the permeable inorganic repair materials of the present invention, including blank samples. The experimental result made the result of Examples 1-5 the average value.

침투성 보수재의 평균 침투두께 시험Average Penetration Thickness Test of Permeable Repair Materials

14일 동안 양생응고한 150 ×150 ×150 mm의 슬라브를 실험실 조건에서 건조하여 14일동안 양생시킨 시편에 본 발명의 보수제를 1분동안 침적시켰으며, 각각 실시예에 따라 16번의 측정값을 평균값으로 하였다. 이때 평균 침투 두께는 공시료인 경우 14.3 mm, 본 발명의 침투 두께는 16.5 mm를 나타냄으로써 이는 건축구조물의 미세균열에 침투력이 좋아 공극을 막아주기 때문에 보수재의 능력을 향상시켜 준다.The solidified 150 × 150 × 150 mm slabs for 14 days were dried under laboratory conditions, and the repair agent of the present invention was immersed in the cured specimen for 14 days for 1 minute. It was made. In this case, the average penetration thickness is 14.3 mm in the case of the blank sample, and the penetration thickness of the present invention is 16.5 mm, which improves the ability of the repairing material because the penetration of the fine crack of the building structure is good and prevents voids.

평균 물 흡수력 시험Average water absorption test

14일 동안 양생응고한 150 ×150 ×150 mm의 슬라브를 실험실 조건에서 건조하여 14일동안 양생시킨 시편표면의 잔존물질을 제거하기 위하여 가볍게 sandblasting해 주었다. 그때 본 발명의 시편인 경우 실시예에 제조된 것을 표면위에 1회 코팅을 하고, 공시료의 시편은 코팅을 하지 않고 110土5 ℃의 오븐에서 온도 가열에 의한 질량변화가 없을 때까지 완전건조 시킨 후 테시케이터에서 실온으로 냉각시켰다. 공시료를 포함하여 본 발명의 보수재를 시편표면에 코팅한 시료들은 증류수에 48시간 침적을 시킨 다음 꺼내어 헝겊으로 물기를 닦아주고 무게를 측정하였다. 공시료인 경우 물흡수력은 4.28 %를 나타냈으며, 본 발명의 보수재를 코팅한 시편의 경우 평균 2.17 %를 나타냈다. 이는 건축구조물의 표면에 net-work를 형성하기 때문에 방수효과가 나타난다고 설명할 수 있다.Cured and solidified slabs of 150 × 150 × 150 mm for 14 days were dried under laboratory conditions and lightly sandblasted to remove residual material on the surface of the specimens cured for 14 days. In the case of the specimen of the present invention, the one prepared in Example was coated on the surface once, and the specimen of the blank was completely dried until there was no mass change by temperature heating in an oven of 110 土 5 ℃ without coating. It was then cooled to room temperature in a tessellator. Samples coated with the repair material of the present invention including the test sample on the surface of the specimen were immersed in distilled water for 48 hours, then taken out, wiped with a cloth and weighed. In the case of the test sample, the water absorption was 4.28%, and in the case of the specimen coated with the repairing material of the present invention, the average was 2.17%. This can be explained by the fact that the net-work is formed on the surface of the building structure, resulting in a waterproof effect.

염소이온 침투력 시험Chlorine Ion Penetration Test

염소이온 침투력을 확인하기 위하여 300 ×300 ×75 mm의 시편을 준비한 후 본 발명의 보수재를 1회 코팅한 것과 코팅하지 않은 것을 공시료로 하고 3 %의 NaCl 용액에 14일 동안 침적시킨 후 시편의 두께에 따른 염소이온의 농도를 확인하였다. 시료의 전처리 방법은 ASTM C114에 의해 수행을 하였고, 염소이온의 분석은 ASTM D512에 의해 수행을 하였으며, Background값을 빼 주어 평균 염소이온 농도값을 계산하였다. 수용성 염소이온의 농도를 표 1에 나타냈다.In order to check the chlorine ion permeability, 300 × 300 × 75 mm specimens were prepared, and the coating material of the present invention was coated and uncoated once, and the specimen was immersed in 3% NaCl solution for 14 days. The concentration of chlorine ions was checked according to the thickness. The pretreatment of the sample was carried out by ASTM C114, the analysis of chlorine ions was carried out by ASTM D512, the average chlorine ion concentration value was calculated by subtracting the background value. Table 1 shows the concentration of water-soluble chlorine ions.

본 발명의 보수재를 1회코팅한 것과 코팅하지 않은 공시료를 비교한 결과 콘크리트내에 염소이온 침투율이 매우 저조하게 나타내고 있다. 철근의 주축이 되는 성분은 Fe이다. Fe는 염소이온과 반응성이 매우 좋다. 즉, 염소이온이 함유된 해사를 사용할 경우 건축구조물에 인장강도를 증가시켜주기 위한 철근이 염소이온과 반응하여 염화제2철 또는 산화철로 부식이 된다. 철근이 부식이 되면서 철근이 산화물 형성에 의한 팽창력에 의해 콘크리트의 균열을 가속화한다. 따라서 본 발명의 보수재로 염소이온 침투력을 비교해 볼 때 건축구조물중 가장 중요한 주축이 되는 콘크리트의 부식을 줄여줄 수 있다.As a result of comparing the coating material of the present invention with the one-time coating and the uncoated test sample, the chlorine ion penetration rate in the concrete is very low. The main component of rebar is Fe. Fe is very reactive with chlorine ions. In other words, when using chlorine ion-containing sea sand, the reinforcing steel to increase the tensile strength of the building structure reacts with the chlorine ion to corrode with ferric chloride or iron oxide. As the steel is corroded, the steel reinforces the cracking of the concrete due to the expansion force due to oxide formation. Therefore, when comparing the chlorine ion penetration force of the repair material of the present invention can reduce the corrosion of concrete which is the most important pillar of the building structure.

화학적 저항성 시험Chemical resistance test

콘크리트 표면위에 본 발명의 보수제를 코팅한 것과 코팅하지 않은 것을 여러 가지 화학약품에 대한 저항성을 확인하기 위하여 ASTM 1308 Spot Test Open방법에 의해 수행했다. 각각의 표면은 6개의 동등한 면적으로 나누어지고 실험약품은 대략 1 ml의 방울형태로 적용해서 15분 동안 표면에 나타나는 현상을 관찰하였다. 대상화학물질은 HCl, H2SO4, NaOH, NH4OH, 무연가솔린을 상대로 실험을 하였다. 화학약품에 대한 저항성은 표 2에 나타냈다.Coating of the repair agent of the present invention on the concrete surface and uncoated was carried out by the ASTM 1308 Spot Test Open method to confirm the resistance to various chemicals. Each surface was divided into six equal areas, and the test drug was applied in the form of a drop of approximately 1 ml to observe the phenomenon on the surface for 15 minutes. Subject chemicals were tested against HCl, H 2 SO 4 , NaOH, NH 4 OH, and lead-free gasoline. Resistance to chemicals is shown in Table 2.

본 발명의 침투성 무기보수재를 코팅한 것과 코팅하지 않은 것을 화학적 저항성에 대해 비교한 결과 알칼리 용액에서는 비슷한 결과를 나타냈으나 산(acid)용액에서는 코팅하지 않은 것과 큰 차이를 나타냈다. 현대산업 발전으로 인한 대기오염이 가속화가 산성비의 원인이 된다. 산성비는 콘크리트의 구조물을 급속히 약화시킬 뿐만 아니라 철근부식 및 중성화에 의해 수명단축의 원인이 된다. 본 발명의 보수재를 코팅하였을 때 강산(Conc. acid)용액일 경우에도 나쁜 결과를 초래하지 않는다는 결과를 확인함에 따라 건축구조물을 보호하는데 큰 역할을 할 수 있다.Comparing the coating with the permeable inorganic water-retaining material of the present invention with respect to chemical resistance showed similar results in the alkaline solution, but showed a big difference from the uncoated in the acid solution. Acceleration of air pollution caused by modern industrial development causes acid rain. Acid rain not only rapidly weakens the structure of concrete but also causes shortening of life due to corrosion and neutralization of steel. When the repairing material of the present invention is coated, it can play a big role in protecting the building structure by confirming that even a strong acid solution does not cause a bad result.

광촉매에 의한 유기물 분해 시험Organic matter decomposition test by photocatalyst

TiO2-sol은 광촉매 및 고분자의 무기충진제로 사용하고 있는 무기 산화물이다. 광촉매는 anatase의 구조를 갖고 있는 TiO2로서 광촉매 역할을 원활히 수행하기 위하여 표면적 큰 nm 크기를 가지고 화장품의 자외선 차단제 또는 환경의 오염물질을 제거하는데 이용하고 있다.TiO 2 -sol is an inorganic oxide used as an inorganic filler in photocatalysts and polymers. Photocatalyst is TiO 2 having anatase structure and used to remove sunscreen or environmental pollutants in cosmetics with large nm size in order to perform photocatalytic role smoothly.

따라서 본 발명자는 콘크리트 구조물 표면에 TTIP(Tetratitanium Isopropoxide)를 이용하여 가수분해법을 이용한 15 nm size의 TiO2-sol을 본 발명의 보수재와 혼합한 다음 콘크리트 표면에 1회 코팅을 하고 그 위에 1 %짜리 PVA (polyvinyl alchol) 균일하게 뿌려주고 1주일동안 햇빛에 방치해 두었을 경우 코팅하지 않은 것보다 광촉매를 코팅한 표면이 이물질이 쉽게 제거됨을 확인하였다. 이는 대기중에 함유된 이물질의 부착에 의한 콘크리트의 표면을 청결해주는데 효과가 있다.Therefore, the inventor mixed the surface of the concrete structure with TiO 2 -sol of 15 nm size using hydrolysis using TTIP (Tetratitanium Isopropoxide) with the water-retaining material of the present invention, and then coated the concrete surface once and coated 1% on it. When the PVA (polyvinyl alchol) was evenly sprayed and left in the sun for one week, it was confirmed that foreign substances were easily removed from the surface coated with the photocatalyst than the uncoated surface. This is effective to clean the surface of the concrete by the adhesion of foreign substances contained in the atmosphere.

보수하기 위해 균열부위의 기존의 방법에 의하면 파쇄를 하여 보수재를 충진하는데 파쇄에 의한 노동 및 시간이 필요로 하게 되며, 파쇄과정 중 진동 및 충격에 의해 주위의 미세균열로 인하여 건축구조물이 더욱 취약해 질 수 있다. 앞에서 설명한 바와 같이 본 발명의 콘크리트 구조물 침투성 무기계 보수재 조성물에 의하면 10 중량 % 내지 35 % 중량 %의 SiO2/Na2O Mole ratio(wt %)가 3.4 이상의 sodium silicate와, 22 중량 % 내지 2.5 중량 %의 Lithium polysilicate와, 30 중량 % 내지 20 중량 %의 5에서 20 nm의 크기를 갖는 Colloidal silica와, 0.1 중량 % 내지 1.5 중량 %의 TiO20-sol과, 0.05 중량 % 내지 0.35 중량 %의 침투성 계면활성제가 함유하고 있으므로, 콘크리트의 결로 발생시 결로주위의 파쇄 없이 콘크리트 구조물에 용이하게 미세한 colloidal-silica 및 알칼리계 silicate가 침투되고 또한 중성화되는 구조물을 보호함과 동시에 콘크리트 구조물과 일체화시킬 수 있다는 매우 뛰어난 효과가 있다.According to the existing method of cracking for repairing, it takes a lot of labor and time by crushing to fill the repair material by crushing, and the building structure is more vulnerable due to the surrounding microcracks due to vibration and shock during the crushing process. Can lose. As described above, according to the present invention, the permeable inorganic repair material composition of 10% by weight to 35% by weight of SiO 2 / Na 2 O Mole ratio (wt%) is 3.4% or more sodium silicate, 22% by weight to 2.5% by weight Lithium polysilicate, Colloidal silica having a size of 5 to 20 nm from 30% to 20% by weight, 0.1% to 1.5% by weight of TiO 2 0-sol, and 0.05% to 0.35% by weight of a permeable interface Since the active agent is contained, it is very effective that the colloidal silica and alkali silicate can easily penetrate the concrete structure and be integrated with the concrete structure without breaking the condensation. There is.

Claims (3)

10 중량 % 내지 35 % 중량 %의 SiO2/Na2O Mole ratio(wt %)가 3.4 이상의 sodium silicate와, 22 중량 % 내지 2.5 중량 %의 Lithium polysilicate와, 30 중량 % 내지 20 중량 %의 5에서 20 nm의 크기를 갖는 Colloidal silica와, 0.1 중량 % 내지 1.5 중량 %의 TiO2sol와, 0.05 중량 % 내지 0.35 중량 %의 침투성 계면활성제를 균등하게 혼합한 것을 특징으로 하는 콘크리트 구조물의 침투성 무기계 보수재 조성물의 제조방법.SiO 2 / Na 2 O Mole ratio (wt%) of 10% to 35% by weight is at least 3.4 sodium silicate, 22% to 2.5% by weight of Lithium polysilicate, and 30% to 20% by weight of 5 A colloidal silica having a size of 20 nm, 0.1 wt% to 1.5 wt% of TiO 2 sol, and 0.05 wt% to 0.35 wt% of a permeable surfactant are uniformly mixed. Manufacturing method. 제 1항의 방법으로 제조한 콘크리트 구조물의 침투성 무기계 보수재 조성물.A permeable inorganic repair material composition of a concrete structure prepared by the method of claim 1. 제 1항의 방법으로 제조한 콘크리트 구조물의 침투성 무기계 보수재를 결로가 생긴 주위를 파쇄하지 않고 콘크리트 구조물 표면에 도포하는 침투성 무기계 보수재.A permeable inorganic water-retaining material, wherein the permeable inorganic water-retaining material of the concrete structure manufactured by the method of claim 1 is applied to the surface of the concrete structure without crushing the condensation.
KR1020000067024A 2000-11-11 2000-11-11 Permeable inorganic repair material composition of concrete building and its manufacturing method KR20020036930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000067024A KR20020036930A (en) 2000-11-11 2000-11-11 Permeable inorganic repair material composition of concrete building and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000067024A KR20020036930A (en) 2000-11-11 2000-11-11 Permeable inorganic repair material composition of concrete building and its manufacturing method

Publications (1)

Publication Number Publication Date
KR20020036930A true KR20020036930A (en) 2002-05-17

Family

ID=19698530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000067024A KR20020036930A (en) 2000-11-11 2000-11-11 Permeable inorganic repair material composition of concrete building and its manufacturing method

Country Status (1)

Country Link
KR (1) KR20020036930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623674B1 (en) * 2006-02-15 2006-09-13 주식회사트라이포드 Concrete penetrating floor hardening agent
KR100644768B1 (en) * 2004-12-24 2006-11-14 (주)디피아이 홀딩스 Concrete Surface Hardener and method of treating Concrete Surface using the same
KR100661494B1 (en) * 2006-05-26 2006-12-27 한토산업 (주) Polymer coating composition for protecting neutralization and salt damage of concrete structures
KR100815046B1 (en) * 2006-11-30 2008-03-18 한국전력공사 Method for repairing aged concrete using surface penetrating reinforcement agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536417A (en) * 1983-12-09 1985-08-20 Onoda Construction Materials Co., Ltd. Method for repairing and restoring deteriorated cement-containing inorganic material
JPH06116512A (en) * 1992-10-09 1994-04-26 T T Shii:Kk Production of low-temperature curable inorganic coating agent and method for forming low-temperature curable inorganic coating layer
JPH082982A (en) * 1994-06-20 1996-01-09 Denki Kagaku Kogyo Kk Method for repairing concrete
US5560773A (en) * 1995-06-13 1996-10-01 Fmc Corporation Penetrating sealant composition
JP2000044317A (en) * 1998-05-26 2000-02-15 Fuji Kagaku Kk Construction of concrete structure and concrete therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536417A (en) * 1983-12-09 1985-08-20 Onoda Construction Materials Co., Ltd. Method for repairing and restoring deteriorated cement-containing inorganic material
JPH06116512A (en) * 1992-10-09 1994-04-26 T T Shii:Kk Production of low-temperature curable inorganic coating agent and method for forming low-temperature curable inorganic coating layer
JPH082982A (en) * 1994-06-20 1996-01-09 Denki Kagaku Kogyo Kk Method for repairing concrete
US5560773A (en) * 1995-06-13 1996-10-01 Fmc Corporation Penetrating sealant composition
JP2000044317A (en) * 1998-05-26 2000-02-15 Fuji Kagaku Kk Construction of concrete structure and concrete therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644768B1 (en) * 2004-12-24 2006-11-14 (주)디피아이 홀딩스 Concrete Surface Hardener and method of treating Concrete Surface using the same
KR100623674B1 (en) * 2006-02-15 2006-09-13 주식회사트라이포드 Concrete penetrating floor hardening agent
KR100661494B1 (en) * 2006-05-26 2006-12-27 한토산업 (주) Polymer coating composition for protecting neutralization and salt damage of concrete structures
KR100815046B1 (en) * 2006-11-30 2008-03-18 한국전력공사 Method for repairing aged concrete using surface penetrating reinforcement agent

Similar Documents

Publication Publication Date Title
KR101741177B1 (en) Quick hardening and high-strength inorganic polymer mortar and concrete repair and supplement method thereof
KR100788021B1 (en) Waterproof agent for concrete and waterproofing method of concrete structures using this
Swamy et al. An external surface coating to protect concrete and steel from aggressive environments
KR100890558B1 (en) Environmentally-friendly surface protection layer formation method for enhanced durability, preventing salt damage and neutralization of concrete structure using acryl emulsion and chelate-containing metal silicate and polyatomic ion filler
KR100661210B1 (en) Silicone resin emulsion membrane and manufacturing method having infiltration, hydrophobicity and penetration
KR100787477B1 (en) Self-cleaning hydrophilic impregnant for concrete surface protection and construction method using it
JP2006183446A5 (en)
KR102232277B1 (en) Quick hardening and high-strength inorganic polymer mortar and concrete repair and supplement method thereof
KR100757104B1 (en) Environmentally-friendly surface protection layer formation method for enhanced durability, preventing salt damage of concrete structure and steel structure and neutralization, waterproofing, and anticorrosion using elastic polymer complex material
KR101049032B1 (en) Surface protecting and lifetime extension method of concrete structures using composite painting layer structure
KR100526418B1 (en) Concrete surface treatment method using inorganic repairing agent for concrete
KR102338230B1 (en) Non-shirinkage type polymer modified mortar composition and construction method for repairing and restoring the surface of concrete structures using the same
KR100801423B1 (en) Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof
KR20020036930A (en) Permeable inorganic repair material composition of concrete building and its manufacturing method
KR100565268B1 (en) Synthetic method of protective coating materials for concrete carbonation and using method for the same
KR102108406B1 (en) Inorganic nano-ceramic composition and method of coating concrete structure using the same
KR20020058948A (en) Waterproofing Composition Having Permeation Mechanism, Method for Producing the Same, and Hybrid Waterproofing Construction Method Using the Same
JP4761703B2 (en) Silica dispersion
RU2610046C2 (en) Porous article and method of producing thereof
CN110240840A (en) A kind of surface application agent and technique solidifying waste for handling drilling well
JP6828875B2 (en) Concrete protection method
KR101685001B1 (en) Method for manufacturing penetrating coating materials for protecting surface of concrete structure and penetrating coating materials for protecting surface of concrete structure using the same
KR101581302B1 (en) Manufacturing and working method of environmental-friendly surface repairing materials for concrete structures using inorganic material
KR102334793B1 (en) A mortar composition and method for repairing and enhancing concrete structure using the same
KR100708460B1 (en) A coating material for concrete structure and a construction method using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application