KR100801423B1 - Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof - Google Patents

Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof Download PDF

Info

Publication number
KR100801423B1
KR100801423B1 KR1020060094496A KR20060094496A KR100801423B1 KR 100801423 B1 KR100801423 B1 KR 100801423B1 KR 1020060094496 A KR1020060094496 A KR 1020060094496A KR 20060094496 A KR20060094496 A KR 20060094496A KR 100801423 B1 KR100801423 B1 KR 100801423B1
Authority
KR
South Korea
Prior art keywords
weight
parts
nano
composition
cross
Prior art date
Application number
KR1020060094496A
Other languages
Korean (ko)
Inventor
백종명
양기영
Original Assignee
서울메트로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울메트로 filed Critical 서울메트로
Priority to KR1020060094496A priority Critical patent/KR100801423B1/en
Application granted granted Critical
Publication of KR100801423B1 publication Critical patent/KR100801423B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0691Polyamides; Polyaramides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/50Defoamers, air detrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/65Water proofers or repellants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A composition for repairing and reinforcing the section of a concrete structure using a nano-composed inorganic polymer and nylon fibers is provided to realize the same quality as concrete materials and long-term durability, and to improve the cracking and bending resistance, tensile strength and adhesion. A composition for repairing and reinforcing the section of a concrete structure using a nano-composed inorganic polymer and nylon fibers comprises: 100 parts by weight of cement; 200-230 parts by weight of a functional mineral substance formed of ore belonging to amphibole; 6-10 parts by weight of a nano-composed inorganic polymer; 0.1-0.5 parts by weight of nylon fibers; and 40-60 parts by weight of water. The nano-composed inorganic polymer comprises: 16-50 parts by weight of a silane compound; 5-20 parts by weight of distilled water or ion exchange water; 7.5-20 parts by weight of a solvent; 10-30 parts by weight of silica sol; 0.1-10 parts by weight of an acid catalyst; 0.1-1.0 parts by weight of a thickening agent; 20-30 parts by weight of a filler; 24-26 parts by weight of an acrylic emulsion resin; 5-17 parts by weight of ethyl alcohol; and 0.1-10 parts by weight of nanopowder of silica or aluminum hydroxide. Further, the acid catalyst is one selected from a group consisting of HCl, HNO3 and CH3COOH.

Description

나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물과 이를 이용한 단면보수보강공법{Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof}Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it according to

도 1 은 본 발명에 따른 개념도1 is a conceptual diagram according to the present invention

도 2 는 본 발명에 따른 콘크리트 수화물과의 수소결합 모델을 보인 예시도Figure 2 is an exemplary view showing a hydrogen bonding model with concrete hydrate according to the present invention

도 3 은 전자주사 전자현미경에 시험편의 미세조직 동정과 섬유 혼입 모르터르의 결과를 보인 예시도Figure 3 is an exemplary view showing the results of microstructure identification and fiber mixing mortar of the test piece on the electron scanning electron microscope

도 4 는 침지시간 경과에 따른 각 시편들의 염분침투깊이의 경시변화를 보인 예시도Figure 4 is an exemplary view showing the change over time of salinity penetration depth of each specimen with the immersion time elapsed

도 5 는 촉진 중성화 시험을 통해 얻어진 각 시험체의 중성화 침투깊이 결과를 보인 예시도5 is an exemplary view showing the neutralization penetration depth results of each test specimen obtained through the accelerated neutralization test.

도 6 은 각 시험체에 대한 동결융해 시험후의 시험결과를 보인 예시도Figure 6 is an illustration showing the test results after the freeze thaw test for each test body

도 7 은 황산 5% 용액에 침지한 시험체의 재령에 따른 중량 변화율을 보인 예시도7 is an exemplary view showing the weight change rate according to the age of the test specimen immersed in 5% sulfuric acid solution

본 발명은 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물과 이를 이용한 단면보수보강공법에 관한 것으로, 나노수준에서 합성되는 무기질 폴리머와 나이론 섬유를 혼입첨가하여, 콘크리트 구조물의 단면보강 적용시 염해 및 오염을 방지하고, 내구성을 증진시킬 수 있는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물과 이를 이용한 단면보수보강공법에 관한 것이다. The present invention relates to a cross-sectional reinforcement composition for a concrete structure in which a nano-synthetic inorganic polymer and nylon fibers are mixed, and to a cross-sectional reinforcement method using the same. The present invention relates to a cross-sectional reinforcement composition for a concrete structure containing nano-synthetic inorganic polymers and nylon fibers that can prevent salt and contamination and enhance durability when applying reinforcement to a cross-section, and a cross-sectional reinforcement method using the same.

일반적으로, 콘크리트 구조물의 내구성에 영향을 미치는 인자로서 재료조건, 구조물의 용도, 외기 환경조건 등이 있으며, 이중 외기 환경조건으로서는 콘크리트 구조물이 접하게 되는 수분에 의한 건습 반복, 염분의 침투에 의한 염해, 이산화탄소등의 침투로 인한 콘크리트의 중성화, 외기 온도의 심한 변화로 인한 동결융해 및 각종 산 등의 침식에 의한 화학적 침식 등이 있다.In general, factors affecting the durability of concrete structures include material conditions, use of the structure, and outdoor environmental conditions. Among these, external and outdoor environmental conditions include repeated wet and dry by moisture, salt damage due to salt penetration, Neutralization of concrete due to the penetration of carbon dioxide, freeze-thawing due to severe changes in outside temperature, and chemical erosion by erosion of various acids.

이러한 열화 인자로 인해 콘크리트 구조물에서 균열, 누수, 철근부식, 박리, 박락 등의 현상이 발생한다. 즉, 수분이나 기타 외부 유해 물질 등이 콘크리트 내부로 침투하여 콘크리트 자체를 열화 시키거나, 철근의 부식 등을 유발하여 콘크리트 구조물의 성능저하를 일으키게 되는데 이러한 콘크리트의 열화를 방지하고 단면을 보강하기 위해서는 수분 및 외부 유해물질 등의 침투 방지 및 단면을 보강하는 것이 필요하다.Due to such deterioration factors, cracks, leaks, reinforcing bars, peeling, peeling, etc. occur in concrete structures. In other words, moisture or other harmful substances penetrate into the concrete, causing the concrete itself to deteriorate, or causing corrosion of reinforcing steel, which causes performance degradation of the concrete structure. And it is necessary to prevent the penetration of external harmful substances and the like to reinforce the cross section.

이를 위해서, 현재까지 콘크리트 구조물의 열화를 방지하고 열화된 콘크리트의 성능을 회복시키기 위해 여러 가지 단면보강 및 보수공법들이 개발되어 왔으며, 이들을 사용하여 수많은 신구 콘크리트 구조물을 대상으로 단면보강 및 보수공사가 진행 중에 있다. To this end, various cross-sectional reinforcement and repair methods have been developed to prevent the deterioration of concrete structures and to restore the performance of deteriorated concrete. To this end, cross-sectional reinforcement and renovation works are carried out for many new concrete structures. There is.

그러나, 기존 대부분의 보강 및 보수재료는 장기적으로 반복되는 열화 인자의 침투 및 재료의 물성의 차이로 말미암아 원래의 기능을 상실하게 되기 때문에 재시공을 해야 하는 경우가 많고 비록 외부 유해 물질 차단의 성능이 우수한 재료라 하더라도 국산화가 이루어져 있지 않거나, 사용자의 경제적 부담이 가중되며, 환경 부하물질을 배출하게 되어 환경오염을 유발하기도 되는 등 여러가지 문제점이 있었다. However, most existing reinforcing and repairing materials lose their original function due to the long term repetition of deterioration factors and the difference in material properties. Even if the material is not localized, the economic burden of the user is increased, and the environmental load is discharged to cause environmental pollution, there were various problems.

본 발명은 상기와 같은 문제점을 해소하기 위한 것으로, 그 목적은 콘크리트 재료와 동질성을 구비하고, 장기적으로 우수한 내구성을 구비하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물과 이를 이용한 단면보수보강공법을 제공하는 것이다. The present invention is to solve the above problems, the object is to provide a homogeneous with the concrete material, and the composition for the maintenance of the concrete structure cross-sectional reinforcement of the nano-synthetic inorganic polymer and nylon fibers with long-term excellent durability and It is to provide a section repair reinforcement method using the same.

또한, 본 발명의 또다른 목적은 나노수준에서 합성되는 무기질 폴리머에 의해 콘크리트 구조물의 표면에 미세기공을 구비하도록 하여, 이온크기가 큰 열화인자를 차단하는 것이다. In addition, another object of the present invention is to provide micropores on the surface of the concrete structure by the inorganic polymer synthesized at the nano-level, to block the deterioration factor having a large ion size.

본 발명의 또다른 목적은 나노합성 무기질 폴리머와 나일론 섬유를 혼입하여 균열과 휨 및 인장강도를 개선하고, 부착력을 향상시키며, 수축균열을 억제할 수 있는 콘크리트 구조물 단면보수보강용 조성물과 이를 이용한 단면보수보강공법을 제공하는 것이다. Another object of the present invention is to mix the nano-synthetic inorganic polymer and nylon fibers to improve the cracks, warpage and tensile strength, improve the adhesion, and to suppress the shrinkage cracking composition for concrete structure cross-section reinforcement composition and the cross section using the same It is to provide a reinforcement method.

본 발명은 시멘트 100 중량부에 대하여, 골재로 각섬석군에 속하는 광물을 포함하는 기능성 무기질 200∼230 중량부, 나노합성 무기질계 폴리머 6∼10 중량부, 나일론 섬유 0.1∼0.5 중량부 및 물 40∼60 중량부로 이루어져 있다.The present invention is based on 100 parts by weight of cement, 200 to 230 parts by weight of functional minerals containing minerals belonging to the hornblende group as aggregates, 6 to 10 parts by weight of nanosynthetic inorganic polymers, 0.1 to 0.5 parts by weight of nylon fibers and 40 to water. It consists of 60 parts by weight.

상기 기능성 무기질은 칼슘, 나트륨, 칼륨, 마그네슘, 철, 알루미늄, 수산기, 플루오르 등을 함유한 각섬석군에 속하는 광물로써, 입자의 크기가 25㎜∼150㎚를 구비한다. The functional mineral is a mineral belonging to the group of hornblende containing calcium, sodium, potassium, magnesium, iron, aluminum, hydroxyl groups, fluorine and the like, and has a particle size of 25 mm to 150 nm.

상기 기능성 무기질은 자체에서 원적외선과 음이온, 미네랄산등이 다량 방출하여 식생 및 인체에 유익한 기능성 친환경소재로써, 입자의 크기에 따라 내구성에 미치는 요인이 될 수 있으며, 상기 분말도가 150㎚미만일 경우 사용성 및 안정성에 우려가 있다.The functional mineral is a functional eco-friendly material that is beneficial to vegetation and human body by releasing large amounts of far infrared rays, anions, mineral acids, etc. in itself, and may be a factor affecting durability depending on the size of particles. And stability.

상기 나노합성 무기질계 폴리머는 실란계 화합물 16∼50중량부, 증류수 또는 이온교환수 5∼20중량부, 용제 7.5∼20중량부, 실리카졸 10∼30중량부, 산촉매 0.1∼1.0중량부, 증점제 0.1∼1.0중량부, 필러 20∼30중량부, 아크릴에멀젼수지 24∼26중량부, 에틸알코올 5∼17중량부, 나노분말 0.1∼10중량부로 이루어져 있다. The nano-synthetic inorganic polymer is 16 to 50 parts by weight of silane compound, 5 to 20 parts by weight of distilled or ion-exchanged water, 7.5 to 20 parts by weight of solvent, 10 to 30 parts by weight of silica sol, 0.1 to 1.0 parts by weight of acid catalyst, thickener It consists of 0.1-1.0 weight part, 20-30 weight part of fillers, 24-26 weight part of acrylic emulsion resins, 5-17 weight part of ethyl alcohol, and 0.1-10 weight part of nanopowders.

즉, 상기 나노합성 무기질계 폴리머는 실란계 화합물 16∼50중량부, 증류수 또는 이온교환수 5∼20중량부, 용제 7.5∼20중량부, 실리카졸 10∼30중량부, 산촉매 0.1∼1.0중량부, 증점제 0.1∼1.0중량부를 혼합하여 반응시킨 후, 이에 필러 20∼30중량부, 아크릴에멀젼수지 24∼26중량부, 에틸알코올 5∼17중량부, 나노분말 0.1∼10중량부를 혼합하여 생성하도록 되어 있으며, 이에 소포제 0.15∼0.25중량부, 발수제 2∼8중량부를 더 첨가할 수 있다. That is, the nano-synthetic inorganic polymer is 16 to 50 parts by weight of the silane compound, 5 to 20 parts by weight of distilled or ion-exchanged water, 7.5 to 20 parts by weight of the solvent, 10 to 30 parts by weight of the silica sol, and 0.1 to 1.0 parts by weight of the acid catalyst. After reacting by mixing 0.1 to 1.0 parts by weight of thickener, 20 to 30 parts by weight of filler, 24 to 26 parts by weight of acrylic emulsion resin, 5 to 17 parts by weight of ethyl alcohol, and 0.1 to 10 parts by weight of nanopowder are produced. In this case, 0.15 to 0.25 parts by weight of an antifoaming agent and 2 to 8 parts by weight of a water repellent may be further added.

상기 실란계 화합물은 테트라메톡시실란, 테트라에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메틸트리이소프로폭시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란,디페닐디에톡시실란, 메틸페닐디메톡시실란, 또는 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 화합물을 첨가한다. The silane compound is tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane At least one compound selected from the group consisting of dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, or combinations thereof.

상기 용제는 메틸알코올, 에틸알코올, 이소프로필 알코올 등으로 이루어진 군에서 선택된 하나 이상의 알코올계 물질을 첨가한다. The solvent is at least one alcohol-based material selected from the group consisting of methyl alcohol, ethyl alcohol, isopropyl alcohol and the like.

상기 산촉매는 HCl, HNO3, CH3COOH 중에서 선택된 하나를 첨가한다. The acid catalyst is added one selected from HCl, HNO 3 , CH 3 COOH.

상기 필러는 산화티탄, 산화철,크롬산화물, 산화아연, 산화규소로 이루어진 군에서 선택된 하나 이상을 첨가한다. The filler is added at least one selected from the group consisting of titanium oxide, iron oxide, chromium oxide, zinc oxide, silicon oxide.

상기 나노분말은 나노수준에서 합성되는 것으로 분말도 50∼150㎚를 구비하는 나노실라카분말 또는 나노 알루미늄 하이드록사이드 분말을 사용한다. 상기 분말도가 50㎚ 미만이 경우, 세공량이 증가하므로 부착력이 저하되는 문제가 있고, 분말도가 150㎚ 초과하는 경우 과도하게 미세하여 풍화되기 수비고 균열이 발생될 우려가 있다. The nano-powder is synthesized at the nano-level to use a nano-silica powder or a nano aluminum hydroxide powder having a powder degree of 50 ~ 150nm. When the powder degree is less than 50 nm, there is a problem that the adhesion force is lowered because the pore amount is increased, and when the powder degree is more than 150 nm, excessively fine, weathering and cracking may occur.

또한, 상기 증점제는 소정의 점도를 증진시키기 위한 것으로, 현재 시중에 판매되고 있는 공지의 증점제를 사용한다. 또한, 상기 소포제 및 발수제는 특별히 한정하는 것은 아니며, 이 역시 현재 시중에 널리 판매되고 있는 공지의 것을 사용할 수 있다. In addition, the thickener is to enhance a predetermined viscosity, and uses a known thickener that is currently commercially available. In addition, the antifoaming agent and the water repellent are not particularly limited, and these may also be well-known ones that are widely sold on the market.

상기와 같이 이루어진 무기질계 폴리머는 도 1 에 도시된 바에서와 같이 콘크리트 구조물에 단면보수/보강용으로 적용될 시, 콘크리트 모체와 일체화된 화학결합의 형태로 구성되고, 3차원 망목구조로 인해 통기성 발현 등의 기능을 구비하게 된다. When the inorganic polymer made as described above is applied to the concrete structure as shown in FIG. 1 for cross-sectional repair / reinforcement, it is configured in the form of chemical bonds integrated with the concrete matrix, and it is breathable due to the three-dimensional network structure And the like.

이하, 본 발명의 이해를 돕기 위해 나노합성 무기질 폴리머의 합성 기구를 살펴보면 다음과 같다.Hereinafter, looking at the synthesis mechanism of the nano-synthetic inorganic polymer to help the understanding of the present invention.

즉, 나노합성 무기질 폴리머는 아래의 식에서 나타낸 바와 같이 금속 알콕사이드(metal alkoxide)라는 출발물질을 이용하여 가수분해와 중합반응을 통하여 단분자(monomer)에서 올리고머(oligomer),폴리머(palymer) 형태로의 중합과정을 통하여 무기질 폴리머 구조를 형성하게 된다.In other words, the nanosynthetic inorganic polymer is formed from monomer to oligomer and polymer through hydrolysis and polymerization using a starting material called metal alkoxide, as shown in the following equation. Through the polymerization process, an inorganic polymer structure is formed.

① 가수분해반응(M:금속, R:알킬기) ① Hydrolysis reaction (M: metal, R: alkyl group)

: M(OR)n+XH2O → M(OH)x(OR)n-x+ROHM (OR) n + XH 2 O → M (OH) x (OR) n-x + ROH

② 중축합반응 ⇒ 3차원 망목상 구조 형성 ② polycondensation reaction ⇒ 3-dimensional network structure

: -M-OH+H-O-M → -M-O-M+H2O(탈수반응): -M-OH + H-OM → -MO-M + H 2 O (dehydration reaction)

: -M-OH+R-O-M → -M-O-M+ROH(탈알콜반응): -M-OH + R-O-M → -M-O-M + ROH (dealcohol reaction)

이처럼 알콕시 실란계 나노합성 무기질 폴리머는 나노수준에서 가수분해와 중합반응을 통하여 저분자량의 무기질계 폴리머를 합성하게 된다. As described above, the alkoxy silane nanosynthetic inorganic polymer synthesizes a low molecular weight inorganic polymer through hydrolysis and polymerization at the nano level.

또한, 상기와 같은 나노합성 무기질계 폴리머는 콘크리트 내의 CSA(Calcium Silicate Aluminate)나 CSH(Calcium Silicate Hydrate)와 같은 수화물과 직접 수소결합이 가능한 구조로 콘크리트 모체와 일체화되는 화학반응을 통하여 무기질 3차원 망목구조를 형성하기 때문에, 기본적으로 물에 불용성이며, 건조 후에 초소수성을 나타내어 수분의 확산을 차단할 수 있어 장기적으로 부착력이 탁월한 동절 재료간의 화합물 형태를 유지할 수 있는 장점을 구비하게 된다. In addition, the nano-synthetic inorganic polymer as described above is a structure capable of directly hydrogen bonding with a hydrate such as CSA (Calcium Silicate Aluminate) or CSH (Calcium Silicate Hydrate) in concrete. Since it forms a structure, it is basically insoluble in water, exhibits superhydrophobicity after drying, and can block the diffusion of water, and thus has the advantage of maintaining a compound form between copper materials having excellent adhesion in the long term.

또한, 상기 나노합성 무기질계 폴리머는 본 발명 조성물의 충전 및 도포시, 콘크리트 조직에 침투하여 미세기공을 가지게 되는데, 이 미세기공은 (1∼2Å)보다 이온크기가 큰 열화인자(Cl- : 3.68Å, H2O : 2.8Å, CO2 - : 4.4Å)를 근본적으로 차단할 수 있는 특성을 가지게 된다.In addition, the nano-synthetic inorganic polymer penetrates into the concrete structure during filling and coating the composition of the present invention will have micropores, the micropores are deterioration factor (Cl - 3.68) having a larger ion size than (1 ~ 2Å). Å, H 2 O: 2.8Å, CO 2 -: will have the property that can essentially block the 4.4Å).

즉, 상기 나노합성 무기질계 폴리머는 도 2 에 도시된 바와 같이, 같이 나노레벨에서의 가수분해와 중합반응을 통하여 합성된 저분자량의 무기질 폴리머가 콘크리트 내의 C-S-A나 C-S-H와 직접 수화반응을 일으켜 시멘트 경화체와 일체화되는 화학반응에 의하여 수소결합이 이루어지며, 이를 통해 무기질 3차원 망목구조(-O- Si-O-)를 형성하게 되어 콘크리트 미세조직내에 약 1∼2Å 정도의 미세 기공이 형성된다. 이와 같은 미세기공의 형성은 내부의 수분을 외부로 방출하면서 동시에 가장 이상적인 통기성을 갖게 하는 결정구조로서 장기적으로 도막의 박리가 발생되지 않는 안정적인 결합이 이루어질 수 있게 한다. That is, as shown in Figure 2, the nano-synthetic inorganic polymer is a low-molecular-weight inorganic polymer synthesized through hydrolysis and polymerization at the nano-level, such as the direct hydration reaction of CSA or CSH in concrete cement hardened body Hydrogen bonds are formed by chemical reactions integrated with each other, thereby forming an inorganic three-dimensional network structure (-O-Si-O-), thereby forming micropores of about 1 to 2Å in the concrete microstructure. The formation of such micropores is a crystal structure that releases the moisture inside to the outside and at the same time has the most ideal air permeability, thereby allowing stable bonding without peeling of the coating film in the long term.

이때, 상기 도 2 의 R 그룹은 알킬기로서, 발수성을 나타내어 외부 수분이나 유해물질에 대한 장벽의 역할을 하게 되며, 이러한 무기질 폴리머의 침투는 콘크리트 미세 공극구조를 강화하여 표면 경도를 증가시킨다.At this time, the R group of FIG. 2 is an alkyl group, and exhibits water repellency to serve as a barrier to external moisture or harmful substances, and the penetration of the inorganic polymer increases the concrete microporous structure to increase surface hardness.

상기 나일론 섬유는 균열과 휨 및 인장강도를 개선시키고 수축균열을 억제하기 위하여 첨가하는 것으로, 수분 4∼5%를 함유한 나일론 섬유를 사용한다. 상기 4∼5%의 수분을 함유하고 있는 나일론 섬유는 시멘트 수화시 수분을 제공하는 역할을 하여 다른 합섬섬유와는 달리 시멘트와의 결합력을 높여주며, 이러한 결과로 인하여 모르타르의 수축균열 억제 효과를 구비하고 있다. The nylon fiber is added to improve cracks, warpage, and tensile strength and to suppress shrinkage cracking, and nylon fibers containing 4 to 5% of moisture are used. The nylon fiber containing 4 to 5% of moisture serves to provide moisture when cement is hydrated, thereby increasing the bonding strength with cement unlike other synthetic fibers, and as a result, has the effect of inhibiting shrinkage cracking of mortar. Doing.

상기와 같은 본 발명 각 성분들의 상한 및 하한값의 제한은 다른 첨가성분들과의 반응을 고려한 것으로, 본 발명이 추구하는 우수한 물성을 구비하게 위하여 한정하는 것이다.Limitation of the upper limit and the lower limit of each component of the present invention as described above is to consider the reaction with other additives, it is limited in order to have excellent physical properties pursued by the present invention.

이하 본 발명을 실시예에 의해 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail by way of examples.

실시예 1Example 1

테트라 메톡시실란 30중량부, 증류수 15중량부, 에틸알코올 15중량부, 실리 카졸 18중량부, HNO3 1.0중량부, 증점제 1.0중량부를 혼합하여 반응시키고, 이에 산화규소 20중량부 아크릴에멀젼수지 30 중량부, 에틸알코올 10 중량부, 나노 알루미늄 하이드록사이드 분말 8 중량부, 소포제 0.25 중량부, 발수제 3 중량부를 혼합하여, 나노합성 무기질계 폴리머를 생성하고, 30 parts by weight of tetra methoxysilane, 15 parts by weight of distilled water, 15 parts by weight of ethyl alcohol, 18 parts by weight of silicazol, 1.0 part by weight of HNO 3, 1.0 part by weight of a thickener are reacted, and 20 parts by weight of silicon oxide acrylic emulsion resin 30 10 parts by weight of ethyl alcohol, 8 parts by weight of nano aluminum hydroxide powder, 0.25 parts by weight of an antifoaming agent, and 3 parts by weight of a water repellent were mixed to form a nano-synthetic inorganic polymer,

시멘트 100 중량부, 골재로 각섬석군에 속하는 광물로 이루어진 기능성 무기질 200 중량부, 나노합성 무기질계 폴리머 10 중량부, 나일론 섬유 0.5 중량부 및, 물 60 중량부를 배합하여, 콘크리트 시험체에 도포한 후, 이에 대한 콘크리트 시험체에 대한 주사전자 현미경(SEM) 관찰을 실시하였으며, 도포면 및 단면에 대해 500배 및 5000배율로 관찰하였다. 본 발명의 조성물을 도포하고 14일 경과 후 시편을 채취하였으며, 평가부위로서 도포면인 표면에 대하여 500배율로 관찰하였고, 침투부위에 대한 평가로서 도포면에 수직인 면으로 할렬하여 단면부의 조직변화를 500배율과 5000배율로 관찰하였다. 그 결과는 도 3 과 같다. 100 parts by weight of cement, 200 parts by weight of a functional inorganic material consisting of minerals belonging to the hornblende group as aggregates, 10 parts by weight of nanosynthetic inorganic polymers, 0.5 parts by weight of nylon fibers, and 60 parts by weight of water were mixed and applied to a concrete test body. Scanning electron microscopy (SEM) observation of the concrete test body was carried out, and it observed at 500 times and 5000 times magnification with respect to the coating surface and the cross section. After the application of the composition of the present invention 14 days after the specimen was taken, the specimen was observed at 500 magnification with respect to the surface of the coating surface as an evaluation site, and the evaluation of the penetration site by splitting the surface perpendicular to the coating surface to change the structure of the cross-section 500 Observations were made at magnification and 5000 magnification. The result is shown in FIG. 3.

도 3 은 전자주사 전자현미경에 시험편의 미세조직 동정과 섬유 혼입 모르터르의 결과를 나타낸 것으로, (a)는 무도포된 시험체이고, (b)는 본 발명 조성물이 도포된 시험체로, 본 발명 조성물을 도포한 시험체의 경우 콘크리트 수화조직이 무도포의 경우에 비해 치밀하게 변화되고 있는 것으로 나타났다. Figure 3 shows the results of microstructure identification and fiber mixing mortar of the test piece on the electron scanning electron microscope, (a) is a test body without coating, (b) is a test body to which the present invention composition is applied, the present invention composition In the case of the coated specimen, the concrete hydration structure was found to be changed more densely than that of the non-coated one.

이러한 미세조직의 치밀화 진행 및 균일한 섬유의 분포는 결국 외부로 부터의 수분 침투가 억제되고 인하여 외부로부터 콘크리트의 열화 원인인 염소이온이나 CO2 가스의 침투 및 확산이 어렵게 되어 콘크리트의 열화 저항성이 증진되고 모 르터르의 균열 저항성이 크게 증가될 수 있을 것으로 고찰된다. As the microstructure progresses in densification and uniform fiber distribution, moisture ingress from the outside is suppressed, which makes it difficult to infiltrate and diffuse chlorine ions or CO 2 gas, which is the cause of the concrete deterioration from the outside, thereby improving the deterioration resistance of the concrete. It is considered that the crack resistance of mortar can be greatly increased.

실시예 2Example 2

상기 실시예 1 과 같이, 각 성분들을 배합하여, 이를 콘크리트 시험체에 도포하였으며, 이에 대한 염분침투 저항성 시험을 행하였으며, 이를 무처리한 시험체와, 일반합성섬유제가 도포된 시험체와 비교하였다. As in Example 1, each component was blended and applied to a concrete test body, and the salt penetration resistance test was performed, and this was compared with an untreated test body and a test body coated with a general synthetic fiber.

상기 염분침투 저항성 시험은 시험체를 NaCl 10% 용액에 28일간 침지시킨 후, 질산은 적정법에 의해 염화물이온 침투깊이에 대한 시간적 변화를 측정하였으며, 그 결과는 도 4 와 같다. In the salt penetration test, the test body was immersed in a 10% NaCl solution for 28 days, and then the time change of the chloride ion penetration depth was measured by the silver nitrate titration method, and the result is shown in FIG. 4.

도 4 는 침지시간 경과에 따른 각 시편들의 염분침투깊이의 경시변화를 나타낸 것으로, 28일간 침지한 후, 최종 염분 침투깊이는 무처리 경우 18.47㎜, 일반합성 섬유의 경우 7.15㎜, 본 발명의 조성물로 보강처리를 실시한 경우 1.27㎜로 측정되었다. 무처리 시험체에 비하여 일반 합성섬유 보강제를 실시한 시험체의 염분침투 저항성은 매우 크며, 특히 본 발명이 적용된 시험체의 경우 매우 적은 염분침투를 나타내었다. Figure 4 shows the change over time of the salinity penetration depth of each specimen with the immersion time, the final salinity depth after 18 days immersion, 18.47 mm in the untreated, 7.15 mm in the general synthetic fiber, the composition of the present invention In the case of reinforcing treatment, it measured 1.27 mm. Compared to the untreated test specimens, the salt penetration resistance of the test specimens subjected to the general synthetic fiber reinforcement was very large, and in particular, the test specimens to which the present invention was applied showed very little salt penetration.

즉, 본 발명 적용 시험체의 경우 무처리 시험체에 비해 90% 이상 염분침투 감소 효과를 나타내었으며, 일반 합성 섬유에 비해서도 50% 이상 염분침투를 감소시켜 염분침투에 대한 저항성능이 탁월한 것으로 나타났다.That is, the test specimens of the present invention showed a 90% or more salt permeation reduction effect compared to the untreated specimens, and the salt permeation permeability was reduced by 50% or more, compared to the general synthetic fibers, and showed excellent resistance to salt permeation.

실시예 3Example 3

상기 실시예 1 과 같이, 각 성분들을 배합하여, 이를 콘크리트 시험체에 도포하였으며, 이에 대한 중성화 시험을 행하였으며, 이를 무처리한 시험체와, 일반합성섬유제가 도포된 시험체와 비교하였다. As in Example 1, each component was blended and applied to a concrete test body, and a neutralization test was performed on it, and this was compared with an untreated test body and a test body coated with a general synthetic fiber.

상기 중성화 시험은 촉진 중성화 시험장치를 사용하여 35일간 실시하였으며, 시험이 종료된 시점에서 할렬면에 페놀프탈렌인 1% 용액을 분무하여 중성화 깊이를 측정하였다. 그 결과는 도 5 와 같다. The neutralization test was carried out for 35 days using an accelerated neutralization test apparatus, and the neutralization depth was measured by spraying a 1% solution of phenolphthalene on the splitting surface at the end of the test. The result is shown in FIG.

도 5 는 촉진 중성화 시험을 통해 얻어진 각 시험체의 중성화 침투깊이 결과를 나타낸 것이다. 무처리 시편에 비해 보강제를 도포할 경우 중성화 깊이가 상당히 감소하는 것을 볼 수 있다. 35일간 촉진 중성화를 실시한 경우, 중성화 깊이는 무처리(a)의 경우 10.5㎜, 일반합성 섬유제 도포(b)한 경우 5.8㎜, 본 발명 조성물로 처리(c)한 경우 1.0㎜로 측정되었다.Figure 5 shows the results of the neutralization penetration depth of each test specimen obtained through the accelerated neutralization test. It can be seen that the neutralization depth is significantly reduced when the reinforcement is applied as compared to the untreated specimen. When accelerated neutralization was carried out for 35 days, the neutralization depth was measured to be 10.5 mm for no treatment (a), 5.8 mm for general synthetic fiber coating (b) and 1.0 mm for treatment with the present invention composition (c).

실시예 4Example 4

상기 실시예 1 과 같이, 각 성분들을 배합하여, 이를 콘크리트 시험체에 도포하였으며, 이에 대한 동결융해 저항성 시험을 행하였으며, 이를 무처리한 시험체와, 일반합성섬유제가 도포된 시험체와 비교하였다. As in Example 1, each component was blended and applied to a concrete test body, and a freeze-thawing resistance test was performed, and this was compared with an untreated test body and a test body coated with a general synthetic fiber.

상기 동결융해시험은 KS F 2456에 의해 +4℃~-18℃ 온도주기를 300회 반복하였으며, 정해진 횟수에서 그 때마다 상대동탄성 계수를 측정하였다. 그 결과는 도 6 과 같다. The freeze-thawing test was repeated 300 times +4 ℃ ~ -18 ℃ temperature cycle by KS F 2456, the relative dynamic modulus was measured each time at a predetermined number of times. The result is shown in FIG.

도 6 은 각 시험체에 대한 동결융해 시험후의 시험결과를 나타낸 것으로, 300 cycle의 동결융해를 반복한 결과 상대동탄성계수는 무처리 시험체의 경우 53.2%, 일반 합성 섬유(수성에폭시계)를 도포한 시험체의 경우, 74.7%, 무기질폴리머계(본 발명 조성물)를 도포한 시편은 92%를 나타내었다. 동결융해 시험결과, 콘크리트가 동해를 받지 않기 위해서는 300 cycle에서의 상대 동탄성계수가 60% 이상이 되어야 한다. 무처리한 경우 300cycle에서 상대동탄성계수는 50%로서 위의 기준에 미달하고 있는 반면, 보강제를 도포한 경우에는 모두 동탄성계수가 60%를 초과함으로서 동해 저항성은 충분한 것으로 생각되며, 특히 본 발명 조성물을 도포한 시험체의 경우 300cycle에서도 거의 동탄성계수가 저하되지 않는 것으로 나타나 탁월한 동해 저항성이 있음을 알 수 있다. Fig. 6 shows the test results after the freeze-thawing test for each test body. As a result of repeating freeze-thawing of 300 cycles, the relative dynamic modulus was 53.2% for an untreated test specimen and a test article coated with a general synthetic fiber (aqueous epoxy clock). In the case of 74.7%, the inorganic polymer system (composition of the present invention) was 92% of the specimens coated. As a result of the freeze-thawing test, the relative dynamic modulus at 300 cycles must be more than 60% to prevent the concrete from freezing. In the case of no treatment, the relative elastic modulus was 300% in 300 cycles, which is lower than the above standard.However, when the reinforcing agent was applied, all the elastic modulus exceeded 60%. In the case of the coated specimen, the dynamic elastic modulus hardly decreases even at 300 cycles, indicating excellent copper resistance.

이와 같은 본 재료가 탁월한 동해저항성을 가지는 이유로서는 동결융해는 주로 수분의 이동과 이동하는 수분의 동결 팽창압 작용에 기인하므로, 본 발명 조성물의 재료적 특성에 기인한 수분차단 효과 때문인 것으로 판단된다.   The reason why the present material has excellent freeze resistance is that freezing thawing is mainly due to the movement of water and the freeze-expansion pressure action of moving water, and thus, it is judged to be due to the water blocking effect due to the material properties of the composition of the present invention.

실시예 5Example 5

상기 실시예 1 과 같이, 각 성분들을 배합하여, 이를 콘크리트 시험체에 도포하였으며, 이에 대한 화학적 침식 저항성 시험을 행하였으며, 이를 무처리한 시험체와, 일반합성섬유제가 도포된 시험체와 비교하였다. As in Example 1, each component was blended and applied to a concrete test specimen, and a chemical erosion resistance test was performed on it, and this was compared with an untreated test specimen and a test specimen coated with a general synthetic fiber.

상기 화학적 침식 저항성 시험은 강산인 H2SO4 5% 용액에 12일간 침지하면서 콘크리트 시험체의 질량변화를 측정하였다.The chemical erosion resistance test measured the change in mass of the concrete specimen while immersed in 5% solution of H2SO4, a strong acid for 12 days.

도 7 은 황산 5% 용액에 침지한 시험체의 재령에 따른 중량 변화율을 나타낸 것이다. 12일간 침지한 결과, 무처리의 경우 +6에서 -4% 범위의 중량변화율을 나타내었으며, 일반합성 섬유(수성에폭시계)로 처리한 경우 +4에서 -4% 범위의 중량변화율을 나타내었고, 무기질 폴리머(본 발명)로 표면 처리한 경우 +2에서 -2% 범위의 안정적인 중량변화율을 나타내었다.Figure 7 shows the weight change rate according to the age of the test specimen immersed in 5% sulfuric acid solution. After immersion for 12 days, the weight change rate was +6 to -4% in the case of no treatment, and the weight change rate was +4 to -4% in the case of treatment with general synthetic fiber (aqueous epoxy clock). Surface treatment with an inorganic polymer (invention) showed a stable weight change in the range of +2 to -2%.

실시예 6Example 6

실시예 1 과 같이 나노합성 무기질계 폴리머를 생성하고, 이를 아래의 [표1]과 같이 각 성분들을 배합하여 시험체를 형성한 다음, 이에 대한 압축강도를 평가하였다. A nanosynthetic inorganic polymer was produced as in Example 1, and each component was combined to form a test body as shown in Table 1 below, and then the compressive strength thereof was evaluated.

이때, 콘크리트의 시험체의 물리적 평가를 위해 공지의 고분자 합성 섬유제 단면보수/보강용 조성물로 실시한 시험체와, 상기 나노합성 무기질계 폴리머와 나일론 섬유가 혼입된 본 발명 조성물로 실시한 시험체에 대하여 압축강도를 측정하였으며, 그 결과는 [표2]와 같다. At this time, the compressive strength is measured for the test body carried out with the composition for cross-section repair / reinforcement of known polymer synthetic fibers for the physical evaluation of the test body of concrete, and the test body carried out with the present invention composition in which the nano-synthetic inorganic polymer and nylon fiber are mixed. The results are shown in [Table 2].

또한, 상기 시험체는 5㎝×5㎝×5㎝의 큐빅몰드를 사용해 제작하였으며, 압축강도 시험은 KS L 5105 수경성 시멘트 모르타르의 압축강도 시험방법에 준해 100 TON의 압축강도 측정기를 사용해 최대하중을 측정하였다.In addition, the test body was manufactured using a cubic mold of 5 cm × 5 cm × 5 cm, the compressive strength test is measured the maximum load using a compressive strength tester of 100 TON according to the compressive strength test method of KS L 5105 hydraulic cement mortar It was.

[표1]Table 1

Figure 112006070635809-pat00001
Figure 112006070635809-pat00001

[표2][Table 2]

Figure 112006070635809-pat00002
Figure 112006070635809-pat00002

상기 [표2]에서와 같이, 각 타입에 따른 압축강도 측정결과 초기재령인 3일에서 50㎏f/㎠내외의 압축강도를 보이고 있으며, 7일 이후는 본 발명 조성물로 실시한 시험체의 압축강도 발현성상이 일반합성 섬유모르터에 비하여 높게 나타나고 있음을 알 수 있다. As shown in [Table 2], the compressive strength measurement according to each type shows the compressive strength of about 50kgf / ㎠ at 3 days of the initial age, and after 7 days the compressive strength of the test body carried out with the composition of the present invention It can be seen that the appearance is higher than the general synthetic fiber mortar.

또한, 재령 28일에 있어서 본 발명 조성물로 실시한 시험체의 압축강도는 300㎏f/㎠이상을 발현하고 있고, 일반합성섬유로 실시한 시험체의 경우는 284㎏f/㎠이상 발현되었다.In addition, the compressive strength of the test body with the composition of the present invention on the 28th day expresses 300 kgf / cm 2 or more, and the test body made of general synthetic fiber expresses 284 kgf / cm 2 or more.

이러한 값은 일본의 각 기관에서 제시하는 폴리머시멘트 모르터의 압축강도 수준인 200㎏f/㎠를 상회하는 값이며, 이후 재령에 있어서 압축강도는 계속해서 증진될 것으로 생각된다.These values exceed those of 200 kgf / cm 2, the compressive strength level of polymer cement mortars presented by various institutions in Japan, and the compressive strength is expected to continue to increase at a later age.

실시예 7Example 7

상기 실시예 6 과 같이 각 성분들을 배합하여 시험체를 형성한 다음, 이에 대한 휨강도를 평가하였다. As in Example 6, each component was combined to form a test body, and then flexural strength thereof was evaluated.

이때, 콘크리트의 시험체의 물리적 평가를 위해 공지의 고분자 합성 섬유제 단면보수보강용 조성물로 실시한 시험체와, 상기 무기질폴리머 및 나노합성 나일론 섬유가 혼입된 본 발명의 조성물로 실시한 시험체에 대하여 휨강도를 측정하였으며, 그 결과는 [표3]과 같다. At this time, the flexural strength was measured for the test body made of a composition for reinforcing the cross-section repair of a known polymer synthetic fiber for the physical evaluation of the test body of concrete and the test body made of the composition of the present invention in which the inorganic polymer and the nano-synthetic nylon fiber were mixed. The results are shown in [Table 3].

또한, 상기 시험체는 4㎝×4㎝×16㎝의 시험체를 제작하였으며, 휨강도 시험은 각각의 재령에 100 TON의 압축강도 측정기를 사용해 측정하였다.In addition, the test body produced a test specimen of 4 cm × 4 cm × 16 cm, the flexural strength test was measured using a compressive strength meter of 100 TON at each age.

[표3]Table 3

Figure 112006070635809-pat00003
Figure 112006070635809-pat00003

상기 [표3]에서와 같이, 휨강도 측정결과는 압축강도 측정결과와 유사한 경향을 나타내고 있으며, 일반합성 섬유 모르터의 시험체와 본 발명 실험체의 휨강도는 유사한 수준인 것으로 나타났다. As shown in [Table 3], the bending strength measurement results showed a similar tendency to the compressive strength measurement results, and the bending strengths of the test specimen of the general synthetic fiber mortar and the test specimen of the present invention were similar.

재령 14일의 휨강도는 60㎏f/㎠정도 발현되었으며, 28일의 휨강도는 나노합성 무기질계 폴리머와 나일론 섬유가 혼입된 본 발명의 경우 87㎏f/㎠로 계속 증진 되고 있음을 알 수 있다.Age 14 days bending strength was expressed about 60kgf / ㎠, 28 days bending strength was found to continue to increase to 87kgf / ㎠ in the case of the present invention in which the nano-synthetic inorganic polymer and nylon fibers are mixed.

이하 본 발명의 단면보수보강용 조성물을 이용한 단면복구 공법에 대하여 설명하면 다음과 같다. Hereinafter, a cross-sectional recovery method using the cross-sectional repair reinforcing composition of the present invention will be described.

본 발명은 콘크리트 구조물에 대한 이물질을 제거하는 표면처리단계와, 상기 표면처리된 부위에 단면보수보강용 조성물을 도포 및 충전하는 단면보수보강용 조성물 도포단계와, 상기 단면보수보강용 조성물 도포 및 충전후 표면보호재를 도포하는 표면보호재 도포단계와, 상기 표면보호재 도포후 코팅재로 마감처리하는 마감처리단계로 이루어져 있다.The present invention provides a surface treatment step of removing foreign matters on the concrete structure, the step of applying the composition for the cross-sectional maintenance reinforcement for applying and filling the composition for the cross-sectional maintenance reinforcement to the surface-treated portion, the composition and the composition for the cross-sectional maintenance reinforcement After the surface protection material coating step of applying a surface protection material, and the surface protection material is applied to the finishing treatment step of finishing with a coating material.

상기 표면처리단계는 염해, 중성화(탄산화) 및 화학적 부식 등과 같은 노후화 현상에 의해 발생된 표면콘크리트에서의 피복재 탈락, 조골재 노출, 물곰보 집중, 녹물오염, 들뜸부위 및 부식을 제거하는 것으로, 열화된 콘크리트 표면을 그라인더등의 공구를 이용하여 완전 제거한다.The surface treatment step is to remove the coating material from the surface concrete caused by aging phenomena such as salting, neutralization (carbonation), chemical corrosion, etc., exposure to aggregate aggregates, concentration of water droplets, rust contamination, lifting and corrosion. Completely remove the concrete surface using a tool such as a grinder.

상기 단면보수보강용 조성물 도포단계는 시멘트 100 중량부에 대하여, 골재로 각섬석군에 속하는 광물로 이루어진 기능성 무기질 200∼230 중량부, 나노합성 무기질계 폴리머 6∼10 중량부, 나일론 섬유 0.1∼0.5 중량부 및, 물 40∼60 중량부로 이루어진 단면보수보강용 조성물을 이용하는 것으로, 상기 단면보수보강용 조성물을 손미장 등으로 1회 0.8∼3.0㎝정도씩 1회이상 도포한다. The cross-sectional reinforcement composition coating step is based on 100 parts by weight of cement, 200 to 230 parts by weight of functional minerals consisting of minerals belonging to the hornblende group as aggregates, 6 to 10 parts by weight of nano-synthetic inorganic polymers, and 0.1 to 0.5 parts by weight of nylon fibers. Part and 40 to 60 parts by weight of water, by using the composition for the cross-sectional repair reinforcement, the composition for the cross-sectional repair reinforcement is applied one or more times at a time of about 0.8 to 3.0 cm at a time by hand polishing or the like.

상기 표면보호재 도포단계 및 마감처리단계는 각각 공지된 표면보호재 및 코팅재를 사용하여 도포된 단면보수보강용 조성물의 표면에 도포한다. The surface protective material coating step and the finishing treatment step are applied to the surface of the cross-sectional maintenance reinforcement composition applied using a known surface protective material and coating material, respectively.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

이와 같이 본 발명은 나노합성 무기질계 폴리머와 나일론 섬유가 혼입되어 있어, 콘크리트 구조물의 단면복구에 적용 시공할 시, 나노 수준에서의 통기성이 확보되고, 이에 따른 부착력의 향상으로 균열 저감 효과가 크고, 헤어가 노출되지 않으며, 열화인자를 차단하여 표면 보수·보강력이 우수한 특성을 구비하고 있다. As described above, the present invention is a nano-synthetic inorganic polymer and nylon fibers are mixed, when applied to the cross-sectional recovery of the concrete structure, the breathability at the nano-level is secured, the cracking effect is large due to the improvement of adhesion force, Hair is not exposed, and it has excellent characteristics of surface repair and reinforcement by blocking deterioration factor.

또한 연성을 지니고 있어 콘크리트 취성 파괴를 억제하며, 작업성이 좋고 색상에 영향을 주지 않는 효과가 있다. In addition, it has ductility to suppress the brittle fracture of concrete, workability is good and does not affect the color.

또한, 본 발명은 강도증진 및 콘크리트 매트릭스의 부스러짐과 마모에 대한 저항력을 지니는 점 등 우수한 내구성을 구비하고 있으며, 슬래브, 보도, 도로, 등과 숏크리트용, 터널과 지 반 고정, 건물 보강 등과 해양구조물이나 방호벽, 오염물 탱크 등에 적용할 수 있다. 또한 프리캐스트용으로 파이프나, 수도관, 건축용 생산제품 등에도 적용 가능하다.In addition, the present invention has excellent durability, such as strength strength and resistance to deterioration and abrasion of the concrete matrix, and for slab, walkway, road, etc. for shotcrete, tunnel and ground fixing, building reinforcement, etc. It can be applied to firewalls, pollutant tanks, and the like. It is also applicable to pipes, water pipes, and architectural products for precast.

또한, 본 발명은 염해를 입기 쉬운 해안구조물, 지하수면과 접하게 되는 지하구조물, 각종 대기오염에 노출되어 있는 콘크리트 구조물의 내/외벽등에 대한 내구성을 증진하기 위하여 다양한 용도로 개발될 수 있는 등 그 파급효과가 매우 크 다. In addition, the present invention can be developed for various purposes, such as coastal structures susceptible to salt damage, underground structures in contact with the groundwater surface, to enhance the durability of the interior / exterior walls of concrete structures exposed to various air pollution, etc. The effect is very large.

또한, 본 발명은 기능성 무기질이 첨가되므로, 원적외선 방출과 시멘트의 독성차단 및 전자파를 흡수하는 기능을 구비하며, 이를 통해 쾌적한 주거환경 및 안전한 삶의 보호를 가능하게 하는 등 많은 효과가 있다.In addition, since the present invention has a functional inorganic is added, it has a function of absorbing far-infrared radiation and blocking the toxicity of the cement and absorbing electromagnetic waves, thereby enabling a pleasant living environment and safe life protection.

Claims (11)

삭제delete 시멘트 100 중량부에 대하여, Per 100 parts by weight of cement, 골재로 각섬석군에 속하는 광물로 이루어진 기능성 무기질 200∼230 중량부,200-230 parts by weight of functional minerals consisting of minerals belonging to the hornblende group as aggregates, 나노합성 무기질계 폴리머 6∼10 중량부, 6 to 10 parts by weight of the nano-synthetic inorganic polymer, 나일론 섬유 0.1∼0.5 중량부 및,0.1 to 0.5 parts by weight of nylon fiber, and 물 40∼60 중량부로 이루어지되,40 to 60 parts by weight of water, 상기 나노합성 무기질계 폴리머는 실란계 화합물 16∼50중량부, 증류수 또는 이온교환수 5∼20중량부, 용제 7.5∼20중량부, 실리카졸 10∼30중량부, 산촉매 0.1∼1.0중량부, 증점제 0.1∼1.0중량부, 필러 20∼30중량부, 아크릴에멀젼수지 24∼26중량부, 에틸알코올 5∼17중량부, 나노실라카분말 또는 나노 알루미늄 하이드록사이드 분말 0.1∼10중량부로 이루어진 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물.The nano-synthetic inorganic polymer is 16 to 50 parts by weight of silane compound, 5 to 20 parts by weight of distilled or ion-exchanged water, 7.5 to 20 parts by weight of solvent, 10 to 30 parts by weight of silica sol, 0.1 to 1.0 parts by weight of acid catalyst, thickener 0.1 to 1.0 parts by weight, 20 to 30 parts by weight of filler, 24 to 26 parts by weight of acrylic emulsion resin, 5 to 17 parts by weight of ethyl alcohol, and 0.1 to 10 parts by weight of nanosilica powder or nano aluminum hydroxide powder. Nanocomposite inorganic-based polymer and nylon fibers are mixed in the cross-section repair reinforcement composition. 제 2 항에 있어서;The method of claim 2; 상기 나노합성 무기질계 폴리머는 가수분해와 중합반응을 통하여 합성되어, 분말도 50∼150㎚를 구비하는 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물.The nano-synthetic inorganic polymer is synthesized through hydrolysis and polymerization reaction, the composition for the concrete structure cross-sectional reinforcement containing the nano-synthetic inorganic polymer and nylon fibers, characterized in that the powder having 50 ~ 150nm. 제 2 항에 있어서;The method of claim 2; 상기 실란계 화합물은 테트라메톡시실란, 테트라에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메틸트리이소프로폭시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란,디페닐디에톡시실란, 메틸페닐디메톡시실란, 또는 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 화합물인 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물.The silane compound is tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane , Dimethyl diethoxy silane, diphenyl dimethoxy silane, diphenyl diethoxy silane, methylphenyl dimethoxy silane, or at least one compound selected from the group consisting of a combination thereof, nano-synthetic inorganic polymer and nylon fibers are mixed Concrete structure cross-section reinforcement composition. 제 2 항에 있어서;The method of claim 2; 상기 용제는 메틸알코올, 에틸알코올, 이소프로필 알코올로 이루어진 군에서 선택된 하나 이상의 알코올계 물질인 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물.Wherein the solvent is methyl alcohol, ethyl alcohol, isopropyl alcohol nanocomposite inorganic polymer, characterized in that at least one alcohol-based material selected from the group consisting of a composition for the concrete structure cross-sectional reinforcement incorporating nylon fibers. 제 2 항에 있어서;The method of claim 2; 상기 산촉매는 HCl, HNO3, CH3COOH 로 이루어진 군에서 선택된 하나인 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물.The acid catalyst is HCl, HNO 3 , CH 3 COOH nanostructured inorganic polymer and characterized in that the nylon fiber is mixed, the cross-sectional composition reinforcement composition, characterized in that one selected from the group consisting of. 제 2 항에 있어서;The method of claim 2; 상기 필러는 산화티탄, 산화철, 크롬산화물, 산화아연, 산화규소로 이루어진 군에서 선택된 하나 이상을 첨가하는 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물.The filler is a composition for repairing the cross-section of a concrete structure containing nano-synthetic inorganic polymer and nylon fibers, characterized in that at least one selected from the group consisting of titanium oxide, iron oxide, chromium oxide, zinc oxide, silicon oxide. 제 2 항에 있어서;The method of claim 2; 상기 나노합성 무기질계 폴리머는 소포제, 발수제가 더 첨가되는 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물.The nano-synthetic inorganic polymer is a composition for repairing the cross-section of a concrete structure in which the nano-synthetic inorganic polymer and nylon fibers are mixed, wherein an antifoaming agent and a water-repellent agent are further added. 제 2 항에 있어서;The method of claim 2; 상기 나일론 섬유는 수분 4∼5%를 함유한 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물.The nylon fiber is a composition for repairing the cross-section reinforcement of the concrete structure containing the nano-synthetic inorganic polymer and nylon fibers, characterized in that containing 4 to 5% water. 콘크리트 구조물에 대한 이물질을 제거하는 표면처리단계와, A surface treatment step of removing foreign matter on the concrete structure; 상기 표면처리된 부위에 단면보수보강용 조성물을 도포 및 충전하는 단면보수보강용 조성물 도포단계와, And a step of applying a composition for repairing a cross-section reinforcement to the surface-treated portion and applying a composition for repairing a cross-section; 상기 단면보수보강용 조성물 도포 및 충전후 표면보호재를 도포하는 표면보호재 도포단계와, A surface protective material applying step of applying a surface protective material after applying and filling the cross-sectional reinforcement composition; 상기 표면보호재 도포후 코팅재로 마감처리하는 마감처리단계로 이루어지되,After applying the surface protective material is made of a finishing treatment step of the coating material, 상기 단면보수보강용 조성물 도포단계는 청구항 2 에 따른 단면보수보강용 조성물을 도포하는 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물을 이용한 단면보수보강공법.The cross-sectional reinforcement composition applying step is a cross-sectional reinforcement method using a nano-composite inorganic polymer and nylon fiber composite cross-sectional reinforcement composition, characterized in that for applying the composition for the cross-sectional reinforcement according to claim 2. 제 10 항에 있어서;The method of claim 10; 상기 단면보수보강용 조성물은 1회 0.8∼3.0㎝ 도포되는 것을 특징으로 하는 나노합성 무기질계 폴리머와 나이론 섬유가 혼입된 콘크리트 구조물 단면보수보강용 조성물을 이용한 단면보수보강공법.The cross-sectional repair reinforcement composition is a cross-sectional reinforcement method using a nano-composite inorganic polymer and nylon fiber composite cross-sectional repair reinforcement composition, characterized in that the coating is applied once 0.8 ~ 3.0 ㎝.
KR1020060094496A 2006-09-28 2006-09-28 Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof KR100801423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060094496A KR100801423B1 (en) 2006-09-28 2006-09-28 Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060094496A KR100801423B1 (en) 2006-09-28 2006-09-28 Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof

Publications (1)

Publication Number Publication Date
KR100801423B1 true KR100801423B1 (en) 2008-02-05

Family

ID=39342500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060094496A KR100801423B1 (en) 2006-09-28 2006-09-28 Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof

Country Status (1)

Country Link
KR (1) KR100801423B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883326B1 (en) 2008-10-28 2009-02-11 임원순 Polymer cement concrete composite and repairing method for concrete pavement using the concrete composite
KR101105190B1 (en) 2008-10-16 2012-01-13 전재형 High-speed dry type participle composition manufacturing method and participle body construction work method and the construction board manufacturing method which uses this and construction board construction work method
CN102936113A (en) * 2011-08-15 2013-02-20 青岛理工大学 Hybrid nanocomposite material used for buildings and preparation method thereof
KR101590547B1 (en) 2015-09-16 2016-02-01 주식회사 성민이엔씨 Mortar Composition for Repairing And Reinforcing Cross Section of Concrete Structures And Method of Repairing And Reinforcing Cross Section of Concrete Structures Using the Same
KR101741177B1 (en) 2016-12-13 2017-05-29 황선교 Quick hardening and high-strength inorganic polymer mortar and concrete repair and supplement method thereof
KR102002087B1 (en) * 2018-07-05 2019-07-23 (주)탑방수산업개발 Method for repairing a target surface of a building

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040058540A (en) * 2002-12-27 2004-07-05 (주)세라켐 Composition of mortar that is mixed suface modified fiber for repair and renovation of concrete structures and its manufacturing process
JP2005075703A (en) * 2003-09-03 2005-03-24 Sato Road Co Ltd Fiber reinforced water-permeable concrete and its producing method
KR20050030933A (en) * 2005-03-08 2005-03-31 주식회사 기해테크 The surface repair method of concrete structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040058540A (en) * 2002-12-27 2004-07-05 (주)세라켐 Composition of mortar that is mixed suface modified fiber for repair and renovation of concrete structures and its manufacturing process
JP2005075703A (en) * 2003-09-03 2005-03-24 Sato Road Co Ltd Fiber reinforced water-permeable concrete and its producing method
KR20050030933A (en) * 2005-03-08 2005-03-31 주식회사 기해테크 The surface repair method of concrete structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105190B1 (en) 2008-10-16 2012-01-13 전재형 High-speed dry type participle composition manufacturing method and participle body construction work method and the construction board manufacturing method which uses this and construction board construction work method
KR100883326B1 (en) 2008-10-28 2009-02-11 임원순 Polymer cement concrete composite and repairing method for concrete pavement using the concrete composite
CN102936113A (en) * 2011-08-15 2013-02-20 青岛理工大学 Hybrid nanocomposite material used for buildings and preparation method thereof
KR101590547B1 (en) 2015-09-16 2016-02-01 주식회사 성민이엔씨 Mortar Composition for Repairing And Reinforcing Cross Section of Concrete Structures And Method of Repairing And Reinforcing Cross Section of Concrete Structures Using the Same
KR101741177B1 (en) 2016-12-13 2017-05-29 황선교 Quick hardening and high-strength inorganic polymer mortar and concrete repair and supplement method thereof
KR102002087B1 (en) * 2018-07-05 2019-07-23 (주)탑방수산업개발 Method for repairing a target surface of a building

Similar Documents

Publication Publication Date Title
Wang et al. Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar
Pan et al. A review on concrete surface treatment Part I: Types and mechanisms
KR100814962B1 (en) Mortar including natural minerals for recovering deteriorate parts in concrete and method for recovering the same thereof
Zhao et al. Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review
KR102148187B1 (en) Functional mortar composition for repairing-reinforcing concrete structure having high strength and high durability and repairing-reinforcing method of concrete structure using the same
KR100820276B1 (en) Composition compound for repairing concrete structure, manufacturing method thereof and repairing method of concrete structure using the composition compound
KR100801423B1 (en) Compositions mixed with nano-composed inorganic polymer and nylon fiber for repairing and reinforcing sections of concrete constructions, and repairing and reinforcing method using it thereof
Yao et al. Recent progress of hydrophobic cement-based materials: Preparation, characterization and properties
Xiang et al. The effect of silicon-based waterproof agent on the wettability of superhydrophobic concrete and enhanced corrosion resistance
KR102102627B1 (en) Functional repair material composition for crack control and method for maintaining and repairing concrete structures using the same
KR102158508B1 (en) Polymer Cement Mortar Composition for repair and reinforcement of concrete structure section using graphene and repair and reinforcement method of concrete structure using same
KR100954450B1 (en) Coating composition of ultra-polymer smart ceramic and method of surface treatment for concrete structure or steel structure
CN101580356B (en) Water-emulsion organic silicon waterproof agent
KR102093646B1 (en) Eco-friendly inorganic penetrative waterproof and anti-corrosive composition and waterproof and anti-corrosive construction method for concrete structure therewith
Zhou et al. The waterproofing effect and mechanism of graphene oxide/silane composite emulsion on cement-based materials under compressive stress
KR101049032B1 (en) Surface protecting and lifetime extension method of concrete structures using composite painting layer structure
Tobbala et al. Performance enhancement of reinforced concrete exposed to electrochemical magnesium chloride using nano-ferrite zinc-rich epoxy
KR100696987B1 (en) Recipe of Corrosion prevent repair mortar
KR20210011689A (en) Quick hardening and high-strength inorganic polymer mortar and concrete repair and supplement method thereof
KR100526418B1 (en) Concrete surface treatment method using inorganic repairing agent for concrete
KR100773743B1 (en) Recipe of corrosion prevent repair mortar
KR100931016B1 (en) Nature friendly mortar for repairing of concrete waterway and repairing method using the same
KR102194451B1 (en) Method for constructing concrete surface's reinforcements
KR100515948B1 (en) The composition of repair mortar containing nitrite based hydrotalcite(or hydrocalumite) and corrosion inhibitive repair method of reinforced concrete structure using repair mortar described above
US10647616B2 (en) Non-invasive repair and retrofitting of hardened reinforced concrete structures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130129

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150128

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200106

Year of fee payment: 13