KR20020030943A - The imaging system using off-axis incident beam - Google Patents

The imaging system using off-axis incident beam Download PDF

Info

Publication number
KR20020030943A
KR20020030943A KR1020000061338A KR20000061338A KR20020030943A KR 20020030943 A KR20020030943 A KR 20020030943A KR 1020000061338 A KR1020000061338 A KR 1020000061338A KR 20000061338 A KR20000061338 A KR 20000061338A KR 20020030943 A KR20020030943 A KR 20020030943A
Authority
KR
South Korea
Prior art keywords
incident
image
information
incident light
incident beam
Prior art date
Application number
KR1020000061338A
Other languages
Korean (ko)
Other versions
KR100401478B1 (en
Inventor
이상규
오경환
Original Assignee
이상규
오경환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이상규, 오경환 filed Critical 이상규
Priority to KR10-2000-0061338A priority Critical patent/KR100401478B1/en
Publication of KR20020030943A publication Critical patent/KR20020030943A/en
Application granted granted Critical
Publication of KR100401478B1 publication Critical patent/KR100401478B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0096Synchronisation or controlling aspects

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: A device for processing video information of off-axis incident beam is provided to collect the off-axis incident beam incident through one light collecting unit, so as to acquire off-axis incident beam videos through the arrangement of optical/electric signal conversion units at a light collecting position, that is, a focal plane. Accordingly, the device obtains a distance of an object and solid information. CONSTITUTION: One light collecting unit and optical/electric signal conversion units such as a CCD(Charge Coupled Device) are arranged at a focal plane, and off-axis incident beam videos are acquired and digitalized(401). A position on the CCD of an object and a refracting angle of incident beam are searched from the acquired video signals, using a unit of acquiring off-axis incident light video signals(406). Incident beam corresponding to the object and an incident angle of ray passing a center of a lens system are estimated, to calculate a distance between the object and the light collecting unit(407), and the video signals are compared(402). Videos having an identical video acquiring time are searched from the off-axis incident beam video signals acquired in the 401 step(403). Off-axis incident beam videos of an identical position are searched from the videos searched(404). Solid information such as angle information and depth information of the videos acquired from each off-axis incident beam video signals is extracted, compressed, stored, encoded, or output(405).

Description

비축입사광 영상정보 처리장치{The imaging system using off-axis incident beam}The imaging system using off-axis incident beam

본 발명은 하나의 수광장치를 통해 입사되는 비축입사광(非軸入射光, off-axis incident beam)을 수광하여, 수광위치(초점면)의 광/전기 신호변환장치 배열을 통해, 비축입사광 영상을 획득하고 이로부터 대상물의 거리 및 입체정보를 획득하는 비축입사광 영상정보 처리장치이다.The present invention receives an off-axis incident beam incident through one light receiving device, and receives an off-axis incident light image through an array of optical / electrical signal converters at a light receiving position (focal plane). A non-incident incident light image information processing apparatus for acquiring and obtaining distance and stereoscopic information of an object therefrom.

3 차원 입체영상이라 함은 대상물체의 영상 및 변위정보로 부터 영상의 깊이 정보를 검출, 시각 정보로 복원한 것을 말하는 것으로 3 차원 입체영상은 지금까지 개발/발전되어 그 응용이 주를 이루고있는 2차원 영상 보다 사실적이고 풍부한 화질을 제공할 수 있기 때문에 항공 및 위성 원격탐사, 의료, 측량, 자동화 등, 특히 정밀한 영상데이타가 필요한 계측 부문에서 많이 연구되고 있다.3D stereoscopic image refers to the reconstruction of the depth information of the image from the image and displacement information of the object to visual information. 3D stereoscopic image has been developed and developed so far, and its application is mainly used. Because it can provide more realistic and richer image quality than dimensional images, it is being studied a lot in the field of measurement that requires precise image data such as aeronautical and satellite remote sensing, medical, surveying and automation.

3 차원 입체영상을 획득하는 기술은 대상물체의 영상 및 변위정보를 획득하는 기술로써, 접촉식의 검침장치(Probe)를 가지고 대상물의 각 점을 차례차례 기계적으로 접촉하여 3 차원 좌표를 구하는 방식이 주를 이루어 왔으며, 좀더 진보된 기술로써, 인간의 시각 구조와 유사하게 자연 조명상태하에서 물체들이 놓여있는 상태에서 영상을 취득하여, 취득된 좌우 영상으로부터 일치점의 변위를 구한 후 간단한 삼각측량을 이용하여 깊이 정보를 취득하는 입체시각(Stereo Vision) 방식, 레이저나 점광원을 주사하여 입체정보를 얻는 점광원 주사방식, 렌즈나 미러따위를 이용하여 선광원을 생성하여 선 단위의 입체정보를 얻는 슬릿(Slit)광 주사방식, 특정한 기준 패턴을 대상에 투영하여 물체 표면의 형상변화를 해석하여 입체 정보를 얻는 패턴(Pattern)광 주사방식 등 다양한 형태로 개발되고 있다.The technique of acquiring 3D stereoscopic image is to acquire the image and displacement information of the object, and the method of obtaining 3D coordinates by mechanically contacting each point of the object sequentially with a contact probe (Probe). As a more advanced technology, similar to the human visual structure, images are acquired with natural objects placed under natural lighting conditions, and displacements of coincidence points are obtained from the acquired left and right images, and then simple triangulation is used. Stereo vision method for acquiring depth information, point light source scanning method for obtaining stereoscopic information by scanning a laser or point light source, and a slit for generating stereoscopic light source using a lens or mirror to obtain stereoscopic information in line units ( Light scanning method, pattern light scanning that obtains stereoscopic information by analyzing the shape change of the object surface by projecting a specific reference pattern on the object Expression and the like have been developed in various forms.

본 발명은 광원과 같은 별도장비 없이도 간단히 거리를 측정하며, 항공 및 위성 탐사, 산업현장의 자동계측장비 따위처럼 시간차를 두고 다른 위치의 대상물 영상정보를 획득하거나, 시간흐름에 따른 대상물의 형상변화를 무시할 수 있는 경우에 입체 영상을 획득할 수 있는 수단을 제공하기 위하여, 하나의 수광장치를 통해 입사되는 비축입사광을 수광하여, 수광위치(초점면)의 광/전기 신호변환장치 배열을 통해, 비축입사광 영상을 획득하고 이로부터 대상물의 거리 및 변위 따위 입체정보를 획득할 수 있도록 하는 것이다.The present invention simply measures the distance without a separate device such as a light source, and acquires image information of objects at different positions with time difference, such as aviation and satellite exploration and automatic measurement equipment of industrial sites, or changes shape of objects over time. In order to provide a means for acquiring a stereoscopic image in the case of being negligible, the non-axis incident light incident through the one light receiving device is received, and through the optical / electric signal conversion device arrangement of the light receiving position (focal plane), It is to obtain the incident light image and to obtain stereoscopic information such as distance and displacement of the object from it.

이러한 본 발명의 비축입사광 영상획득장치는, 각종 광계측 및 원격탐사 분야에서 유용하게 활용할 수 있도록 하기위해, 하나의 수광장치를 설정하고, 광축으로부터 이격된 거리에 광/전기 신호변환장치들을 배치하므로써, 비축입사광 영상신호들을 획득하고, 이렇게 획득된 비축입사광의 영상신호들로부터, 대상물체와의 거리는 물론, 획득시점의 시간정보와 영상신호 획득위치 정보를 비교하여 간단히 입체정보를 찾는 절차들을 포함토록 하는 특징이 있다.The non-incident incident light image acquisition device of the present invention is configured by setting one light receiving device and arranging optical / electrical signal conversion devices at a distance away from the optical axis in order to be usefully used in various optical measurement and remote sensing fields. And acquiring non-incident incident light image signals, and comparing the time signals and the time information at the time of acquisition with the acquisition position information from the non-incident incident light signals thus obtained, thereby simply finding stereoscopic information. There is a characteristic.

도 1 은 일반 영상획득장치 구성 개념도1 is a conceptual diagram of a general image acquisition device

도 2 는 광학시스템 해석 개념도2 is an optical system analysis conceptual diagram

도 3 은 본 발명의 비축입사광 영상신호 획득 개념도3 is a conceptual diagram of acquiring non-incident light image signal of the present invention;

도 4 는 본 발명의 비축입사광 영상신호처리방법 흐름도4 is a flowchart illustrating a method for processing non-incident light image signals according to the present invention.

도 5 는 본 발명의 비축입사광 영상처리장치 개요도5 is a schematic view of a non-incident light image processing apparatus of the present invention;

도 6 은 본 발명의 비축입사광 영상정보처리 개념을 설명하는 설명도6 is an explanatory diagram illustrating a concept of non-incident incident light image information processing according to the present invention;

도 7 은 본 발명의 일 실시예도7 is an embodiment of the present invention

[도면의 주요부분에 대한 부호의 설명][Explanation of symbols on the main parts of the drawings]

101 : 수광장치(렌즈시스템) 102 : 광/전기 신호변환장치101: light receiving device (lens system) 102: optical / electric signal conversion device

103 : 아날로그/디지털(A/D) 신호변환장치 104 : 신호처리장치103: analog / digital (A / D) signal conversion device 104: signal processing device

301 : 비축입사 수광부 309 : 초점면301: non-incident light-receiving unit 309: focal plane

502 : 광/전기 신호변환 및 아날로그/디지털(A/D) 신호변환부502: optical / electric signal conversion and analog / digital (A / D) signal conversion unit

506 : 비축입사 수광장치 기능 제어부506: non-incident light receiving device function control unit

720 : 비축입사광 영상정보처리부720: non-incident incident light image information processing unit

도 1 은 기존의 영상획득장치 일반 개념도로써 줌, 렌즈, 경통, 프리즘, 거울, 조리개 따위로 구성되는 수광장치(101), 전하충전소자(CCD) 따위로 구성되어 수광부의 입사신호를 전기적인 신호로 변환하는 광/전기 신호변환장치(102), 전하충전소자의 아날로그 신호를 디지털 신호로 변환하는 A/D 변환장치(103) 및 디지털영상신호를 저장, 압축, 해석, 복원/표시하는 기능을 포함토록 구성된 신호처리장치(104)를 특징으로 한다.1 is a general conceptual view of a conventional image capturing apparatus, and includes a light receiving device 101 including a zoom, a lens, a barrel, a prism, a mirror, and an aperture, and a charge charging device (CCD). Optical / electrical signal converting device 102 for converting a signal into a digital signal, an A / D converting device 103 for converting an analog signal of a charge charging device into a digital signal, and storing, compressing, interpreting, restoring / displaying a digital video signal. It is characterized by a signal processing device 104 configured so that.

도 2 는 본 발명의 수광장치를 설명하기위해 볼록렌즈를 예시로 렌즈시스템의 개념을 설명한 것으로서, 광축상(215)의 특정위치(203)에 존재하는 임의의 대상물체(202)의 영상이 렌즈시스템(101)을 거쳐서 광축상의 상점(205)에 맺히는 과정을 광경로(201)를 예로들어 소개한 것으로서, 광축과 평행하게 입사하는 광선(208)은 렌즈시스템(101)을 지나서 굴절된 후 광축상의 제 2 초점(207)을 통과(211)하며, 광축상의 제 1 초점(206)을 지나는 광선(210)은 렌즈시스템(101)을 지나서 광축과 평행하게 굴절하여 진행(213)하고, 렌즈시스템(101)의 중심부로 입사하는 광선(209)은 방향의 변화없이 그대로 직진(212)하는 원리를 소개한 것이다. 실제 상의 위치추적에는 상술한 세 가지 광선 경로 중 임의의 두 개를 취해 추적가능하며, 비축입사광(非軸入射光)이라함은 광축과 평행하지 않게 광축에 각도를 갖고 입사하는 일체의 광선(209 내지 210)을 칭하고, 전하충전소자는 수광부 초점(205)에 위치하는 것이 일반적이다.FIG. 2 illustrates the concept of a lens system using a convex lens as an example to explain the light receiving device of the present invention, wherein an image of an arbitrary object object 202 existing at a specific position 203 on an optical axis 215 is a lens. The optical path 201 is described as an example of the process of forming the light source 201 through the system 101 as an optical beam 201. The light beam 208 incident in parallel with the optical axis is refracted past the lens system 101 and then the optical axis The light beam 210 passing through the second focal point 207 of the image and passing through the first focal point 206 on the optical axis is refracted by the lens system 101 in parallel with the optical axis to proceed 213. The light ray 209 incident to the center of 101 is introduced to the principle of going straight 212 without changing the direction. The actual position tracking can be traced by taking any two of the above-described three ray paths, and non-incident light is an integral ray of light incident on the optical axis at an angle not parallel to the optical axis. To 210), and the charge charging element is generally located at the light receiving portion focal point 205.

도 3 은 본 발명의 비축입사광 영상처리장치의 수광장치 및 전하충전소자 배열을 도식화한 것으로서, 렌즈 따위로 구성되는 수광부(301) 및 수광부 초점면(309)에 위치하고 광축상(307)에서 각각 A°(302) 및 B° 만큼 이격된 위치에 배열된 2 개의 전하충전소자들(305 내지 306)을 예시한 것이다. 여기에서, A 및 B 는 각각 0 보다 큰 값을 갖고 각 값의 합이 C°(304)가 되도록 예시되었으며, 예시한 각각의 전하충전소자(305 내지 306)에는 광축에서 벗어나 입사되는 특정 비축입사광 신호들(308)이 맺히도록 배치된 특징이 있는 본 발명의 비축입사광 영상처리장치의 일 구성부이다.3 is a schematic diagram of a light receiving device and an array of charge charging elements of a non-incident incident light image processing apparatus of the present invention, each of which is located on the light receiving unit 301 and the light receiving unit focal plane 309 formed of a lens, respectively, on an optical axis 307. Two charge charge elements 305 to 306 arranged in positions spaced apart by 302 and B ° are illustrated. Here, A and B are each illustrated to have a value greater than zero and the sum of the values is C ° 304, and each of the illustrated charge charging elements 305 to 306 has a specific non-incident incident light incident off the optical axis. One component of the non-incidentally incident light image processing apparatus of the present invention, which is characterized in that signals 308 are arranged.

도 4 는 본 발명의 비축입사광 영상신호처리방식의 흐름도로서, 본 발명의 비축입사 수광장치 및 광/전기 신호변환장치 배열(도 3)을 사용하여 획득된 후, 디지털화된 각 비축입사광의 영상신호(401, 이하 '비축입사광 영상신호'라 함)로부터 대상물체의 전하충전소자상의 위치와 해당 입사광의 굴절각을 찾고(406), 이로부터 대상물체에 대응하는 비축입사광 및 렌즈시스템의 중심부를 지나는 광선 따위의 입사각을 추정하여 대상물체와 수광부간의 거리를 계산(407)하고, 기타 영상처리를 위해 영상신호를 비교하며(408), 영상처리시간을 줄이기 위하여 영상획득 시간이 일치하는 전후 영상을 대상으로(403), 정확히 일치하는 동일 위치의 영상을 찾아서(404), 압축 및 저장, 영상 획득각 및 깊이정보 등 입체정보 추출, 입체영상복원 및 출력 따위의 기능(405)을 수행하는 절차들을 포함토록 하는 특징이 있다.4 is a flowchart of a non-incident light image signal processing method of the present invention, which is obtained by using the non-incident light receiving apparatus and the optical / electrical signal converting device arrangement (FIG. 3) of the present invention, and then the image signal of each digitized non-incident light incident light. (401, hereinafter referred to as 'non-axis incident image signal'), find the position on the charge charging element of the object and the angle of refraction of the incident light (406), from which the non-incident incident light corresponding to the object and the ray passing through the center of the lens system The distance between the object and the light receiving unit is calculated by estimating the angle of incidence (407), the image signals are compared for other image processing (408), and the front and rear images having the same image acquisition time are targeted to reduce the image processing time. 403, the function of finding the exact same position of the image 404, compression and storage, stereoscopic information extraction, stereoscopic image restoration and output such as image acquisition angle and depth information (405) Performing is characterized to include steps ever.

도 5 는 본 발명의 비축입사광 영상신호처리방법을 적용한 비축입사광 영상처리장치 개요도로서, 도 3 에서 상술한 본 발명의 비축입사 수광장치(501)와, 전하충전소자 배열 및 디지털 영상변환장치를 포함하는 비축입사광 광/전기 변환장치(502)를 포함하고, 도 4에서 상술한 본 발명의 비축입사광 영상신호처리방식을 수행(504)함에 있어서 대상물체의 거리, 촬영시간, 동일대상물 여부, 정밀도 등 출력코자하는 측정범위를 선택하여(503) 해당정보를 선택적으로 처리한 후(505) 영상신호와 함께 출력되도록 하는(104) 본 발명의 비축입사광 영상처리장치를 설명한 것이다.5 is a schematic view of a non-incident incident light image processing apparatus to which the non-incident incident image signal processing method of the present invention is applied, and includes a non-incident incident light receiving apparatus 501 of the present invention described above with reference to FIG. 3, a charge charging element array, and a digital image conversion apparatus. A non-incident incident light optical / electrical conversion device 502, and performing the non-incident incident light image signal processing method of the present invention described above with reference to FIG. 4 (504). The non-incident light image processing apparatus of the present invention is described in which the measurement range to be outputted is selected (503), and the corresponding information is selectively processed (505) and then output together with the image signal (104).

본 발명의 비축입사광 영상신호처리방법은 대상물체의 거리, 촬영시간, 동일대상물 여부, 정밀도 등 출력 정보(505)를 비축입사 수광장치의 성능을 조절(506)하는 데 사용하는 절차까지 포함한다.The non-incident light image signal processing method of the present invention includes a procedure for using the output information 505 such as distance of a target object, photographing time, whether or not the same object, and precision is used to adjust (506) the performance of the non-incident light receiving device.

도 6 은 비축입사광 영상처리장치를 사용하여 거리정보를 획득하는 본 발명의 일 실시예로서, 예시된 전하충전소자(615 내지 616)에는 각각 다른 대상물의 상(604 내지 603)이 맺힘을 광경로를 구분(617)하여 함께 나타낸 것이며, 수광부(301) 및 614( > 0°) 각도만큼 이격된 위치의 전하충전소자(615 내지 616)를 예로들어, 광축(618)으로부터 601 각도만큼 떨어진 지점의 '대상물 603'의 광신호는 광경로 606, 607, 608 내지 609를 거쳐 전하충전소자 616에, 602 각도만큼 떨어진 지점의 '대상물 604'의 광신호는 광경로 610, 611, 612 및 613을 거쳐 전하충전소자 615에 상이 맺히게 됨을 보여주고 있다.FIG. 6 is an embodiment of the present invention for obtaining distance information by using a non-incident light image processing apparatus. In the illustrated charge charging elements 615 to 616, images 604 to 603 of different objects are formed in an optical path. Are shown together with the light-receiving unit 301 and the charge-charging elements 615 to 616 at positions spaced apart by an angle of 614 (> 0 °), for example, at a position 601 from the optical axis 618. The optical signal of the 'object 603' passes through the optical paths 606, 607, 608 through 609 to the charge charging device 616, and the optical signal of the 'object 604' located at a 602 angle passes through the optical paths 610, 611, 612, and 613. It is shown that an image is formed on the charge charger 615.

대상물체(603 내지 604)로부터 렌즈시스템(301)간의 거리 측정은, 전하충전소자(309)와 수광부(301)와의 거리(301로부터 309 까지의 직선거리)를 알고있는 경우, 전하충전소자(309)에 맺힌 상의 위치(616)로부터 렌즈시스템 중심선(301) 및 렌즈시스템(301)을 통과한 광선(608 내지 609)으로 이루어지는 굴절각 정보를 찾고, 이로부터 렌즈시스템 중심(301) 및 렌즈시스템(301)을 향해 입사하는 광선(606 내지 607)이 이루는 입사각을 계산하여 해당 대상물체(603)로부터 렌즈시스템(301)간의 거리를 계산하므로써 측정된다. 또다른 대상물체(604)의 거리는 동일한 방법으로, 전하충전소자(309)에 맺힌 상의 위치(615)로부터 렌즈시스템 중심선(301) 및 렌즈시스템(301)을 통과한 광선(612 내지 613)으로 이루어지는 굴절각 정보를 찾고, 이로부터 렌즈시스템 중심(301) 및 렌즈시스템(301)을 향해 입사하는 광선(610 내지 611)이 이루는 입사각을 계산하여 해당 대상물체(604)로부터 렌즈시스템(301)간의 거리를 계산한다.The distance measurement between the object systems 603 to 604 of the lens system 301 is based on the distance between the charge charging element 309 and the light receiving portion 301 (linear distance from 301 to 309). Finds the angle of refraction information consisting of the lens system center line 301 and the light rays 608 to 609 passing through the lens system 301 from the position 616 of the image attached to the lens system 301, and from there the lens system center 301 and the lens system 301. It is measured by calculating the distance between the lens system 301 from the object 603 by calculating the angle of incidence of the light rays 606 to 607 which are incident toward (). The distance of another object 604 is made in the same way, consisting of the lens system centerline 301 and the light rays 612 to 613 passing through the lens system 301 from the position 615 of the image formed on the charge charging element 309. The distance between the lens system 301 from the target object 604 is calculated by finding the angle of refraction information and calculating the angle of incidence formed by the lens system center 301 and the light rays 610 to 611 incident toward the lens system 301. Calculate

도 7 은 본 발명의 비축입사광 영상처리장치를 사용하여 특정 대상물체(701 내지 702)에 대한 입체영상을 획득하는 방법에 대한 일 실시예이다. 본 발명의 비축입사광 영상획득장치(721 내지 731)는 렌즈(715)따위로 구성되는 수광부 및 두 개의 비축입사광의 입사신호에 대한 상을 맺도록 배열된 각각의 전하충전소자 CCD A(716) 및 CCD B(718)와, 각각의 광/전기 신호변환장치에서 발생하는 아날로그 신호를 디지털 신호로 변환하는 A/D 변환기(717 내지 719) 및 각 A/D 변환기의 신호를 비교하여 일치점을 찾고 영상의 깊이 따위 같은 입체정보를 찾아내는 등 본 발명의 비축입사광 영상신호처리 방식들을 포함토록 구성된 본 발명의 비축입사광 영상정보처리 장치(도 5)로 구성되는(720) 특징이 있으며, 특정속도(730)로 움직여서, 서로 다른 지점(703, 704, 705 내지 706)의 영상을 획득하는 개념을 보여주고 있다. 즉, 광/전기 신호변환장치(716, 718)의 배열에 의해서 영상획득 초기에는 703 지점의 영상의 경우, 광경로 707, 708, 709 내지 710을 거쳐 CCD B(715)를 통해서, 704 지점의 영상의 경우는, 광경로 711, 712, 713, 내지 714를 거쳐 CCD A(716)를 통해서 획득되고, 속도 V( > 0 )로 움직여서(730) 일정위치 이동후 획득되는 영상신호의 위치(705 내지 706)가 달라지면, 705 지점의 영상의 경우, 광경로 722, 723, 724 내지 725을 거쳐서, 706 지점의 영상의 경우는, 광경로 726, 727, 728, 내지 729를 거쳐서 각각의 해당하는 광전자소자(732 내지 733)를 통해서 획득하므로써, 공간적으로 일치하는 지점(702)에 해당하는 좌우영상(704 내지 705)을 찾아 영상의 입체 정보를 획득하는, 본 발명의 비축입사광 영상정보처리 장치를 활용한 입체영상 획득의 일 실시예이다.FIG. 7 illustrates an embodiment of a method of obtaining a stereoscopic image of specific target objects 701 to 702 using the non-incident light image processing apparatus of the present invention. The non-incidentally incident light image acquisition devices 721 to 731 of the present invention each include a charge receiving element CCD A 716 arranged to form an image with respect to an incident signal of two light-receiving light and a light-receiving portion consisting of a lens 715 and The CCD B 718 compares the signals of the A / D converters 717 to 719 and the A / D converters 717 to 719 which convert the analog signals generated by the respective optical / electrical signal converters into digital signals, and finds a match point. The non-incident light image information processing apparatus of the present invention (FIG. 5) configured to include non-incident light image signal processing methods of the present invention such as finding stereoscopic information such as the depth of the feature (720), and has a specific speed (730). By moving to, the concept of obtaining images of different points 703, 704, 705 to 706 is shown. That is, at the initial stage of image acquisition by the arrangement of the optical / electrical signal converters 716 and 718, in the case of the image of 703 points, through the CCD B 715 through the optical paths 707, 708, 709 to 710, In the case of an image, a position of an image signal 705 to 710 obtained through the CCD A 716 via optical paths 711, 712, 713, and 714, and obtained after moving at a constant position by moving at a speed V (> 0) (730) If 706 is different, each of the corresponding optoelectronic devices via the optical paths 722, 723, 724 to 725 for the image at point 705, and the optical paths 726, 727, 728 and 729 for the image at point 706. By using the non-incident light image information processing apparatus of the present invention, the stereoscopic information of the image is obtained by finding the left and right images 704 to 705 corresponding to the spatially coincident points 702 by acquiring through 732 to 733. One embodiment of stereoscopic image acquisition.

본 발명은 비축입사광을 이용하여 대상물의 영상 및 변위정보는 물론 거리정보까지 획득할 수 있도록 고안된 영상정보처리 방법 및 장치로서, 특히, 항공 및 위성 탐사, 산업현장의 자동계측장비 따위처럼 시간차를 두고 다른 위치의 대상물 영상정보를 획득하거나, 시간흐름에 따른 대상물의 형상변화를 무시할 수 있는 경우에, 입체 영상을 획득하는 수단으로 유용하게 사용될 수 있으며, 특히 별도의 광원 없이도 대상물의 거리를 측정해낼 수 있도록 고안하므로써, 기존의 레이저 등 광원을 활용한 거리측정기의 전력 및 무게 증가요소를 감쇄시켜 가볍고 휴대하기 편한 장점이 있으며, 렌즈시스템의 광학적 특성에 따라서 주야간 구별없이 영상정보 획득이 가능한 장점이 있어, 항공, 우주, 군사, 전자, 자동차, 기계 등 광범위한 분야의 활용이 기대된다.The present invention is an image information processing method and apparatus designed to acquire distance information as well as image and displacement information of an object using non-incident incident light, and in particular, such as aviation and satellite exploration and automatic measurement equipment in industrial sites, It can be useful as a means for acquiring stereoscopic images in case of acquiring object image information of another location or ignoring the shape change of the object over time. Especially, the distance of the object can be measured without a separate light source. Since it is designed to reduce the power and weight increase factor of the rangefinder using a light source such as a laser, it is light and easy to carry, and according to the optical characteristics of the lens system, it is possible to acquire image information without distinguishing between day and night. Expect a wide range of applications in aviation, space, military, electronics, automotive, machinery The.

Claims (2)

광축으로부터 벗어나 비축으로 입사되는 광신호들에 대한 상을 획득하여 거리 및 입체정보를 획득하기 위하여,In order to obtain distance and stereoscopic information by acquiring an image of optical signals incident on the off-axis from the optical axis, 줌, 렌즈, 경통, 거울 따위로 구성되는 하나의 수광부(301 내지 501)와, 수광부 초점면(309)에 전하충전소자(CCD) 따위의 광/전기 신호변환장치들을 배치한 후, 비축입사광 영상을 획득하여 디지털화하는 기능을 포함하는(502) 제 1 단계(401);A light receiving unit 301 to 501 consisting of a zoom, a lens, a barrel, and a mirror, and an optical / electric signal converter such as a charge charging device (CCD) are arranged on the light receiving unit focal plane 309, and then a non-incident light image. A first step 401 including a function of acquiring and digitizing the data (502); 상기 제 1 단계 기능을 포함하는 비축입사광 영상신호 획득장치를 사용하여 획득된 영상신호들로부터, 거리를 측정하고자하는 대상물체의 전하충전소자상의 위치와 이에 해당하는 입사광의 굴절각을 찾고(406), 이로부터 대상물체에 대응하는 입사광 및 렌즈시스템의 중심부를 지나는 광선의 입사각을 추정하여 대상물체와 수광부간의 거리를 계산하는 절차(407) 및 영상신호 비교기능(408)을 포함하여 수행하는 제 2 단계(402);From the image signals acquired by using the non-incident incident light image signal acquisition device including the first step function, the position on the charge charging element of the object to be measured and the refractive angle of the incident light corresponding thereto are found (406), A second step of performing a step (407) and an image signal comparison function (408) for estimating the distance between the target object and the light receiving unit by estimating the incident angle of the incident light corresponding to the target object and the light beam passing through the center of the lens system 402; 계산시간을 줄이기 위하여 상기 제 1 단계에서 획득된 비축입사광 영상신호들을 대상으로 영상획득 시간이 일치하는 전후 영상을 찾는 제 3 단계(403);A third step (403) of searching for before and after images in which the image acquisition time matches the non-incident incident image signals obtained in the first step to reduce the calculation time; 제 3 단계에서 찾아낸 영상들을 대상으로 동일위치의 비축입사광 영상을 찾는 제 4 단계(404);A fourth step (404) of finding non-incident incident light images of the same position with respect to the images found in the third step; 제 4 단계에서 찾아낸 각 비축입사광 영상신호들로부터 획득영상의 각(角) 정보 및 깊이정보 등 입체정보 추출을 수행하거나 압축 및 저장, 부호화, 영상출력따위의 영상복원기능 등을 수행하는 제 5 단계(405);A fifth step of extracting stereoscopic information such as angular information and depth information of the acquired image from each non-axis incident light image signal found in the fourth step, or performing image restoration functions such as compression, storage, encoding, and image output; 405; 의 영상신호처리절차들을 포함하여 이루어지는 특징이 있는 비축입사광 영상신호의 처리방법A method of processing a non-incident incident light image signal characterized by including the video signal processing procedures of 비축입사 수광장치(501)와, 전하충전소자 배열 및 디지털 영상변환장치를 포함하는 비축입사광 광/전기 변환장치(502)를 포함하고, 획득영상신호 출력(104)과 함께 출력될 정보를 선택하는 절차와(503), 선택된 항목에 대한 각 수행단계별 결과(505)를 외부 출력화면에 표시(104)토록 하거나, 이들 결과(505)를 이용하여 수광장치(501)의 특성을 조정하는(506) 절차를 포함토록 구성되는 특징이 있는 영상정보처리 장치.A non-incident incident light receiving device 501, a non-incident incident light optical / electrical converter 502 including a charge charger element array and a digital image conversion device, for selecting information to be output together with the acquired image signal output 104; A procedure 503, displaying the results 505 of each execution step for the selected item 104 on the external output screen 104, or adjusting the characteristics of the light receiving device 501 using these results 505 506. An image information processing apparatus characterized by including a procedure.
KR10-2000-0061338A 2000-10-18 2000-10-18 The imaging system using off-axis incident beam KR100401478B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0061338A KR100401478B1 (en) 2000-10-18 2000-10-18 The imaging system using off-axis incident beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0061338A KR100401478B1 (en) 2000-10-18 2000-10-18 The imaging system using off-axis incident beam

Publications (2)

Publication Number Publication Date
KR20020030943A true KR20020030943A (en) 2002-04-26
KR100401478B1 KR100401478B1 (en) 2003-10-11

Family

ID=19694157

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0061338A KR100401478B1 (en) 2000-10-18 2000-10-18 The imaging system using off-axis incident beam

Country Status (1)

Country Link
KR (1) KR100401478B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200458110Y1 (en) * 2010-03-05 2012-01-19 정태근 Electric Massager is equipped with exercise equipment upside down

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020340A (en) * 1971-03-22 1977-04-26 Gte Sylvania Incorporated Precision automatic tracking system
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
KR950029751A (en) * 1994-04-22 1995-11-24 이대원 Foreground angle measuring system
JPH10221604A (en) * 1997-02-12 1998-08-21 Canon Inc Optical system and image pickup unit using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200458110Y1 (en) * 2010-03-05 2012-01-19 정태근 Electric Massager is equipped with exercise equipment upside down

Also Published As

Publication number Publication date
KR100401478B1 (en) 2003-10-11

Similar Documents

Publication Publication Date Title
CN110108348B (en) Thin-wall part micro-amplitude vibration measurement method and system based on motion amplification optical flow tracking
CN102494609B (en) Three-dimensional photographing process based on laser probe array and device utilizing same
US7417717B2 (en) System and method for improving lidar data fidelity using pixel-aligned lidar/electro-optic data
CA2577840C (en) A method for automated 3d imaging
JP6251142B2 (en) Non-contact detection method and apparatus for measurement object
CN109883391B (en) Monocular distance measurement method based on digital imaging of microlens array
CA2940535A1 (en) A method and an apparatus for generating data representative of a light field
Subbarao Direct recovery of depth map I: differential methods
CN103630118B (en) A kind of three-dimensional Hyperspectral imaging devices
Chen et al. Field-of-view-enlarged single-camera 3-D shape reconstruction
CN100498246C (en) Machine-carried broom pushing type multidimension imaging device
Araki et al. A high-speed and continuous 3D measurement system
CN112067125B (en) Dual-channel hyperspectral detection system based on underwater robot
KR100401478B1 (en) The imaging system using off-axis incident beam
Ma et al. Single-shot 3D reconstruction imaging approach based on polarization properties of reflection lights
Yaryshev et al. Development of a digital camera-based method for bridge deformation measurement
RU2734070C9 (en) Method of measuring spatial distance between small objects
CN116670713A (en) Method for depth sensing using candidate images selected based on epipolar lines
CN109828430B (en) Stereoscopic imaging device and system based on compressed sensing theory
RU2027144C1 (en) Parallax method of measuring coordinates of object
CN109470143A (en) External light source high resolution Stereo Vision Measurement System and method
CN109785426A (en) The method that optimal match point fast searching based on steepest descent method realizes focal spot reconstruct
CN109470147A (en) Adaptive high resolution stereo visual system and measurement method
CN109470148A (en) Rotating cylindrical surface mirror high resolution stereo visual system and measurement method
CN109579700B (en) Disc scanning high-resolution stereo vision measuring system and method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120730

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131025

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141028

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151129

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180919

Year of fee payment: 16