KR20020024665A - Dlc coated implants composite and manufacturing method thereof - Google Patents

Dlc coated implants composite and manufacturing method thereof Download PDF

Info

Publication number
KR20020024665A
KR20020024665A KR1020000056432A KR20000056432A KR20020024665A KR 20020024665 A KR20020024665 A KR 20020024665A KR 1020000056432 A KR1020000056432 A KR 1020000056432A KR 20000056432 A KR20000056432 A KR 20000056432A KR 20020024665 A KR20020024665 A KR 20020024665A
Authority
KR
South Korea
Prior art keywords
dlc
substrate
film
composite
deposited
Prior art date
Application number
KR1020000056432A
Other languages
Korean (ko)
Other versions
KR100392476B1 (en
Inventor
김현이
이인섭
이광렬
김동환
Original Assignee
김현이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김현이 filed Critical 김현이
Priority to KR10-2000-0056432A priority Critical patent/KR100392476B1/en
Publication of KR20020024665A publication Critical patent/KR20020024665A/en
Application granted granted Critical
Publication of KR100392476B1 publication Critical patent/KR100392476B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/303Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Abstract

PURPOSE: Provided is a transplantation complex with a DLC(Diamond-Like Carbon) film coated which deposits the DLC film on the surface of Ti or Ti alloy to produce artificial organs so that it prevents friction from being generated in a body when the artificial organs are placed in the body. CONSTITUTION: The production process of the transplantation complex with the DLC(Diamond-Like Carbon) film coated comprises the steps of: (i) inserting a Ti base plate into a deposition instrument and injecting SiH4 gas at 20 mtorr to cause plasma for 2 and 1/2 minutes at 200 bias voltage and then deposit a Si intermediate layer; and (ii) inserting the Ti base plate with the Si intermediate layer deposited into the deposition equipment and injecting C6H6 gas at 10 mtorr to cause plasma for 10 minutes and deposit the DLC film on the surface of the Si intermediate layer.

Description

디엘시가 코팅되는 생체이식용 복합체 및 그 제조방법{DLC COATED IMPLANTS COMPOSITE AND MANUFACTURING METHOD THEREOF}Biotransplantation composite coated with DLC and its manufacturing method {DLC COATED IMPLANTS COMPOSITE AND MANUFACTURING METHOD THEREOF}

본 발명은 인체의 노화된 부분을 대체할 수 있는 인공장기를 제작하기 위한 생체재료에 관한 것으로, 특히 인체에서 끊임없이 스트레스를 받는 인공치아 또는 인공고관절과 같은 생체재료의 내마모성을 향상시키도록 하는데 적합한 디엘시가 코팅되는 생체이식용 복합체 및 그 제조방법에 관한 것이다.The present invention relates to a biomaterial for manufacturing an artificial organ that can replace an aged part of the human body, and in particular, to improve the wear resistance of biomaterials such as artificial teeth or hip joints that are constantly stressed in the human body. It relates to a bio-grafted composite coated with an EL and a method for producing the same.

현대사회는 과학기술의 발달에 힘입어 인간의 평균수명이 점차 길어지면서 고령화가 되어가고 있으며, 그에 따라서, 인체의 노화가 빨리 진행되는 부위를 인공적으로 만든 장치를 이용하여 대체하려는 노력이 활발하게 진행되고 있다. 그 중에서 치아나 관절부위는 다른 인공장기에 비해 일상생활에서 끊임없이 스트레스를 받는 부분으로 쉽게 파손되기 때문에 이의 대체를 위한 인공고관절이나 인공치아의 물성과 생체적합성을 높이기 위한 시도가 진행중이다.In modern society, due to the development of science and technology, the average life expectancy of human beings is getting longer and aging, and accordingly, efforts are being actively made to replace the parts where the aging of the human body is progressing rapidly by using artificially made devices. It is becoming. Among them, teeth and joints are easily broken into stressed parts in daily life compared to other artificial organs, and thus, attempts are being made to increase the physical properties and biocompatibility of artificial hips or artificial teeth for their replacement.

인공치아나 인공고관절은 마모가 파손의 주된 원인으로 기계적인 강도 보다 내마모성의 향상이 초미의 관심이 되고 있고, 그러한 내마모성의 향상을 위하여 많은 연구자들이 꾸준이 연구하고 있다. 또한, 생체재료는 생체적합성이 우수해야 하고, 응용분야에 적합한 기계적인 물성을 가지고 있어야 한다. 특히 인공치아나 인공고관절의 경우는 항상 하중이 많이 가해지는 환경에 노출되어 있기 때문에 충분한 기계적 물성이 중요시되는데 현재 인공장기(implant)용 재료로 연구중인 알루미늄 옥사이드나 HAp(Hydroxyapatite) 또는 그들의 복합체의 경우에 뛰어난 생체적합성에도 불구하고 가공성이 떨어지는 단점이 있고, 금속 인공장기의 경우에는 가공이 쉬운 장점이 있는 반면에 내마모특성이 원하는 정도에 못 미치는 단점이 있으며, 또한 내화학성이 세라믹에 비하여 다소 떨어지는 문제점을 가지고 있다.Wear is the main cause of breakage of artificial teeth and hips, and the improvement of wear resistance rather than mechanical strength is of very little interest, and many researchers are steadily researching to improve such wear resistance. In addition, the biomaterial should have excellent biocompatibility and have mechanical properties suitable for the application. Especially in the case of artificial teeth or hip joints, sufficient mechanical properties are important because they are always exposed to a heavily loaded environment.In the case of aluminum oxide, HAp (Hydroxyapatite), or their complexes, which are currently being studied as an implant material In spite of excellent biocompatibility, there is a disadvantage of poor workability, and in the case of metal artificial organs, there is an advantage in that it is easy to process, but there is a disadvantage that wear resistance is not as desired, and chemical resistance is slightly lower than that of ceramic. Have

상기와 같은 문제점들을 감안하여 안출한 본 발명의 목적은 인공고관절이나 인공치아와 같은 인공장기의 기초소재에 내마모성이 우수하고, 생체적합성이 우수한 물질을 코팅 함으로써, 사용중에 파편(debri)이 떨어지거나 생체내로 용해되는 등의 제반 악영향이 발생되는 것을 방지하도록 하는데 적합한 디엘시가 코팅되는 생체이식용 복합체 및 그 제조방법을 제공함에 있다.The object of the present invention devised in view of the above problems is that by coating a material having excellent abrasion resistance and excellent biocompatibility on the base material of artificial organs such as artificial hips or artificial teeth, debris fall during use or It is to provide a bio-transplantable composite and a method of manufacturing the same is coated with a dieel suitable for preventing the generation of all adverse effects such as dissolution in vivo.

도 1은 본 발명에 따른 복합체 시편의 마모수명을 보인 그래프.1 is a graph showing the wear life of the composite specimen according to the present invention.

도 2는 본 발명에 따른 복합체 시편의 마모부피를 비교한 그래프.2 is a graph comparing the wear volume of the composite specimen according to the present invention.

도 3은 본 발명의 복합체를 건조한 상태에서 3000cyle, 6000cyle, 9000cyle로 마모실험한 사진.Figure 3 is a photograph of the wear test in a dry state of the composite of the present invention 3000cyle, 6000cyle, 9000cyle.

도 4는 본 발명의 복합체를 습한조건에서 마모실험한 그래프.Figure 4 is a graph of the wear test in the wet conditions of the composite of the present invention.

도 5는 본 발명에 따른 복합체의 내화학성을 비교한 그래프.5 is a graph comparing the chemical resistance of the composite according to the present invention.

도 6은 본 발명에 따른 복합체의 세포 독성실험결과를 보인 표.Figure 6 is a table showing the cytotoxicity test results of the complex according to the present invention.

상기와 같은 본 발명의 목적을 달성하기 위하여 인체에 장착되는 인공장기의 기초소재인 Ti기판의 표면에 내마모성을 향상시키기 위한 디엘시 필름(DLC:Diamond-like Carbon)이 증착된 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체가 제공된다.In order to achieve the object of the present invention as described above, a die-like film (DLC: Diamond-like Carbon) for improving wear resistance is deposited on the surface of the Ti substrate which is a basic material of an artificial organ mounted on a human body. Provided is a biograft composite coated with an EL.

또한, 인체에 장착되는 인공장기의 기초소재인 Ti-6Al-4V기판의 표면에 내마모성을 향상시키기 위한 디엘시 필름이 증착된 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체가 제공된다.In addition, there is provided a bio-composite composite coated with a DLC, characterized in that a DLC film is deposited on the surface of the Ti-6Al-4V substrate which is a basic material of an artificial organ mounted on a human body.

또한, 인체에 장착되는 인공장기의 기초소재인 Ti기판의 증착면을 폴리싱하는 단계와, 그 폴리싱된 Ti기판을 에칭챔버에 넣고 아르곤가스를 이용한 플라즈마를 발생시켜서 폴리싱면을 에칭하는 단계와, 그 에칭한 Ti기판을 증착장비에 넣고SiH4가스를 주입하는 상태에서 증착하여 폴리싱면에 Si중간층을 증착하는 단계와, 그 Si중간층이 형성된 Ti기판을 증착장비에 넣고 C6H6를 주입하는 상태에서 플라즈마를 이용하여 내마모성을 향상시키기 위한 디엘시 필름(DLC:Diamond-like Carbon)을 증착하는 단계를 순차적으로 실시하는 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체의 제조방법이 제공된다.In addition, polishing the deposition surface of the Ti substrate, which is a basic material of the artificial organs mounted on the human body, placing the polished Ti substrate in an etching chamber and etching the polishing surface by generating a plasma using argon gas; Depositing the etched Ti substrate in a deposition apparatus and injecting SiH 4 gas to deposit an Si intermediate layer on the polishing surface, and inserting a Ti substrate on which the Si intermediate layer was formed into the deposition apparatus and injecting C6H6 using plasma. There is provided a method for producing a bio-composite composite coated with a DLC characterized in that the step of sequentially depositing a DLC (Diamond-like Carbon) for improving the wear resistance.

또한, 인체에 장착되는 인공장기의 기초소재인 Ti-6Al-4V기판의 증착면을 폴리싱하는 단계와, 그 폴리싱된 Ti-6Al-4V기판을 에칭챔버에 넣고 아르곤가스를 이용한 플라즈마를 발생시켜서 폴리싱면을 에칭하는 단계와, 그 에칭한 Ti-6Al-4V기판을 증착장비에 넣고 SiH4가스를 주입하는 상태에서 증착하여 폴리싱면에 Si중간층을 증착하는 단계와, 그 Si중간층이 형성된 Ti-6Al-4V기판을 증착장비에 넣고 C6H6를 주입하는 상태에서 플라즈마를 이용하여 내마모성을 향상시키기 위한 디엘시 필름(DLC:Diamond-like Carbon)을 증착하는 단계를 순차적으로 실시하는 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체의 제조방법이 제공된다.In addition, polishing the deposited surface of the Ti-6Al-4V substrate, which is the basic material of the artificial organs mounted on the human body, and putting the polished Ti-6Al-4V substrate into an etching chamber to generate plasma using argon gas, thereby polishing Etching the surface; depositing the etched Ti-6Al-4V substrate in a deposition apparatus while injecting SiH 4 gas to deposit an intermediate Si layer on the polishing surface; and forming the intermediate Si-6 layer on Ti-6Al. Placing a -4V substrate in a deposition apparatus and depositing a DL-like film (DLC: Diamond-like Carbon) to improve abrasion resistance by using plasma while injecting C 6 H 6 . Provided is a method for preparing a biograft composite coated with DLC.

상기와 같은 본 발명의 디엘시가 코팅되는 생체이식용 복합체 및 그 제조방법의 실시예를 설명하면 다음과 같다.Referring to the embodiment of the bio-composite composite and the method for manufacturing the coated with the DLC of the present invention as described above are as follows.

실시예Example

화학기상증착장비(CVD)의 공정 챔버 내부에 Ti(CP-Ti)와 Ti합금(Ti-6Al-4V)를 소재로 하는 기판을 넣고, 공정가스인 C6H6가스를 챔버의 내부로 주입하는 상태에서 13.56MHz의 알 에프 플라즈마(radio frequency plasma)를 발생시키면 챔버의내부에 플라즈마가 발생되어 기판의 상면에 흑연과 다이아몬드의 원자배열이 혼합된 형태의 디엘시 필름(DLC:Diamond-like Carbon)이 증착된다.A substrate made of Ti (CP-Ti) and Ti alloy (Ti-6Al-4V) is placed in a process chamber of a chemical vapor deposition apparatus (CVD), and a process gas, C 6 H 6 gas, is injected into the chamber. When 13.56MHz RF plasma (radio frequency plasma) is generated, the plasma is generated inside the chamber and the atomic array of graphite and diamond mixed on the upper surface of the substrate (DLC: Diamond-like Carbon) ) Is deposited.

한편, 상기 기판은 직경 1inch, 두께 1.5mm 크기의 디스크(disk) 형태이고, 증착면을 1μm까지 폴리싱을 한 다음, 에탄올과 아세톤에서 초음파장비를 이용하여 세척을 하였다.On the other hand, the substrate is in the form of a disk (disk) having a diameter of 1inch, thickness 1.5mm, and polished the deposition surface to 1μm, and then washed with ultrasonic equipment in ethanol and acetone.

상기와 같이 세척한 기판을 에칭장비의 챔버에 넣고, 챔버의 내부로 아르곤 가스(Ar gas)을 주입하는 상태에서 챔버 내부 압력을 3.6 mtorr로 유지하며, 750 bias voltage를 인가하면 챔버의 내부에 플라즈마가 발생되어 에칭이 되는데, 이와 같은 상태로 1시간 동안 에칭하여 후공정에서 접착력이 향상되도록 한다.Put the cleaned substrate in the chamber of the etching equipment, while maintaining the internal pressure of the chamber at 3.6 mtorr while injecting argon gas into the chamber, and applying a 750 bias voltage to the plasma inside the chamber. Is generated and etched, which is then etched for 1 hour in such a state to improve the adhesion in the subsequent process.

디엘시 필름의 경우에 높은 압축응력으로 인해 기판과의 접착력이 좋지 않다는 결과가 알려져 있기 때문에, 본 실험에서는 기판과 디엘시 필름의 사이에 접착력을 높일 수 있는 물질중 생체적합성을 고려하여 Si를 증착하였으며, 증착방법은 SiH4(90% 희석된 것)가스를 20 mtorr의 압력하에서 200 bias voltage로 2분 30초 동안 증착하여 Si 중간층을 형성하였다. 그런 상태에서 Si 중간층 위에 C6H6가스를 이용하여 10 mtorr의 압력하에서 500 bias voltage로 10분간 디엘시(DLC)를 증착한 것이다. 이렇게 디엘시-Si-Ti와 디엘시-Si-Ti합금의 조합으로 증착된 시편을 접착력측정기(Sevastian-5)를 이용하여 접착력을 측정한 결과 약 90.2 MPa의 높은 접착력을 가지고 있음을 알 수 있었다In the case of the DLC film, it is known that the adhesion with the substrate is not good due to the high compressive stress. In this experiment, Si is deposited in consideration of biocompatibility among materials that can increase the adhesion between the substrate and the DLC film. In the deposition method, SiH 4 (90% diluted) gas was deposited for 2 minutes and 30 seconds at 200 bias voltage under a pressure of 20 mtorr to form a Si intermediate layer. In this state, C 6 H 6 gas was deposited on the Si interlayer under a pressure of 10 mtorr for 10 minutes at 500 bias voltages (DLC). As a result of measuring the adhesive force of the specimen deposited by the combination of DLC-Si-Ti and DLC-Si-Ti alloy using the adhesion tester (Sevastian-5), it was found that the adhesion was about 90.2 MPa.

서페이스 프로파일러(surface profiler)를 이용하여 두께를 측정한 결과 디엘시 필름의 두께는 1μm이었다.The thickness of the DLC film was 1 μm as a result of measuring the thickness using a surface profiler.

디엘시 필름의 내마모성을 알아보기 위하여 핀 언 디스크 타입(pin-on-disk type)의 트리볼로미터(Tribolometer)를 이용하여 마모실험을 하였다. 직경 5mm의 루비볼을 이용하였고 5N과 32N하에서 실험을 하였다. 생체내는 대기중과 같이 건조한 상태가 아니기 때문에 생리식염수에 담근 상태에서 마모실험을 실시하여 건조한 조건과 비교하였다. 마모실험 후에 시편은 서페이스 프로파일러를 이용하여 마모깊이와 마모부피를 측정하였고 트랙의 모양을 SEM으로 관찰하였다.In order to examine the wear resistance of the DLC film, a wear test was performed using a tribolometer of a pin-on-disk type. A ruby ball with a diameter of 5 mm was used and experimented under 5N and 32N. Since the body is not as dry as in the air, abrasion test was performed in physiological saline and compared with dry condition. After the wear test, the specimens were measured for wear depth and wear volume using a surface profiler, and the shape of the tracks was observed by SEM.

디엘시 필름의 내화학성을 알아보기 위해 일렉트로 케미컬 테스트(Electro Chemical Test)를 실시하였다.In order to determine the chemical resistance of the DLC film, an electrochemical test was conducted.

또 생체적합성을 알아보기 위해 아가 오버레이 법(Agar-Overlay, ISOTR7405)으로 세포독성실험을 실시하였다. 시편은 지름 10 mm×2 mm로 제작하고 멸균된 증류수로 세척하였다. 대조군으로는 양성대조군(Nitroso Guadine)과 음성대조군(PBS)을 0.5ml 적신 멸균된 거름종이를 사용하였고 모든 재료는 세척 후 에칠렌 옥사이드(Ethylene Oxide) 소독을 하였다. L-929 세포의 부유액을 만든 후 세포 부유액을 10ml 첨가한 후 24시간 세포를 배양하였다. 염색액을 첨가하고 30분이 지난후에 염색액을 제거하고 24시간 배양하였다.In addition, the cytotoxicity test was performed by the agar overlay method (Agar-Overlay, ISOTR7405) to determine the biocompatibility. Specimens were prepared with a diameter of 10 mm x 2 mm and washed with sterile distilled water. As a control group, sterilized filter paper soaked with 0.5 ml of the positive control group (Nitroso Guadine) and the negative control group (PBS) was used. All materials were washed with ethylene oxide (Ethylene Oxide) after washing. After the suspension of L-929 cells was made, 10 ml of cell suspension was added, and the cells were cultured for 24 hours. After 30 minutes after the addition of the dye, the dye was removed and incubated for 24 hours.

도 1은 Ti를 소재로 한 기판에 디엘시 필름을 증착한 시편과 Ti합금을 소재로한 기판에 디엘시 필름을 증착한 시편을 32N의 하중에서 마모실험을 한 데이터를 그래프로 보인 것으로, Ti기판을 사용한 경우 Ti이 연질(ductile)이기 때문에 32N의 하중 아래에서 소성변형을 일으키게 된다. 그러나 디엘시 필름은 매우취성(brittle)이 있는 물질로서 소성변형이 기판에 비하여 상대적으로 아주 적게 일어나고, 결국에는 기판이 함몰된 부분을 따라 크랙이 발생하는 것을 확인할 수 있었다. 즉, 그와 같이 크랙이 발생되는 것은 디엘시 필름의 수명(life time)을 크게 감소시키는 역할을 하게 된다.FIG. 1 is a graph showing data of abrasion test on a Ti-based substrate and a specimen on which a DL film was deposited on a Ti alloy substrate at a load of 32 N. FIG. In the case of using a substrate, since Ti is a ductile, plastic deformation occurs under a load of 32N. However, the DLC film was a very brittle material, and the plastic deformation was relatively less than that of the substrate, and eventually, cracks were generated along the recessed portion of the substrate. That is, the occurrence of cracking serves to greatly reduce the life time of the DL film.

Ti합금에 디엘시 필름을 증착한 경우 Ti합금이 하중에 견디는 능력이 강하기 때문에 디엘시 필름이 통상의 마모에 의하여 시간이 지남에 따라 깎여나가는 모습을 보여주고 있다.When the DL film is deposited on the Ti alloy, since the Ti alloy has a strong ability to withstand the load, the DL film is cut off over time due to normal wear.

디엘시 필름을 코팅한 기판과 코팅을 하지 않은 기판을 3000 cycle 마모시험을 실시한 후 마모 부피를 비교해 보니 Ti 또는 Ti 합금에서 도 2의 그래프와 같이 코팅을 한 경우가 코팅을 하지 않은 경우 보다 마모량이 현저하게 작은 것을 확인할 수 있었다.After the 3000 cycle abrasion test was performed on the substrate coated with the DLC film and the uncoated substrate, the wear volume was compared with that of Ti or Ti alloy as shown in the graph of FIG. 2. Remarkably small thing was confirmed.

필름의 파괴가 발생하기 전까지의 마모실험에서는 건조환경에서 보다 용액내에서의 환경의 경우에 마모량이 다소 작은 것으로 관찰되었다. 이런 현상은 코팅이 되지 않은 기판의 경우에 유사한 결과를 보이는 것으로 보아 마모실험의 초기에는 용액이 윤할재로 작용함과 아울러 용액이 원심력에 의하여 흐르면서 날카로운 마모입자가 마모트랙으로 부터 제거되기 때문이다. 하지만 필름이 파괴될때까지 마모실험을 하게 되면 건조한 조건의 경우에는 통상적인 연마재의 마모에 의하여 시간이 지남에 따라 필름이 깎여나가는 것을 관찰할 수 있었고, 젖은 조건의 경우에는 일정시간 통상적인 연마에 의한 마모가 진행되다가 디엘시 필름이 기판에서 분리되면 급속하게 디엘시 필름의 파괴가 진행된다.In the wear test until the breakage of the film, the amount of wear was observed to be smaller in the case of the environment in solution than in the dry environment. This phenomenon is similar to the uncoated substrate because the solution acts as a lubricant in the early stage of the abrasion test and the sharp wear particles are removed from the wear track as the solution flows by centrifugal force. However, when the abrasion test was performed until the film was destroyed, it was observed that the film was shaved over time due to the wear of a conventional abrasive material in the dry condition. As the wear progresses and the die film is separated from the substrate, the die film is rapidly destroyed.

도 3은 건조환경의 경우 각각 3000 cyle, 6000 cyle, 9000 cyle 마모실험을 같은 시편을 이용하여 실시한 것으로, 화살표로 표시된 가로선은 기판을 폴리싱하는 과정에서 생긴 스크랫치 위에 필름이 증착되면서 기판의 스크랫치 굴곡을 따라 필름이 증착된 것이 보이는 것이다.FIG. 3 shows that the dry specimens were subjected to 3000 cyle, 6000 cyle, and 9000 cyle wear tests using the same specimens. The horizontal lines indicated by the arrows show the scratches on the substrate while the film was deposited on the scratches generated during polishing the substrate. The film is seen deposited along the curvature.

3000 cyle 회전시 필름의 굴곡이 아직 선명하게 보이고 있고, 6000 cyle 회전 후에는 점차 굴곡이 깎여 나가다가 9000 cyle 회전시에는 굴곡면이 완전히 깍여 나가서 굴곡이 보이지 않게 되는 상태를 보여주고 있다. 이것은 통상적인 마모의 전형적인 모습을 보이는 것이며, 이러한 통상적인 마모는 필름이 완전히 마모되어 제거될때까지 계속된다.The curvature of the film is still clearly seen when the 3000 cyle is rotated, and after the 6000 cyle is rotated, the curvature is gradually cut off, and when the 9000 cyle is rotated, the curved surface is completely cut off, showing the state that the curvature is not seen. This is typical of conventional wear, which continues until the film is completely worn out and removed.

습한 환경의 경우에는 도 4에서와 같이 어느 정도까지는 마모가 진행되다가 필름이 부분적으로 떨어지는 현상을 확인할 수 있었는데, 이것은 마모에 의한 것이 아니고 필름이 벗겨진 것이며, 서페이스 프로파일러를 이용하여 표면을 측정한 결과 필름이 벗겨진 것임을 확인할 수 있었다.In a humid environment, as shown in FIG. 4, the wear progressed to a certain extent, and the film was partially dropped. This was not caused by wear, but the film was peeled off, and the surface was measured using a surface profiler. It could be confirmed that the film was peeled off.

디엘시 필름이 증착된 시편의 내화학성을 확인하기 위하여 일렉트로 케미컬 테스트를 실시하였으며, 그 결과 도 5의 그래프에 나타난 것과 같이 생리식염수내에서는 디엘시 필름을 코팅하지 않은 시편이 코팅을 한 시편 보다 부식이 많이 되었음을 확인 할 수 있었으며, 그 결과 디엘시 필름을 인공장기에 코팅하는 경우에 부식에 의한 세포의 사멸문제가 발생될 우려가 없고, 디엘시 필름이 케미컬 베리어(chemical barrier)의 역할을 충분이 수행할 수 있음을 확인할 수 있었다.The electrochemical test was performed to confirm the chemical resistance of the sample on which the DLC film was deposited. As a result, as shown in the graph of FIG. 5, in the physiological saline, the specimen not coated with the DLC film was more corroded than the coated specimen. As a result, there was no risk of cell death due to corrosion when the DLC film was coated on the artificial organs, and the DLC film had a sufficient role as a chemical barrier. It could be confirmed that it can be performed.

생체적합성을 확인하기 위하여 아가 오버레이 법(Agar-Overlay, ISOTR7405)으로 세포 독성실험을 하였다. 도 6의 표에 나타난 것과 같이 디엘시 필름이 코팅된 기판은 응답지수(=영역지수/사멸지수)가 0/0 으로 세포 독성이 없이 세포가 양호하게 배양되는 것을 확인할 수 있었다.In order to confirm biocompatibility, cytotoxicity test was performed by Agar overlay method (Agar-Overlay, ISOTR7405). As shown in the table of FIG. 6, the substrate coated with the DLC film had a response index (= area index / killing index) of 0/0, indicating that cells were well cultured without cytotoxicity.

상기의 실시예에서는 Ti 또는 TI합금에 디엘시 필름을 증착하여 내마모성이 향상된 것을 예로들어 설명하였으나, 꼭 그에 한정하는 것은 아니고, 인공장기의 소재로 사용될 수 있는 Co-Cr합금, 스테인레스, 폴리머, 초고분자량 폴리에틸렌(UHMWPE) 등을 소재로 사용하는 것이 가능하고, 또한 이러한 소재에 디엘시 필름을 증착하는 방법으로 디엘시 필름을 형성하는 것을 예로들어 설명하였으나, 압착 또는 융착등 본 고안의 사상과 범주를 벗어나지 않는 범위내에서 얼마든지 응용이 가능하다.In the above embodiment, the wear resistance is improved by depositing a DL film on Ti or TI alloy, but the present invention is not limited thereto. Co-Cr alloy, stainless steel, polymer, ultra high, etc., which can be used as a material of artificial organs, are described. Although it is possible to use molecular weight polyethylene (UHMWPE) or the like as a material, and to form a DLC film by depositing a DLC film on such a material, the idea and scope of the present invention, such as crimping or fusion, have been described. Any number of applications can be made without departing.

이상에서 상세히 설명한 바와 같이, 본 발명 디엘시가 코팅되는 생체이식용 복합체 및 그 제조방법은 인공고관절이나 인공치와 같은 생체재료의 기초재료로 주로 이용되는 Ti나 Ti합금의 소재에 디엘시 필름을 코팅한 것으로, 코팅을 하지 않은 Ti나 Ti합금에 비하여 내마모성이 현격히 향상되고, 내화학성 및 생체적합성이 양호한 효과가 있다.As described in detail above, the present invention is a biograft composite coated with the present invention and the manufacturing method is a coating of the DLC film on the material of Ti or Ti alloy mainly used as a base material of biomaterials such as artificial hip joints or artificial teeth As a result, the wear resistance is remarkably improved compared to Ti or the Ti alloy which is not coated, and the chemical resistance and the biocompatibility are good.

Claims (8)

인체에 장착되는 인공장기의 기초소재인 Ti기판의 표면에 내마모성을 향상시키기 위한 디엘시 필름(DLC:Diamond-like Carbon)이 증착된 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체.A bio-implanted composite coated with DLC (DLC: Diamond-like Carbon) for improving abrasion resistance on the surface of a Ti substrate which is a basic material of an artificial organ mounted on a human body. 제 1항에 있어서, 상기 Ti소재와 디엘시 필름 사이에는 디엘시 필름의 접착력을 향상시키기 위하여 Si중간층이 증착된 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체.[Claim 2] The bio-transplantable composite of claim 1, wherein an intermediate Si layer is deposited between the Ti material and the DL film to improve adhesion of the DL film. 인체에 장착되는 인공장기의 기초소재인 Ti-6Al-4V기판의 표면에 내마모성을 향상시키기 위한 디엘시 필름(DLC:Diamond-like Carbon)이 증착된 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체.Bio-implanted composite coated with DLC (DLC: Diamond-like Carbon) for improving abrasion resistance on the surface of Ti-6Al-4V substrate, which is a basic material of artificial organs mounted on the human body . 제 3항에 있어서, 상기 Ti-6Al-4V기판과 디엘시 필름 사이에는 디엘시 필름의 접착력을 향상시키기 위하여 Si중간층이 증착된 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체.4. The biotransport composite of claim 3, wherein an intermediate Si layer is deposited between the Ti-6Al-4V substrate and the DLC film to improve adhesion of the DLC film. 인체에 장착되는 인공장기의 기초소재인 Ti기판을 증착장비에 넣고 SiH4가스를 20 mtorr의 압력으로 주입하는 상태에서 200 bias voltage로 2분 30초동안 플라즈마를 발생시켜서 Si중간층을 증착하는 단계와, 그 Si중간층이 증착된 Ti기판을 증착장비에 넣고 C6H6가스를 10 mtorr의 압력으로 주입하는 상태에서 500 bias voltage로 10분간 플라즈마를 발생시켜서 Si중간층의 표면에 내마모성을 향상시키기 위한 디엘시 필름(DLC:Diamond-like Carbon)을 증착하는 단계를 순차적으로 실시하는 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체의 제조방법.Depositing a Si intermediate layer by placing a Ti substrate, a basic material of an artificial organ mounted on a human body, into a deposition apparatus and injecting SiH 4 gas at a pressure of 20 mtorr for 2 minutes and 30 seconds with a 200 bias voltage; A DL film for improving wear resistance on the surface of the Si interlayer by inserting a Ti substrate on which the Si interlayer was deposited into a deposition apparatus and injecting C6H6 gas at a pressure of 10 mtorr for 10 minutes with a 500 bias voltage. : Diamond-like Carbon) A method for producing a bio-composite composite coated with DLC, characterized in that the step of sequentially depositing. 제 5항에 있어서, 상기 Si중간층을 증착하기 전에 Ti기판을 에칭챔버에 넣고 3.8 mtorr의 압력하에서 750 bias voltage로 1시간 동안 에칭작업을 실시하는 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체의 제조방법.The method of claim 5, wherein the Ti substrate is placed in an etching chamber before the Si intermediate layer is deposited, and the etching process is performed for 1 hour at 750 bias voltage under a pressure of 3.8 mtorr. Manufacturing method. 인체에 장착되는 인공장기의 기초소재인 Ti-6Al-4V기판을 증착장비에 넣고 SiH4가스를 20 mtorr의 압력으로 주입하는 상태에서 200 bias voltage로 2분 30초동안 플라즈마를 발생시켜서 Si중간층을 증착하는 단계와, 그 Si중간층이 증착된 Ti기판을 증착장비에 넣고 C6H6가스를 10 mtorr의 압력으로 주입하는 상태에서 500 bias voltage로 10분간 플라즈마를 발생시켜서 Si중간층의 표면에 내마모성을 향상시키기 위한 디엘시 필름(DLC:Diamond-like Carbon)을 증착하는 단계를 순차적으로 실시하는 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체의 제조방법.Ti-6Al-4V substrate, which is the basic material of artificial organs mounted on the human body, is placed in the deposition equipment and the Si intermediate layer is deposited by generating plasma for 2 minutes and 30 seconds with 200 bias voltage while injecting SiH4 gas at a pressure of 20 mtorr. And a Ti substrate on which the Si intermediate layer is deposited, into a deposition apparatus, and injecting C6H6 gas at a pressure of 10 mtorr to generate a plasma at 500 bias voltage for 10 minutes to improve wear resistance on the surface of the Si intermediate layer. Method for producing a bio-composite composite coated with the DLC characterized in that the step of depositing a diamond film (DLC: Diamond-like Carbon) sequentially. 제 7항에 있어서, 상기 Si중간층을 증착하기 전에 Ti-6Al-4V기판을 에칭챔버에 넣고 3.8 mtorr의 압력하에서 750 bias voltage로 1시간 동안 에칭작업을 실시하는 것을 특징으로 하는 디엘시가 코팅되는 생체이식용 복합체의 제조방법.The method of claim 7, wherein the Ti- 6 Al-4V substrate is placed in an etching chamber before the deposition of the Si intermediate layer is subjected to etching for 1 hour at 750 bias voltage under a pressure of 3.8 mtorr is coated. Method for producing a biograft complex.
KR10-2000-0056432A 2000-09-26 2000-09-26 Dlc coated implants composite and manufacturing method thereof KR100392476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0056432A KR100392476B1 (en) 2000-09-26 2000-09-26 Dlc coated implants composite and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0056432A KR100392476B1 (en) 2000-09-26 2000-09-26 Dlc coated implants composite and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20020024665A true KR20020024665A (en) 2002-04-01
KR100392476B1 KR100392476B1 (en) 2003-07-22

Family

ID=19690462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0056432A KR100392476B1 (en) 2000-09-26 2000-09-26 Dlc coated implants composite and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100392476B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426322B1 (en) * 2001-06-13 2004-04-27 주식회사 워랜텍 DLC-coated dental titanium implant and the method of processing thereof
DE102012215855A1 (en) 2012-03-15 2013-09-19 P.P.U.H. "MEDGAL" Józef Borowski Forming silicon-containing carbon layer on medical implants, by subjecting low temperature plasma to modification in which carbon- and/or silicon-containing gas is excited, and depositing carbon layer on implant in reactor chamber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302717A1 (en) * 1987-08-04 1989-02-08 Ion Tech Limited Body implant
JPH05154189A (en) * 1991-12-02 1993-06-22 Matsutani Seisakusho Co Ltd Bioimplanting material for medical treatment
US5725573A (en) * 1994-03-29 1998-03-10 Southwest Research Institute Medical implants made of metal alloys bearing cohesive diamond like carbon coatings
US5593719A (en) * 1994-03-29 1997-01-14 Southwest Research Institute Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426322B1 (en) * 2001-06-13 2004-04-27 주식회사 워랜텍 DLC-coated dental titanium implant and the method of processing thereof
DE102012215855A1 (en) 2012-03-15 2013-09-19 P.P.U.H. "MEDGAL" Józef Borowski Forming silicon-containing carbon layer on medical implants, by subjecting low temperature plasma to modification in which carbon- and/or silicon-containing gas is excited, and depositing carbon layer on implant in reactor chamber

Also Published As

Publication number Publication date
KR100392476B1 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
Datta et al. Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings
US7931934B2 (en) Medical device having diamond-like thin film and method for manufacturing thereof
EP2750726B1 (en) Implants with wear resistant coatings and methods
Bai et al. Corrosion and tribocorrosion performance of M (MTa, Ti) doped amorphous carbon multilayers in Hank's solution
Jamesh et al. Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition
KR20050016375A (en) Surface treatment of co-cr based alloys using plasma carburization
Dufils et al. Evaluation of a variety of aC: H coatings on PEEK for biomedical implants
EP2468313A1 (en) Ceramic coated orthopaedic implants
Gabor et al. Hybrid coatings for orthopaedic implants formed by physical vapour deposition and microarc oxidation
Butter et al. Diamond-like carbon for biomedical applications
Ogwu et al. Endothelial cell growth on silicon modified hydrogenated amorphous carbon thin films
Noori et al. Nanostructured multilayer CAE-PVD coatings based on transition metal nitrides on Ti6Al4V alloy for biomedical applications
CA2795332C (en) Coating for a cocrmo substrate
JP6843356B2 (en) Antibacterial member
KR100392476B1 (en) Dlc coated implants composite and manufacturing method thereof
JP4482379B2 (en) Implant for artificial joint and method for manufacturing the same
JP2004530526A (en) Orthopedic joint prosthesis
Manso-Silvan et al. Development of human mesenchymal stem cells on DC sputtered titanium nitride thin films
EP4241799A1 (en) Metal material for medical device, manufacturing method for metal material for medical device, and medical device
Banks Ion beam applications research-A 1981 summary of Lewis Research Center programs
CN113278919B (en) Preparation method of TiN/DLC multilayer composite film applied to artificial joint surface
Corona Gomez Wear and Corrosion Resistance Improvement of CoCrMo alloy by Tantalum Based Coatings
Madej The properties of diamond-like carbon (DLC) coatings on titanium alloys for biomedical applications
RU2809018C1 (en) Metal material for medical device, method of producing metal material for medical device, and medical device
Bhargav Synthesis and characterization of Ta-DLC coatings over CoCrMo alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140702

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee