KR20020023378A - Treatment method of wastewater containing copper using ion exchange resin - Google Patents

Treatment method of wastewater containing copper using ion exchange resin Download PDF

Info

Publication number
KR20020023378A
KR20020023378A KR1020020003466A KR20020003466A KR20020023378A KR 20020023378 A KR20020023378 A KR 20020023378A KR 1020020003466 A KR1020020003466 A KR 1020020003466A KR 20020003466 A KR20020003466 A KR 20020003466A KR 20020023378 A KR20020023378 A KR 20020023378A
Authority
KR
South Korea
Prior art keywords
copper
exchange resin
ion exchange
wastewater
copper chloride
Prior art date
Application number
KR1020020003466A
Other languages
Korean (ko)
Inventor
박찬일
Original Assignee
박찬일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박찬일 filed Critical 박찬일
Priority to KR1020020003466A priority Critical patent/KR20020023378A/en
Publication of KR20020023378A publication Critical patent/KR20020023378A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: Provided is a method of recovering copper element from CuCl2-containing wastewater of printed circuit board(PCB) washing, which is employed for ion exchange resin and concentration. CONSTITUTION: The method proceeds to the following steps: an adsorption process for separating CuCl2 wastewater to Cu by ion exchange resin; a desorption process for separating adsorbed Cu from the resin by a mixing agent; and recovering Cu from the former mixture through ion resin exchange and concentration simultaneously. The mixing agent is composed of methanol, acetone and HCl of 1 : 1 : 3 of volume ratio. The hydrochloric acid is 1.0M of HCl.

Description

이온교환수지를 이용한 구리함유 폐수의 처리방법{omitted}Treatment method of wastewater containing copper using ion exchange resin

본 발명은 이온교환수지를 이용하여 PCB 세척 폐액에서 구리 원소를 회수하는 방법에 관한 것으로, 좀 더 구체적으로 이온 교환수지를 이용하여 염화동 폐액 (PCB 세척 폐액)으로부터 구리 원소를 분리 및 농축시킴으로써 재활용이 가능한 금속만을 회수할 수 있도록 발명된 이온교환수지를 이용하여 염화동 폐액에서 금속 원소를 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering copper element from PCB cleaning waste liquid by using ion exchange resin, and more specifically, to recycling by separating and concentrating copper element from copper chloride waste liquid (PCB washing waste liquid) using ion exchange resin. The present invention relates to a method for recovering metal elements from copper chloride waste using an ion exchange resin invented to recover only possible metals.

현대에 이르러서, 첨단 정보산업의 급속한 발전은 반도체 산업에 의해 이루어졌으며, 제조기술의 급속한 발전속도는 반도체의 Cycle Time 을 더욱 단축시키고 있다. 최근 cpu를 비롯한 차세대 비메모리 반도체 제조의 최고 기술로 주목받고 있는 것이 구리칩 기술이며, 급속한 성장을 할 전망이다. 도금폐수의 발생량은 연간200만㎤이상 도금 슬러지의 발생량은 2,000톤 이상이 될 것으로 추정된다. 도금 폐수는 시안계 폐수, 중금속 폐수, 폐도금액 폐수로 처리로 나뉘어 처리되어진다. 구리의 현재 사용 용도는 변압기, 자동차 엔진, 텔레비젼, 라디오, 전기 기구, 금속 세공 기기 등에 사용되고 있다.In modern times, the rapid development of the high-tech information industry has been made by the semiconductor industry, and the rapid development speed of the manufacturing technology has further shortened the cycle time of the semiconductor. Recently, copper chip technology, which is attracting attention as the best technology for manufacturing next-generation non-memory semiconductors including cpu, is expected to grow rapidly. The amount of plating wastewater generated is estimated to be more than 2 million tons of plated sludge per year. Plating wastewater is divided into cyanide wastewater, heavy metal wastewater and waste plating liquid wastewater. Copper is currently used in transformers, automotive engines, televisions, radios, electrical appliances, metalworking equipment and the like.

도금폐수는 그 구성성분과 중금속 함량으로 인하여 주변 하천이나 토양에 치명적인 오염을 유발하는 가장 유독한 산업 폐수 중 하나이며 이러한 폐수처리에 대한 산업은 여타 산업들보다 관심도가 떨어지는 실정이며 그러므로 많은 시장성을 확보하고 있다. 현재 전국 3만 7,600 여개의 산업폐수 배출업체에서 발생하는 산업 폐수량은 하루 평균 8,000톤으로 집계된 바 있다.Plating wastewater is one of the most toxic industrial wastewaters due to its constituents and heavy metals, which cause fatal pollution to surrounding rivers and soils, and the industry for such wastewater treatment is less concerned than other industries, and therefore has a lot of marketability. Doing. Currently, the industrial wastewater generated by more than 37,600 industrial wastewater dischargers is estimated to be 8,000 tons per day.

현재 국내에는 19개 도금협동단지에서 200여개 업체가 도금작업을 하고 있으며, 이들 외에 전국 각지에 300여개 독립업체가 환경부의 관리하에 조업중이다. 이들 도금업소들로부터 발생하는 도금폐수는 연간 약 200만 톤에 달하고, 또한 이의 처리에 의해 생성되는 도금 슬러지는 연간 25,000톤 정도가 발생하는 것으로 추정되고 있다.Currently, more than 200 companies are plating in 19 plating cooperative complexes in Korea, and 300 independent companies are operating under the management of the Ministry of Environment. It is estimated that the plating wastewater generated from these plating shops is about 2 million tons per year, and the plating sludge produced by the treatment generates about 25,000 tons per year.

그러나, 현재 이러한 구리 폐액을 회수하는 업체는 매우 적은 수준이며 도금 슬러지의 경우 모두 매립되고 있는 실정이다.However, there are very few companies currently recovering such copper waste liquid and all of the plating sludge is landfilled.

본 발명은 이와 같이 매립 또는 수탁 처리로 귀중한 금속자원이 폐기되는 문제점을 해결하기 위해 안출한 것으로, 본 발명의 목적은 고농도의 염화동폐액을 수탁 처리 공정에 보내기 전에 이온교환수지를 통과시켜 구리 금속만을 농축 및 분리시키기 위한 방법을 제공하고자 하는 것이다.The present invention has been made to solve the problem that the precious metal resources are discarded by landfilling or entrusted treatment, the object of the present invention is to pass only a copper metal waste through the ion exchange resin before sending a high concentration of copper chloride waste solution to the entrusted treatment process It is to provide a method for concentration and separation.

도 1은 구리이온의 pH 변화에 따른 이온교환수지의 흡착용량을 나타낸 그래프1 is a graph showing the adsorption capacity of the ion exchange resin according to the pH change of copper ions

도 2는 용리액의 조성에 따른 염화동 폐수의 탈착 효율을 나타낸 그래프2 is a graph showing the desorption efficiency of copper chloride wastewater according to the composition of the eluent

도 3는 본 발명의 이온교환수지를 이용하여 염화동 폐수의 처리 공정도Figure 3 is a flow chart of the treatment of copper chloride wastewater using the ion exchange resin of the present invention

본 발명은 염화동 폐액을 이온교환수지를 이용하여 구리이온을 흡착하고, 상기 이온교환수지에 흡착된 금속을 용리액을 이용하여 탈착시킴으로써 이온교환수지를 이용하여 염화동 폐액에서 구리 원소만을 회수하는 것을 특징으로 한다.The present invention is characterized in that the copper chloride waste liquid is adsorbed to copper ions using an ion exchange resin, and the metal adsorbed on the ion exchange resin is desorbed using an eluent to recover only copper elements from the copper chloride waste liquid using the ion exchange resin. do.

상기 용리액은 메탄올(Methanol), 아세톤(Acetone)과 염산 (HCI) 혼합 용액인 것을 특징으로 한다. 그리고, 상기 용리액으로서 염산(HCI)의 최종농도는 1.0 Mole 이고, 용리액의 혼합비는 부피비로 1: 1: 3 ( Methanol:Acetone:HCI )인 것을 특징으로 한다.The eluent is characterized in that the mixed solution of methanol (Methanol), acetone (Acetone) and hydrochloric acid (HCI). And, the final concentration of hydrochloric acid (HCI) as the eluent is 1.0 Mole, the mixing ratio of the eluent is characterized in that 1: 1: 3 (Methanol: Acetone: HCI) by volume ratio.

또한, 이온교환수지와 활성탄을 이용하여 염화동 폐액으로 부터 금속을 흡착하는 분리공정과; 상기 이온교환수지와 활성탄에 흡착된 금속을 용리액을 이용하여 탈착시키는 탈착공정과; 상기 탈착 공정을 마친 후, 분리된 금속을 증류장치를 이용하여 탈착된 용리액 중에서 증류된 용액은 용리액으로 재사용이 가능하며, 증류되고 남은 구리 금속은 고체 파우더 형태로 처리되는 것을 특징으로 한다.In addition, the separation step of adsorbing the metal from the copper chloride waste liquid using the ion exchange resin and activated carbon; A desorption step of desorption of the metal adsorbed on the ion exchange resin and activated carbon using an eluent; After the desorption process, the separated metal is distilled from the eluent desorbed using the distillation apparatus can be reused as the eluent, the distilled copper metal is characterized in that it is treated in the form of a solid powder.

이하에서는 첨부된 예시도를 참고로 하여 본 발명의 바람직한 실시 예에 대하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings illustrating a preferred embodiment of the present invention in detail.

도 1은 구리 금속이온의 피에이치 (pH) 변화에 따른 이온교환수지의 흡착용량을 나타낸 그래프이고, 도 2는 용리액의 조성에 따른 염화동 폐수의 탈착효율을 나타낸 그래프이며, 도 3은 본 발명의 이온교환수지를 이용하여 염화동 페수의 처리 공정도이다.Figure 1 is a graph showing the adsorption capacity of the ion exchange resin according to the pH change of the copper metal ions, Figure 2 is a graph showing the desorption efficiency of copper chloride wastewater according to the composition of the eluent, Figure 3 is an ion of the present invention This is a flow chart of treatment of copper chloride wastewater using exchange resin.

본 발명의 실시 예는 다음과 같다.An embodiment of the present invention is as follows.

도 1 내지 도 2에 있어서, 도 1은 피에이치(pH) 변화에 따른 이온교환수지에 대한 염화동 폐수의 흡착량 변화를 알아보기 위해 배치(Batch)법으로 피 에이치(pH) 1-3 범위(A)와 염산의 농도를 증가시켜 피에이치(pH)를 0 부터 -2 범위(B)까지 변화시켜 염화동 폐수의 흡착 특성을 조사하여 나타낸 그래프이다.1 to 2, Figure 1 is a batch method to find the change in the amount of adsorption of copper chloride wastewater to the ion exchange resin according to the pH change (pH) 1-3 range (A ) Is a graph showing the adsorption characteristics of copper chloride wastewater by changing the pH (pH) from 0 to -2 (B) by increasing the concentration of HCl and HCl.

상기 도 1에서 X축은 피에이치(수소이온농도지수)를 나타내고, Y축은 흡착율(%)을 나타내고 있다. 상기 도 1 (A)에서 보여주는 바와 같이, 피에이치(pH:수소이온농도 지수)가 증가할수록 수지에 대한 구리의 흡착력은 증가하는 경향을 나타내었지만, 실제 염화동 폐수는 강산에 속하므로 피에이치(수소이온농도지수)를 증가시키기에는 많은 중화제를 필요로 하게 된다. 하지만, 상기 도 1 (B)에서 보면, 산의 농도가 증가할수록 구리폐수의 흡착력은 증가하였으며 피에이치(수소이온농도지수) -1.5일 경우 흡착력이 71 % 정도로 가장 크게 나타났다. 피에이치(수소이온농도지수) -1.5 는 실제 염화동 폐수의 피에이치(수소이온농도지수)와 일치한다.In FIG. 1, the X axis represents PH (hydrogen ion concentration index), and the Y axis represents an adsorption rate (%). As shown in FIG. 1 (A), as the pH (pH: hydrogen ion concentration index) increases, the adsorption power of copper to the resin tends to increase, but since the copper chloride wastewater belongs to a strong acid, the pH (hydrogen ion concentration index) In order to increase the amount of neutralizing agent is required. However, in FIG. 1 (B), as the acid concentration was increased, the adsorption power of the copper wastewater increased, and when the pH was -1.5, the adsorption force was about 71%. PH -1.5 corresponds to the PH of the actual copper chloride wastewater.

도 2는 염화동 폐수가 함유된 시료 10mL를 컬럼( 3.14cm2X 10cm)에 흡착시키고, 메탄올(Methanol), 아세톤(Acetone)과 염산(HCI)을 각각 일정 비율로 섞은 용리액을 사용하여 흡착된 구리이온의 탈착효율을 나타낸 그래프이다.Figure 2 is a copper chloride adsorbed by using a 10 mL sample containing copper chloride waste water to the column (3.14 cm 2 X 10 cm), using an eluent mixed with methanol, acetone and hydrochloric acid (HCI) in a proportion It is a graph showing the desorption efficiency of ions.

상기 도 2의 그래프에서 나타낸 바와 같이 메탄올(Methanol), 아세톤(Acetone)과 염산( HCI )의 1: 1: 3의 부피비 ( Methanol : Acetone: HCI )혼합 용리액의 탈착효율에 있어 염산( HCI )의 농도는 1.0 Mole 일 경우가 이온교환수지의 구리의 탈착 효율이 가장 큰 것으로 나타났다.As shown in the graph of FIG. 2, the ratio of hydrochloric acid (HCI) in the desorption efficiency of a 1: 1: 3 volume ratio (Methanol: Acetone: HCI) of methanol, acetone, and hydrochloric acid (HCI) is increased. The concentration of 1.0 Mole showed the highest desorption efficiency of copper in ion exchange resin.

실험 결과 염화동 폐수의 회수율은 95± 2이었다.As a result, the recovery rate of copper chloride wastewater was 95 ± 2.

도 3은 본 발명의 이온교환수지를 이용하여 염화동 폐수 중 구리를 분리 및 농축하는 공정도로서, 우선 염화동 폐수는 액체 상태이어야 하며, 이온교환수지를 파이프 내에 충진시킨 분리도구를 이용하여 구리 원소를 분리한다.( 흡착 공정 )3 is a process chart for separating and concentrating copper in copper chloride wastewater using the ion exchange resin of the present invention. First, copper chloride wastewater should be in a liquid state, and copper elements are separated using a separation tool filled with ion exchange resin in a pipe. (Adsorption process)

좀더 구체적으로 살펴보면, 상기와 같이 염화동 폐수를 이온교환수지가 충진된 파이프 내로 흘려 넣는다. 이렇게 하면, 상기 이온교환수지에 의해 구리 원소들이 흡착되어 걸러지고, 폐수처리가 가능한 형태의 물이 이온교환수지를 거쳐서 파이프를 통과하여 별도의 수집통에 모아진다.In more detail, as described above, the copper chloride wastewater is poured into a pipe filled with an ion exchange resin. In this way, copper elements are adsorbed and filtered by the ion exchange resin, and water in the form of wastewater treatment is collected through a pipe through the ion exchange resin and collected in a separate collecting container.

상기와 같이 이온교환수지에 의해 흡착된 구리 금속들은 다시 한번 용리액 (부피비 1:1:3, Methanol : Acetone : 1.0 Mole HCI)을 이용하여 추출되어진다 ( 탈착 공정 )The copper metals adsorbed by the ion exchange resin as described above are once again extracted using an eluent (volume ratio 1: 1: 3, Methanol: Acetone: 1.0 Mole HCI) (desorption process)

상기와 같이 탈착된 구리용액은 100℃ 온도의 증류장치를 이용하여 증류된 용액은 용리액 통으로 다시 모아지며, 증류되고 남은 구리 금속은 고체형태로 회수한다. ( 증발 농축 공정 )As described above, the desorbed copper solution is distilled using a distillation apparatus at a temperature of 100 ° C. to be collected again in an eluent container, and the remaining copper metal is recovered in a solid form. (Evaporation concentration process)

본 발명의 방법으로 염화동 폐액의 처리에 있어 종래의 방법에 비해 시설 및 처리비가 매우 저렴하며 폐수의 방출이 없는 공정으로 구리의 회수율을 극대화 시킬수 있는 특징이 있다.In the method of the present invention, in the treatment of copper chloride waste solution, the facility and the treatment cost are very cheap compared to the conventional method, and there is a feature that can maximize the recovery of copper in the process without the discharge of waste water.

이하, 본 발명을 다음 실시 예로서 보다 구체화한다.Hereinafter, the present invention is further embodied by the following examples.

[실시 예 1]Example 1

건조한 이온교환수지 1.0g을 달아 100 mL 삼각플라스크에 넣고 일정 농도의 구리 폐액을 첨가한 후, 피에이치 (pH) 1∼2 는 염산계 완충용액을 가하여 피에이치 (pH)를 조정하고 전체 부피가 50 mL가 되게 증류수를 가한 다음 24시간 흔들어 준 다음 거른다. 이후, 수지에 흡착되지 않은 구리 이온을 정량하여 흡착량을 계산한다.1.0 g of dry ion-exchange resin was added to a 100 mL Erlenmeyer flask, and a certain concentration of copper waste solution was added. PH (pH) 1 to 2 were added hydrochloric acid-based buffer solution to adjust pH (pH) and the total volume was 50 mL. Distilled water is added, shaken for 24 hours, and filtered. Thereafter, the amount of copper ions not adsorbed on the resin is quantified to calculate the amount of adsorption.

하기의 표 1은 피에이치(pH) 변화에 따른 흡착된 구리이온의 양을 보여준다.Table 1 below shows the amount of copper ions adsorbed according to the pH change.

[실시 예 2]Example 2

용리법으로 흡착된 금속 이온을 탈착시킬 때 용리액의 종류와 농도에 따라 이온교환수지에 대한 금속이온의 분리도가 달라지게 된다. 따라서, 탈착능에 영향을 미칠 여러 용리액을 변화시키면서 염화동 폐수의 흡착능을 측정하여 표 2에 나타내었다.When desorption of metal ions adsorbed by the elution method, the degree of separation of metal ions to the ion exchange resin varies depending on the type and concentration of the eluent. Therefore, the adsorption capacity of the copper chloride wastewater was measured and shown in Table 2 while varying the various eluents affecting the desorption capacity.

결과에서 보여 주는 바와 같이, 용리액으로 1:1:3의 혼합용액 ( Methanol : Acetone : HCI )을 사용했을 때 구리(Cu)의 탈착효율이 크게 나타났으며, 염산의농도는 1.0 Mole 일 경우 가장 큰 탈착 효율을 나타내었다As shown in the results, when the mixed solution of 1: 1: 3 (Methanol: Acetone: HCI) was used as the eluent, the desorption efficiency of copper (Cu) was large, and the concentration of hydrochloric acid was 1.0 Mole. Great desorption efficiency

상기와 같은 본 발명은 순수하게 산업 폐기물인 염화동 폐액으로 부터 구리를 회수한다고 할 때, 장기적으로 많은 순수익을 얻을 수 있으며, 수입 원료를 대체할 수 있게 됨으로써 그 우수성은 더욱 입증되어 진다.When the present invention as described above recovers copper from pure copper waste fluid, which is purely industrial waste, a large net profit can be obtained in the long term, and the superiority is further demonstrated by being able to substitute imported raw materials.

그리고, 폐수 및 슬러지를 매립 처리하는 과정에서 발생되는 환경오염을 자연스럽게 방지할 수 있고, 오히려 유가금속을 추출할 수 있으므로 고부가 가치를 창출할 수 있는 장점이 있다.In addition, it is possible to naturally prevent the environmental pollution generated during the landfill treatment of wastewater and sludge, it is possible to extract valuable metals, there is an advantage that can create a high value.

이는 새롭게 전개되는 21세기형 환경산업에 있어서도 크게 호평을 받을수 있는 기술이라고 할 수 있을 것이다.This technology can be said to be highly acclaimed in the newly developed 21st century environmental industry.

상기와 같이 기술된 본 발명은 일실시 예로서 설명하였으나 이는 상기에 기술된 바람직한 일실시예에 한정되지 아니하며, 청구 범위에서 청구하는 본 발명의요지를 벗어남이 없이 당해 본 발명이 속하는 기술분야에서 통상의 지식을 가진자라면 다양하게 변형실시가 가능한 것은 물론이고, 그와 같은 변경실시는 본 발명의 핵심요소로 기재된 청구 범위 내에 존재한다고 할 것이다.The present invention as described above has been described as an example but is not limited to the preferred embodiment described above, it is usually in the art to which the present invention pertains without departing from the spirit of the invention as claimed in the claims. Those skilled in the art will be able to perform a variety of modifications, of course, such modifications will be within the scope of the claims as the core elements of the present invention.

본 발명에 의하며, PCB 세척폐액인 염화동 폐액으로 인한 환경오염을 방지 할 수 있는 효과가 있고, 염화동 폐액으로부터 금속을 분리 농축하여 추출해냄으로써 폐자재를 재활용할 수 있으므로 수입원료를 대체하는 효과가 있다.According to the present invention, there is an effect that can prevent the environmental pollution caused by copper chloride waste liquid PCB cleaning waste liquid, it is possible to recycle the waste material by separating and extracting the metal from the copper chloride waste liquid to replace the imported raw materials.

또한, 본 발명은 수입원료의 대체로서 활동되어 원가를 절감할 수 있으며 불필요하게 소모되는 폐기비용을 절감하는 효과가 있다.In addition, the present invention can act as a replacement of the imported raw materials can reduce the cost and has the effect of reducing the unnecessary waste costs.

Claims (4)

염화동 폐수를 이온교환수지를 이용하여 구리 금속을 흡착시키고, 상기 이온교환수지에 흡착된 구리 금속을 용리액을 이용하여 탈착 시킴으로서 이온교환수지를 이용하여 염화동 폐수 중에서 구리 원소를 회수하는 방법.A method for recovering copper element from copper chloride wastewater by using ion exchange resin by adsorbing copper metal to copper chloride wastewater using ion exchange resin and desorbing copper metal adsorbed on ion exchange resin using eluent. 제 1 항에 있어서, 상기 용리액은 혼합 용액으로 메탄올 : 아세톤 : 염산 (Methanol : Acetone : HCI )인 것을 특징으로 하는 이온교환수지를 이용하여 염화동 폐수에서 구리 원소를 회수하는 방법.The method of claim 1, wherein the eluent is a mixed solution of methanol: acetone: hydrochloric acid (Methanol: Acetone: HCI) using a method for recovering the copper element from the copper chloride waste water using an ion exchange resin. 제 2항에 있어서, 상기 용리액으로서 염산은 1.0M HCI이고, 부피비로 메탄올 : 아세톤 : 염산 ( Methanol : Acetone : HCI )이 1 : 1 : 3인 것을 특징으로 하는 이온교환 수지를 이용하여 염화동 폐수에서 구리 원소를 회수하는 방법.The method of claim 2, wherein the hydrochloric acid is 1.0M HCI as the eluent, methanol: acetone: hydrochloric acid (Methanol: Acetone: HCI) in a copper chloride wastewater using an ion exchange resin, characterized in that 1: 1: Method of recovering elemental copper. 이온교환 수지를 이용하여 염화동 폐액을 분리시키는 흡착공정과 ;An adsorption step of separating the copper chloride waste liquid using an ion exchange resin; 상기 흡착 공정을 마친후, 흡착된 구리를 혼합 용액인 용리액을 이용하여 탈착시키는 탈착공정과 ;A desorption step of desorbing the adsorbed copper using an eluent as a mixed solution after the adsorption step is completed; 상기 탈착공정을 마친 후, 분리된 구리 금속용액을 증발 농축공정을 걸치는 이온교환수지를 이용하여 염화동 폐액에서 구리를 회수하는 방법.After the desorption process is completed, a method for recovering copper from the copper chloride waste liquid by using an ion exchange resin that is subjected to the evaporation concentration process of the separated copper metal solution.
KR1020020003466A 2002-01-21 2002-01-21 Treatment method of wastewater containing copper using ion exchange resin KR20020023378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020003466A KR20020023378A (en) 2002-01-21 2002-01-21 Treatment method of wastewater containing copper using ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020003466A KR20020023378A (en) 2002-01-21 2002-01-21 Treatment method of wastewater containing copper using ion exchange resin

Publications (1)

Publication Number Publication Date
KR20020023378A true KR20020023378A (en) 2002-03-28

Family

ID=19718691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020003466A KR20020023378A (en) 2002-01-21 2002-01-21 Treatment method of wastewater containing copper using ion exchange resin

Country Status (1)

Country Link
KR (1) KR20020023378A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194988A (en) * 1988-01-27 1989-08-04 Sumitomo Metal Ind Ltd Treatment of metal-containing water
JPH01207185A (en) * 1988-02-12 1989-08-21 Kurita Water Ind Ltd Treatment of plating waste liquid
KR920014717A (en) * 1991-01-23 1992-08-25 지은상 Plating wastewater treatment system for semiconductor products
KR950002644U (en) * 1993-07-20 1995-02-16 주식회사 우진기계 Safety push of fracture
KR200211618Y1 (en) * 2000-07-12 2001-01-15 강경석 Unit capable of adsorbing, desorbing and recovering toxic ions using ion exchangers
KR20010067641A (en) * 2001-02-27 2001-07-13 황이춘 Separation and preconcentration method for precious metals from printed circuit boards using chelating resin
KR20020022856A (en) * 2000-09-21 2002-03-28 양형식 Effective recovery of valuable metals from wasted metal tailings, wasted printed circuit boards or low-graded metal stones

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194988A (en) * 1988-01-27 1989-08-04 Sumitomo Metal Ind Ltd Treatment of metal-containing water
JPH01207185A (en) * 1988-02-12 1989-08-21 Kurita Water Ind Ltd Treatment of plating waste liquid
KR920014717A (en) * 1991-01-23 1992-08-25 지은상 Plating wastewater treatment system for semiconductor products
KR950002644U (en) * 1993-07-20 1995-02-16 주식회사 우진기계 Safety push of fracture
KR200211618Y1 (en) * 2000-07-12 2001-01-15 강경석 Unit capable of adsorbing, desorbing and recovering toxic ions using ion exchangers
KR20020022856A (en) * 2000-09-21 2002-03-28 양형식 Effective recovery of valuable metals from wasted metal tailings, wasted printed circuit boards or low-graded metal stones
KR20010067641A (en) * 2001-02-27 2001-07-13 황이춘 Separation and preconcentration method for precious metals from printed circuit boards using chelating resin

Similar Documents

Publication Publication Date Title
US10662075B2 (en) Method and apparatus for the recovery and deep treatment of polluted acid
CN101550488B (en) Method of preparing high pure cathode copper by using PCB acid chlorine copper etching solution sewage
Jha et al. Adsorption of copper from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120
CN108070720B (en) A kind of comprehensive recovering process of tin removal waste liquor
CN101172676A (en) Method for processing hexavalent chromium contained wastewater with ion exchange resin
KR20170106876A (en) a method for seperating metal from sludge.
CN109081409A (en) A kind of method of selecting smelting combination cleaning treatment waste acid
CN107058757A (en) A kind of production method of the separation of Silver from silver-containing liquid waste
Van Nguyen et al. Copper recovery from low concentration waste solution using Dowex G-26 resin
CN101343102A (en) Adsorption and magnetic separation coupling method for recycling precious metal ion in precious metal
KR20170019246A (en) A recovery method for valuable metal from the LED wastes or electronic wastes
CN1028658C (en) Technology of purifying copper electrolyte
Uchikoshi et al. Preparation of high-purity cobalt by anion-exchange separation and plasma arc melting
KR100395400B1 (en) Separation and preconcentration method for precious metals from printed circuit boards using chelating resin
CN110846510B (en) Method for efficiently and selectively adsorbing and recovering rhenium and mercury from copper smelting multi-element mixed waste acid
Vohra Adsorption of lead, ethylenediaminetetraacetic acid and lead-ethylenediaminetetraacetic acid complex onto granular activated carbon
CN1105684C (en) Technology of applying 13x zeolite in treating heavy metal-containing waste water and recovering metal
KR20020023378A (en) Treatment method of wastewater containing copper using ion exchange resin
CN104496000B (en) The method of arsenic in water body, antimony is removed and is reclaimed in a kind of copper powder displacement
Ye-Hui-Zi et al. Chromatographic separation and recovery of Zn (II) and Cu (II) from high-chlorine raffinate of germanium chlorination distillation
CN102600803A (en) Preparation method for adsorbent for treating wastewater containing heavy metal
CN112777774A (en) Nickel-containing wastewater treatment device and nickel-containing wastewater treatment method
WO2023097923A1 (en) Low-cost reducing agent for selective precipitation of noble metal ions
CN211255522U (en) Nickel-containing wastewater treatment device
CN113368823A (en) Magnetically-modified lignite adsorption material and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application