KR20020022079A - Electrical-mechanical connection between electronic circuit systems and substrates and method for the production thereof - Google Patents

Electrical-mechanical connection between electronic circuit systems and substrates and method for the production thereof Download PDF

Info

Publication number
KR20020022079A
KR20020022079A KR1020017016924A KR20017016924A KR20020022079A KR 20020022079 A KR20020022079 A KR 20020022079A KR 1020017016924 A KR1020017016924 A KR 1020017016924A KR 20017016924 A KR20017016924 A KR 20017016924A KR 20020022079 A KR20020022079 A KR 20020022079A
Authority
KR
South Korea
Prior art keywords
metal
connection
solder
microcapsules
electromechanical
Prior art date
Application number
KR1020017016924A
Other languages
Korean (ko)
Inventor
홀거 휘브너
바이트야나탄 크리페쉬
Original Assignee
칼 하인쯔 호르닝어
지멘스 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칼 하인쯔 호르닝어, 지멘스 악티엔게젤샤프트 filed Critical 칼 하인쯔 호르닝어
Publication of KR20020022079A publication Critical patent/KR20020022079A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/29486Coating material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3473Plating of solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 전자 회로 시스템과 기판 간의 전기 기계적 접속부 및 상기 접속부의 제조 방법에 관한 것이다. 본 발명에 따라, 전자 회로 시스템(10) 및 기판(20) 간의 전기 기계적 접속부에서 전자 회로 시스템(10) 및 기판(20)이 기계적으로 서로 고정 접속되고, 상기 전자 회로 시스템(10) 및 기판(20) 위에 제공된 전기 접속 소자(11, 21)는 마이크로 캡슐(23-1, 23-2)에 의해 전도 접속되며, 상기 마이크로 캡슐(23-1, 23-2)은 유전체(23-2)로 코팅된 적어도 부분적으로 전도성인 입자(23-1)로 형성되며, 터져있는 유전체(23-2)를 포함하는 마이크로 캡슐(23-1, 23-2)과 전기 접속 소자(11, 21) 간의 전도성 납땜 조인트(25 내지 28)가 제공된다.The present invention relates to an electromechanical connection between an electronic circuit system and a substrate and a method of manufacturing the connection. According to the invention, the electronic circuit system 10 and the substrate 20 are mechanically fixedly connected to each other at an electromechanical connection between the electronic circuit system 10 and the substrate 20, and the electronic circuit system 10 and the substrate ( The electrical connection elements 11, 21 provided above 20 are conductively connected by microcapsules 23-1, 23-2, and the microcapsules 23-1, 23-2 are connected to the dielectric 23-2. Conductive between the microcapsules 23-1 and 23-2 formed of coated at least partially conductive particles 23-1 and comprising the exploded dielectric 23-2 and the electrical connection elements 11 and 21. Solder joints 25 to 28 are provided.

Description

전자 회로 시스템과 기판 간의 전기 기계적 접속부 및 상기 접속부의 제조 방법 {ELECTRICAL-MECHANICAL CONNECTION BETWEEN ELECTRONIC CIRCUIT SYSTEMS AND SUBSTRATES AND METHOD FOR THE PRODUCTION THEREOF}ELECTRICAL-MECHANICAL CONNECTION BETWEEN ELECTRONIC CIRCUIT SYSTEMS AND SUBSTRATES AND METHOD FOR THE PRODUCTION THEREOF}

본 발명의 범주에서 볼 때 전자 회로 시스템이란 고체 상태의 회로 시스템, 특히 집적 반도체 회로로 이해된다. 특히 집적 반도체 회로에서의 시스템이라는 개념은 트랜지스터, 다이오드, 커패시터 등과 같은 전자 회로 기능 소자들을 포함하는 반도체 재료 바디 및 상기 반도체 재료 바디 위에 존재하는 회로 기능 소자들을 연결시키는 금속 도체 트랙 및 접속 소자를 가리킨다.In the scope of the present invention, an electronic circuit system is understood to be a solid state circuit system, in particular an integrated semiconductor circuit. In particular, the concept of a system in an integrated semiconductor circuit refers to a semiconductor material body including electronic circuit functional elements such as transistors, diodes, capacitors, etc., and metal conductor tracks and connecting elements connecting circuit functional elements present on the semiconductor material body.

상기 접속 소자들은 소위 패드(pad)와 같은 평면 금속 애플리케이션 또는 소위 범프(bump)와 같은 구형 금속 소자들일 수 있다.The connection elements can be planar metal applications such as so-called pads or spherical metal elements such as so-called bumps.

본 발명의 범주에서 볼 때 기판(substrate)이란 프린팅된 회로 또는 프린팅된 회로 보오드와 같은 회로 플레이트로 이해된다. 또한 상기와 같은 기판은 위에 언급된 타입, 일반적으로 패드 형태의 접속 소자들을 갖는다.In the context of the present invention, a substrate is understood to be a circuit plate, such as a printed circuit or a printed circuit board. Such a substrate also has connection elements of the type mentioned above, generally in the form of a pad.

전도성 입자가 함유된 접착제에 의해 논의될 타입의 전기 기계적 접속부가제조된다는 것이 공지되어 있다. 상기와 같은 전기 기계적 접속부는 하기에서 도 1에 의해 설명된다.It is known that electromechanical connections of the type to be discussed are made by adhesives containing conductive particles. Such an electromechanical connection is illustrated by FIG. 1 below.

도 1은 전자 회로 시스템(10), 예컨대 프린팅된 회로 보오드와 같은 기판(20)에 전기 기계적으로 접속되는 집적 반도체 회로를 개략적으로 도시한 것이다. 상기 회로 시스템(10) 위에는 패드 형태의 접속 소자들이 제공되고 상기 기판(20) 위에는 마찬가지로 패드 형태의 접속 소자들(21)이 제공된다.1 schematically illustrates an integrated semiconductor circuit that is electromechanically connected to an electronic circuit system 10, for example, a substrate 20, such as a printed circuit board. Connection elements in the form of pads are provided on the circuit system 10, and connection elements 21 in the form of pads are likewise provided on the substrate 20.

회로 시스템(10) 및 기판(20)은 소위 플립 칩 기술에 의해, 패드(11 및 21)가 전도성 입자(22 및 23)를 함유하며 일점 쇄선으로 도시된 접착제(24)에 의해 서로 마주놓이게 되도록 서로 접속된다. 상기 접착제(24)는 예컨대 중합체이며, 상기 전도성 입자는 은으로 이루어질 수 있다.The circuit system 10 and the substrate 20 are, by so-called flip chip techniques, so that the pads 11 and 21 face each other by the adhesives 24, which are shown in dashed lines, containing the conductive particles 22 and 23. Are connected to each other. The adhesive 24 is, for example, a polymer, and the conductive particles may be made of silver.

위에 언급된 타입의 접속부에서 22로 표기된 전도성 입자는 패드(11 및 21) 간의 가로 방향 갭 내에 제공되고, 23으로 표기된 전도성 입자는 서로 마주놓인 패드(11 및 21) 간의 세로 방향 갭 내에 제공된다.In the connection of the type mentioned above, the conductive particles labeled 22 are provided in the transverse gap between the pads 11 and 21 and the conductive particles labeled 23 are provided in the longitudinal gap between the pads 11 and 21 facing each other.

회로 시스템(10) 및 기판(20)을 압축함으로써, 서로 마주놓인 패드(11 및 21) 간의 전도성 입자(23)가 상기 패드(11 및 21)와 함께 도전 접촉부 내로 이르러서, 회로 시스템(10)과 기판(20) 간의 전기 접속부가 제조될 수 있다. 이에 반해, 패드(11 및 21) 간의 가로 방향 갭 내 전도성 입자(22)는 상기 패드(11 및 21)와 함께 도전 접속부 내로 이르지 않기 때문에, 이러한 관점에서 볼 때 패드 사이에는 어떠한 단락 접속도 생성되지 않는다. 기술된 타입의 전기 접속부는 서로 마주놓인 패드(11 및 21) 간의 전도성 입자(22)에 의해서는 수직 방향으로 도전 접속부가제조되지 않지만, 패드(11 및 21) 간의 가로 방향 갭 내 전도성 입자(22)에 의해서는 수평 방향으로 도전 접속부가 제조될 경우에 비등방성으로 전도된다.By compressing the circuit system 10 and the substrate 20, the conductive particles 23 between the pads 11 and 21 facing each other come together with the pads 11 and 21 into the conductive contact so that the circuit system 10 and Electrical connections between the substrates 20 can be made. In contrast, since the conductive particles 22 in the transverse gap between the pads 11 and 21 do not reach into the conductive connection with the pads 11 and 21, no short circuit connection is generated between the pads in this respect. Do not. The electrical connection of the type described is not made in the vertical direction by the conductive particles 22 between the pads 11 and 21 facing each other, but the conductive particles 22 in the transverse gap between the pads 11 and 21 are produced. ) Is anisotropically conducted when the conductive connection is made in the horizontal direction.

서로 마주놓인 패드(11 및 21) 간의 전도성 입자(23)가 압축될 때 변형될 수 있다는 것을 보여주기 위해서 상기 패드(11 및 21)는 개략적으로 타원형으로 도시되며, 패드(11 및 21) 간의 가로 방향 갭 내 입자(22)는 변형되지 않은 채로 남아있으므로 개략적으로 원형으로 도시된다.In order to show that the conductive particles 23 between the pads 11 and 21 facing each other can deform when compressed, the pads 11 and 21 are schematically shown as elliptical, transversely between the pads 11 and 21. Particles 22 in the directional gap are shown schematically circularly as they remain undeformed.

위에 기술된 타입의 전기 기계적 접속부에서 확실한 동작을 위해서는 하기의 조건들이 충족되어야만 한다.The following conditions must be met for reliable operation at the electromechanical connections of the type described above.

첫째, 지속적인 압축 및 회로 시스템(10)과 기판(11)의 확실한 기계적 접속을 보장하기 위해서는 접착제(24)가 세팅되어 회로 시스템(10)과 기판(20)이 동작될 때 충분히 높은 수축력을 나타내야만 한다. 그러나, 접착제는 일반적으로 접착성 및 내습성에 있어서 양호한 특성을 갖지 않기 때문에, 이러한 접속은 그다지 확실하지 않다. 이는 특히 접착제 조인트 내 높은 전단력에 대한 열 교체 부하시 나타남으로써, 접착제가 터져서 전도성 입자(23)를 통한 전기 접속이 중단될 수 있다. 또한 조인트 내로 침투되는 수분은 가열시 회로 시스템(10)의 전 영역을 기판(20)으로부터 떼어낼 수 있다. 이러한 단점들은 접착제가 구조화될 필요가 없다는 장점에 대립된다.First, in order to ensure continuous compression and reliable mechanical connection of the circuit system 10 and the substrate 11, the adhesive 24 must be set to exhibit a sufficiently high retraction force when the circuit system 10 and the substrate 20 are operated. do. However, since the adhesive generally does not have good properties in adhesion and moisture resistance, such a connection is not so sure. This is particularly manifest during heat exchange loads for high shear forces in the adhesive joint, whereby the adhesive can burst and the electrical connection through the conductive particles 23 can be interrupted. Moisture permeated into the joint may also separate the entire area of the circuit system 10 from the substrate 20 upon heating. These disadvantages are opposed to the advantage that the adhesive does not need to be structured.

둘째, 한편으로는 접착제(24) 내 전도성 입자(22)의 충전률은 서로 마주놓인 패드(11, 21) 간의 도전 접속을 확실히하기 위해 적어도 하나의 전도성 입자(23)가 확실히 존재할 정도로 커야만 한다. 다른 한편으로는 충전률이 패드(11, 21) 간의가로 방향 갭 내 전도성 입자(22)에 의해 전기적 단락이 야기될 위험이 나타날 정도로 높아서는 안된다.Second, on the one hand, the filling rate of the conductive particles 22 in the adhesive 24 must be large enough to ensure that at least one conductive particle 23 is present to ensure the conductive connection between the pads 11 and 21 facing each other. . On the other hand, the filling rate should not be so high that there is a risk of causing electrical shorts by the conductive particles 22 in the directional gap between the pads 11, 21.

집적률이 증가되면서, 전도성 구조물이 작아지고, 그리고 집적된 반도체 회로와 상기 반도체 회로에 매칭되고 예컨대 프린팅된 회로 보오드와 같은 회로에 접속된 기판에 제공된 구조물에 대한 상기 전도성 구조물의 간격이 좁아짐으로써 뒤에 언급된 문제점은 점점 더 어려워진다.As the integration rate increases, the conductive structure becomes smaller and the gap between the conductive structure and the structure provided in the substrate provided in the integrated semiconductor circuit and the substrate matched to the semiconductor circuit and connected to a circuit, such as a printed circuit board, for example, becomes smaller. The problems mentioned become more and more difficult.

이러한 문제점을 해결하기 위해 접착제 내로 매립된 마이크로 캡슐이 사용되며, 상기 마이크로 캡슐은 전도성 입자 및 상기 전도성 입자를 둘러싸는 예컨대 절연 플라스틱 형태의 유전체로 이루어진다는 것이 "Flip Chip Technologies", John H. Lau, McGraw-Hill 1996, 289-299 페이지에 공지되어 있다. 전도성 입자(22-1)(또는 23-1) 및 상기 전도성 입자(22-1)(또는 23-1)를 둘러싸는 유전체(22-2)(또는 23-2)로 이루어진 상기와 같은 마이크로 캡슐은 도 2에 확대 도시된다.In order to solve this problem, microcapsules embedded in an adhesive are used, and it is known that the microcapsule is made of conductive particles and a dielectric in the form of, for example, an insulating plastic surrounding the conductive particles, "Flip Chip Technologies", John H. Lau, McGraw-Hill 1996, pages 289-299. Such microcapsules made of conductive particles 22-1 (or 23-1) and dielectric 22-2 (or 23-2) surrounding the conductive particles 22-1 (or 23-1). Is shown enlarged in FIG.

접착제 내에 제공된, 유전체로 둘러싸인 전도성 입자를 사용했을 때의 전기 기계적 접속부에서도 회로 시스템(10) 및 기판(20)은 도 1에 따라 압축된다. 여기서 접착제(24)의 세팅을 생성하는 압력에 의해 서로 마주놓인 패드(11, 21) 간의 마이크로 캡슐(23-1, 23-2)이 압착됨으로써, 유전체(23-2)가 터지고 그 결과 전도성 입자(23-1)에 의해 도전 접속부가 생성된다. 이러한 상황은 도 3에서 2개의 패드(11, 21) 간의 변형된 마이크로 캡슐(23-1, 23-2)의 형태로 개략적으로 도시된다.Even in the electromechanical connection when using conductive particles surrounded by a dielectric provided in the adhesive, the circuit system 10 and the substrate 20 are compressed according to FIG. 1. Here, the microcapsules 23-1 and 23-2 between the pads 11 and 21 facing each other by the pressure generating the setting of the adhesive 24 are compressed, so that the dielectric 23-2 bursts and consequently the conductive particles. The conductive connection is produced by (23-1). This situation is schematically illustrated in the form of modified microcapsules 23-1, 23-2 between two pads 11, 21 in FIG. 3.

앞에 기술된 타입의 마이크로 캡슐에 의해 제조된 상기와 같은 전기 기계적접속부에서도 패드(11, 21) 간의 가로 방향 갭 내에 존재하는 마이크로 캡슐(22-1, 22-2)에 걸쳐 가로 방향으로 전기적 단락이 발생하는 문제는 실제적으로 제거된다. 그러나, 위에 기술된 접착제와 결부된 문제들은 여전히 남는다.Even in such an electromechanical connection made by a microcapsule of the type described above, an electrical short circuit occurs in the transverse direction across the microcapsules 22-1 and 22-2 present in the transverse gap between the pads 11 and 21. Problems that arise are practically eliminated. However, the problems associated with the adhesives described above still remain.

본 발명은 청구항 1항의 서문에 따른 전자 회로 시스템과 기판 간의 전기 기계적 접속부 및 청구항 31항에 따른 상기 접속부의 제조 방법에 관한 것이다.The present invention relates to an electromechanical connection between an electronic circuit system according to the preamble of claim 1 and a substrate and to a method of manufacturing the connection according to claim 31.

도 1 내지 3은 위에 언급된 공지된 실시예이고,1 to 3 are the known embodiments mentioned above,

도 4는 본 발명에 따른 실시예를 설명하기 위한, 전기 기계적 접속부의 개략도이다.4 is a schematic view of an electromechanical connection for explaining an embodiment according to the present invention.

본 발명의 목적은 전자 회로 시스템 및 기판 위에 제공된 미세한 전도성 구조물에서도 전기 기계적으로 안정적이고 전기 단락에 대해 안정적인, 논의될 타입의 전기 기계적 접속부를 제공하는데 있다.It is an object of the present invention to provide an electromechanical connection of the type to be discussed, which is electromechanically stable and also resistant to electrical shorts, even in fine conductive structures provided on electronic circuit systems and substrates.

상기 목적은 본 발명에 따라 청구항 1항의 특징부에 따른 처리에 의해 제조된 전기 기계적 접속부에 의해 달성된다.This object is achieved by an electromechanical connection made by a process according to the features of claim 1 according to the invention.

본 발명에 따른 전기 기계적 접속부의 제조 방법은 청구항 31항의 처리에 의해 특징지워진다.The method for producing an electromechanical connection according to the invention is characterized by the treatment of claim 31.

본 발명에 따른 전기 기계적 접속부 및 본 발명에 따른 방법에 대한 개선예는 이에 상응하는 종속항의 대상이다.Improvements to the electromechanical connections according to the invention and to the method according to the invention are the subject of the corresponding dependent claims.

본 발명은 하기에 도면과 결부된 실시예에 의해 더 자세히 설명된다.The invention is explained in more detail by the examples which follow in conjunction with the drawings.

본 발명의 핵심은 전자 회로 시스템과 기판의 전기 접속을 실행하기 위한 압축 접속에 대해 부가로 적어도 전기 접속이 이루어지는 지점에서 금속 납땜 조인트가 제조된다는데 있다.The core of the present invention is that a metal solder joint is produced at least at the point of electrical connection to the compression connection for carrying out the electrical connection between the electronic circuit system and the substrate.

도 4에서 본 발명의 실시예에 의해 도 1 내지 도 3에서와 동일한 소자들은 동일한 도면 부호를 갖는다.In FIG. 4, the same elements as in FIGS. 1 to 3 have the same reference numerals according to the embodiment of the present invention.

이미 도 1에 의해 설명된 바와 같이, 도 4에 따른 배치에서도 마찬가지로 예컨대 집적 반도체 회로 시스템과 같은 전자 회로 시스템(10)과 예컨대 프린팅된 전기 회로 보오드와 같은 기판(20)간의 전기 기계적 접속이 나타난다. 전자 회로 시스템(10) 및 기판(20)은 재차 패드(11 및 21) 형태의 접속 소자들을 갖는다.As already explained by FIG. 1, the arrangement according to FIG. 4 likewise exhibits an electromechanical connection between an electronic circuit system 10, for example an integrated semiconductor circuit system, and a substrate 20, for example a printed electrical circuit board. The electronic circuit system 10 and the substrate 20 again have connection elements in the form of pads 11 and 21.

순수한 기계적 접속은 일점 쇄선으로 도시된 접착제(24), 예컨대 중합체에 의해 이루어지지만, 상기 접착제(24) 내에 도 1에 따른 공지된 실시예에서와 같은 순수한 기계적 전도성 입자(22, 23)가 아니라, 납땜 프로세스에 적합한 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)이 매립된다. 이러한 마이크로 캡슐의 실시예는 하기에서 더 자세히 설명된다.The pure mechanical connection is made by an adhesive 24, for example a polymer, shown in dashed lines, but in the adhesive 24 is not purely mechanically conductive particles 22, 23 as in the known embodiment according to FIG. Microcapsules 22-1, 22-2, 23-1, 23-2 suitable for the soldering process are embedded. Examples of such microcapsules are described in more detail below.

본 발명이 전자 회로 시스템(10)과 기판(20)의 순수한 기계적 접속을 실행하기 위한 접착제(24)를 포함하는 실시예에만 제한되는 것은 아니라는 것을 알 수 있을 것이다. 접착제 없이 실행되는 납땜 프로세스에 의한 접속이 제조되는 실시예도 가능하며, 이러한 실시예는 하기에 더 정확하게 설명되고 있다. 이는 전자 회로 시스템(10)과 기판의 의도된 전자에 의한 동작에 대해 비활성적인 패드(11, 21)에 의해 이루어질 수 있다. 이와 관련해서 볼 때 "비활성"이라는 개념은 상기 패드가 전자 회로 시스템(10) 내에, 또는 기판(20) 위 또는 기판(20) 내에 제공된 전자 기능 소자들에 전기 접속되지 않는다는 것을 의미한다.It will be appreciated that the present invention is not limited to embodiments that include an adhesive 24 to effect pure mechanical connection of the electronic circuit system 10 and the substrate 20. Embodiments in which a connection is made by a soldering process executed without adhesive are also possible, which are described more precisely below. This can be done by the pads 11, 21 which are inactive for the intended operation of the electronic circuit system 10 and the substrate. In this regard, the concept of "inactive" means that the pad is not electrically connected within the electronic circuit system 10 or to the electronic functional elements provided on or in the substrate 20.

하기에는 본 발명에 따른 의미에서의 납땜 조인트의 제 1 실시예가 설명된다.In the following a first embodiment of a solder joint in the sense according to the invention is described.

이 실시예에서 마이크로 캡슐은 유전체(22-2, 23-2)로 커버된 전도성 입자(22-1, 23-1)로 이루어지며, 상기 전도성 입자(22-1, 23-1)는 구리, 니켈, 은, 금, 납땜가능한 금속 합금로 이루어진 그룹으로부터 선택된 금속 또는 전도성 금속인 예컨대 은으로 커버된 주석 산화물과 같은 절연체로 이루어질 수 있다. 뒤에 언급된 타입의 마이크로 캡슐을 제조하는 방법은 예컨대 "JOURNAL OF MATERIALS SCIENCE" 28(1993), 5207-5210페이지에 공지되어 있다.In this embodiment the microcapsule consists of conductive particles 22-1, 23-1 covered with dielectrics 22-2, 23-2, wherein the conductive particles 22-1, 23-1 are copper, It may consist of an insulator such as tin oxide covered with silver, which is a metal or a conductive metal selected from the group consisting of nickel, silver, gold, a solderable metal alloy. Methods of making microcapsules of the type mentioned later are known, for example, from JOURNAL OF MATERIALS SCIENCE 28 (1993), pages 5207-5210.

유전체(22-2, 23-2)로는 납땜 액화제의 기능도 수행할 수 있는 절연 에나멜이 사용될 수 있다.As the dielectrics 22-2 and 23-2, an insulating enamel that can also function as a solder liquefaction agent can be used.

납땜 프로세스에 있어서 전자 회로 시스템(10)과 기판(20) 간의 도전 접속을 실현하기 위해 패드(11, 21) 위에는 땜납 층(25, 27)이 제공되며, 상기 땜납 층(25, 27)에는 주석, 인듐, 갈륨으로 이루어진 그룹으로부터 선택된 금속 또는 낮은 용융점을 갖는 금속 합금이 사용될 수 있다. 상기 땜납 층(25, 27)은 바람직하게 패드 면에 대한 선택적인 무전(electroless) 증착에 의해 제조됨으로써, 충분히 평평한 표면이 제조될 수 있다.Solder layers 25 and 27 are provided on the pads 11 and 21 to realize conductive connection between the electronic circuit system 10 and the substrate 20 in the soldering process, and the solder layers 25 and 27 are formed of tin. Metals selected from the group consisting of indium, gallium or metal alloys with low melting points can be used. The solder layers 25 and 27 are preferably manufactured by selective electroless deposition on the pad side, whereby a sufficiently flat surface can be produced.

본 발명에 따른 방법에 의해 접착제(24) 내에, 또는 도 4에 도시되지 않은 중합체 필름 내로 매립된 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)은 전자 회로 시스템(10)과 기판(20) 사이에 제공되어, 서로 마주놓인 패드(11, 21) 사이에 존재하는 마이크로 캡슐(23-1, 23-2)의 유전체(23-2)가 터질 정도로 강하게 압축된다. 이러한 배치는 압축된 이후 땜납 층(25, 27)의 땜납 재료의 용융 온도 보다 높은 온도에서 가열된다. 여기서, 용융된 땜납은 마이크로 캡슐(23-1, 23-2)의 전도성 입자(23-1)의 재료에 접촉되고 전도성이 좋은 금속 접속부가 제조된다.The microcapsules 22-1, 22-2, 23-1, and 23-2 embedded in the adhesive 24 by the method according to the invention or into the polymer film not shown in FIG. 4 are produced by the electronic circuit system 10. And the dielectric 23-2 of the microcapsules 23-1 and 23-2 present between the pads 11 and 21 facing each other, are compressed so as to burst. This arrangement is compressed and then heated at a temperature higher than the melting temperature of the solder material of the solder layers 25, 27. Here, the molten solder is in contact with the material of the conductive particles 23-1 of the microcapsules 23-1 and 23-2, and a highly conductive metal connection is produced.

패드(11, 21) 간의 가로 방향 갭 내에 제공된 마이크로 캡슐(22-1, 22-2)은 압축 과정에 의해 영향을 받지않기 때문에, 그것의 유전체(22-2)는 본래대로 남아 있게 됨으로써, 가로 방향 단락이 방지된다. 따라서, 본 발명에 따른 전기 기계적 접속부는 위에 언급된 의미에서 볼 때 비등방성으로 도전된다.Since the microcapsules 22-1 and 22-2 provided in the transverse gap between the pads 11 and 21 are not affected by the compression process, the dielectric 22-2 thereof remains intact, thereby Directional short circuits are avoided. Thus, the electromechanical connections according to the invention are anisotropically conductive in the sense mentioned above.

납땜할 때 확산 납땜 방법이 사용되는 것이 특히 바람직하다. 상기 방법에서 낮은 용융점을 갖는 땜납에 의해 고온에 대한 저항성을 갖는 금속 접속부가 제조되는데, 이때 땜납 금속이 높은 용융점을 갖는 접속될 금속에 의해 고온에 대해 저항성을 갖는, 그리고 기계적으로 매우 안정적인 금속간 위상(intermetallic phase)을 형성한다. 여기서, 낮은 용융점을 갖는 땜납 금속은 완전히 변환되는데, 즉 완전히 금속간 위상으로 변환된다. 이와 같은 납땜 방법은 예컨대 US-PS 5 053 195에 공지되어 있다.Particular preference is given to using a diffusion soldering method when soldering. In this method, a metal junction with high temperature resistance is produced by solder having a low melting point, wherein the solder metal is resistant to high temperature by a metal to be connected having a high melting point and mechanically very stable intermetallic phase. to form an intermetallic phase. Here, the solder metal having a low melting point is completely converted, that is, completely converted to an intermetallic phase. Such a soldering method is known, for example, from US-PS 5 053 195.

이러한 방법에 있어서 땜납 층(25, 27)은 10㎛의 두께, 바람직하게 10㎛ 보다 작은 두께를 갖는다. 상기 땜납 층(25, 27)은 예컨대 주석으로 이루어진다. 전도성 입자(23-1) 또는 금속 증착된 절연체의 형태의 입자의 금속 층, 그리고 경우에 따라서는 패드(11, 21)는 예컨대 구리 또는 니켈로 이루어진다. 확산 납땜 방법이 진행되는 동안 입자 금속 간의 접촉시 주석은 완전히 금속간 위상으로 변환되며, 상기 금속간 위상은 도 4에서 도면 부호 26, 28로 표기된다. 이미 설명된 바와 같이, 이때 제조되는 접속부는 땜납 금속 보다 높은 용융점을 가지며 높은 인장 강도 및 크리프 저항성과 같은 개선된 기계적 특성을 갖는다.In this way the solder layers 25 and 27 have a thickness of 10 μm, preferably less than 10 μm. The solder layers 25, 27 are made of tin, for example. The metal layer of particles in the form of conductive particles 23-1 or metal deposited insulators, and in some cases the pads 11 and 21, for example, consists of copper or nickel. During the diffusion soldering process, the tin is completely converted into an intermetallic phase upon contact between the grain metals, which are denoted by reference numerals 26 and 28 in FIG. 4. As already explained, the connections produced at this time have a higher melting point than the solder metal and have improved mechanical properties such as high tensile strength and creep resistance.

본 발명의 개선예에서 볼 때, 상기와 같은 납땜 프로세스에서 중요한 점은, 단일층으로 이루어진 마이크로 캡슐 층이 패드(11, 21) 사이에 존재하고 패드 상부면은 충분히 평평하다는 점이다. 그리고 나서, 서로 마주놓인 패드(11, 21) 사이에 존재하는 모든 마이크로 캡슐(23-1, 23-2)이 압착됨으로써, 상기 마이크로 캡슐(23-1, 23-2)의 전도성 입자(23-2)나 전도성 부분은 땜납 금속에 접촉된다.In a refinement of the invention, an important point in such a soldering process is that a single layer microcapsule layer is present between the pads 11 and 21 and the pad top surface is sufficiently flat. Then, all the microcapsules 23-1 and 23-2 present between the pads 11 and 21 facing each other are compressed to thereby form conductive particles 23-of the microcapsules 23-1 and 23-2. 2) or the conductive portion is in contact with the solder metal.

단일층 구조는 -이미 설명된 바와 같이- 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)이 미리 중합체 필름 내로 매립될 경우에 특히 양호하게 실현될 수 있다. 마이크로 캡슐이 매립되어 있는 상기와 같은 필름의 개별적인 구조 및 제조 방법은 예컨대 "IEEE", 1992, 473 내지 480, 그리고 487 내지 491페이지에 공지되어 있다. 상기와 같은 필름은 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)의 가로 방향 절연을 보장하고 스페이서(spacer)의 기능을 수행한다. 접속될 면에 매칭되는 형상 부분(shaped part)이 제조될 수 있다. 그리고 나서, 접착제(24)는 경우에 따라 생략될 수 있다.The monolayer structure can be realized particularly well if the microcapsules 22-1, 22-2, 23-1, 23-2 have already been embedded into the polymer film-as already described. Individual structures and methods of making such films in which microcapsules are embedded are known, for example, from "IEEE", 1992, 473-480, and pages 487-491. Such a film ensures the horizontal insulation of the microcapsules 22-1, 22-2, 23-1, and 23-2 and functions as a spacer. Shaped parts matching the face to be connected can be manufactured. Then, the adhesive 24 may be omitted in some cases.

위에 기술된 실시예는 도 4에 명확하게 도시되지 않는다는 것이 한번 더 언급될 것이다. 또한 접착제(24)가 존재하지 않을 때 위에 언급된 의미로 볼 때 비활성인 패드(11, 21)와 마이크로 캡슐(23-1, 23-2) 간의 납땜 조인트는 도 4에 명확하게 도시되지 않는다. 그러나, 도 4에서 예컨대 도면의 오른쪽 측면에 있는 양패드(11, 21)는 "비활성" 패드로, 왼쪽 측면에 있는 양 패드(11, 21)는 "활성" 패드로 간주될 수 있을 것이다.It will be mentioned once again that the embodiment described above is not explicitly shown in FIG. 4. In addition, the solder joint between the pads 11 and 21 and the microcapsules 23-1 and 23-2, which are inactive in the above-mentioned sense when no adhesive 24 is present, is not clearly shown in FIG. However, in FIG. 4, for example, both pads 11, 21 on the right side of the figure may be considered "inactive" pads, and both pads 11, 21 on the left side may be considered "active" pads.

본 발명의 부가의 실시예에서 적어도 부분적으로 땜납 금속으로 이루어지는 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)이 사용될 수 있다.In a further embodiment of the invention microcapsules 22-1, 22-2, 23-1, 23-2, which are at least partially made of solder metal, may be used.

이 실시예의 변형예에 따르면 전도성 입자(22-1, 23-1)는 완전히 땜납 금속으로 이루어지며, 땜납 금속으로는 주석, 인듐, 갈륨으로 이루어진 그룹으로부터 선택된 금속 또는 연납(soft solder) 합금이 사용될 수 있다. 그리고 나서, 전자석 회로 시스템(10) 및 기판(20)의 패드(11, 21)용 재료로는 구리, 니켈, 은, 금으로 이루어진 그룹으로부터 선택된 금속과 같은 납땜가능한 금속이 사용된다. 여기서, 패드(11, 21) 위에 제공되는 땜납 층(25, 27)은 생략될 수 있다.According to a variation of this embodiment, the conductive particles 22-1 and 23-1 are made entirely of solder metal, and a solder metal or soft solder alloy selected from the group consisting of tin, indium and gallium is used. Can be. Then, as a material for the pads 11 and 21 of the electromagnet circuit system 10 and the substrate 20, a solderable metal such as a metal selected from the group consisting of copper, nickel, silver and gold is used. Here, the solder layers 25 and 27 provided on the pads 11 and 21 may be omitted.

마이크로 캡슐(22-1, 22-2, 23-1, 23-2)의 전도성 입자(22-1, 23-1)는 이 실시예에서도 절연 에나멜 층의 형태인 유전체(22-2, 23-2)에 의해 둘러싸인다. 상기 절연 에나멜층은 위에 설명된 가로 방향으로의 절연 작용 뿐만 아니라 전자 회로 시스템(10)과 기판(20)의 패드(11, 21) 간의 가로 방향 갭 내에 제공된 특히 전도성 입자(22-1)가 납땜 프로세스가 진행되는 동안 가열될 때 융합되는 것, 그리고 이에 따라 가로 방향으로 단락되는 것을 막는다.The conductive particles 22-1, 23-1 of the microcapsules 22-1, 22-2, 23-1, 23-2 are also dielectrics 22-2, 23- in the form of an insulating enamel layer in this embodiment. 2) surrounded by The insulating enamel layer is soldered in particular by the conductive particles 22-1 provided in the transverse gap between the electronic circuit system 10 and the pads 11 and 21 of the substrate 20 as well as the transverse insulating action described above. It prevents fusion when heated during the process, and thus shorts in the transverse direction.

마이크로 캡슐(22-1, 22-2, 23-1, 23-2)의 전도성 입자(23-1, 23-2)의 땜납 재료가 납땜 프로세스시 흘러서, 절연 에나멜층이 쉽게 부서지기 때문에, 서로 마주놓인 패드(11, 21) 사이에서 이러한 절연 에나멜층이 터질 때 위에 언급된 마이크로 캡슐의 제 1 실시예에서와 같은 높은 압력은 요구되지 않는다. 땜납 재료가패드(11, 21)의 재료에 접촉될 때 납땜 조인트 및 전기 기계적 접촉이 생성된다.Since the solder material of the conductive particles 23-1, 23-2 of the microcapsules 22-1, 22-2, 23-1, 23-2 flows during the soldering process, the insulating enamel layer is easily broken, The high pressure as in the first embodiment of the microcapsules mentioned above is not required when this insulating enamel layer bursts between the facing pads 11 and 21. Solder joints and electromechanical contacts are created when the solder material is in contact with the material of the pads 11, 21.

패드 간의 가로 방향 갭 내에 제공된 마이크로 캡슐(22-1, 22-2)은 압착되지 않기 때문에, 그것의 절연 에나멜 층(22-2)은 본래대로 남아있다. 이러한 마이크로 캡슐은 접착제(24)의 사용시 상기 접착제(24)에 의해 결합되거나, 위에 설명된 의미에서 볼 때 중합체 막 내로 매립될 때는 상기 중합체 막에 의해 결합된다. 이때, 상기 마이크로 캡슐은 흘러나갈 수 없다.Since the microcapsules 22-1 and 22-2 provided in the transverse gaps between the pads are not compressed, its insulating enamel layer 22-2 remains intact. Such microcapsules are bound by the adhesive 24 in the use of adhesive 24 or by the polymer membrane when embedded into the polymer membrane in the sense described above. At this time, the microcapsules cannot flow out.

따라서, 이 실시예에서도 위에 설명된 확산 납땜 방법이 특히 바람직하다. 여기서, 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)의 전도성 입자(22-1, 23-1)는 예컨대 주석으로 이루어질 수 있고 전자 회로 시스템(10) 및 기판(20)의 패드(11, 21)는 구리 또는 니켈로 이루어질 수 있다. 상기 마이크로 캡슐의 전도성 입자가 10㎛ 보다 작은 직경을 가질 경우, 땜납 금속 및 패드 금속의 접촉시 주석은 완전히 금속간 위상(26, 28)으로 변환된다. 이때 재차 땜납 금속의 용융점 보다 훨씬 더 높은 용융점 및 높은 인장 강도 및 크리프 저항성과 같은 특별한 기계적 특성을 갖는 전기 기계적 접속부가 제조된다.Therefore, the diffusion soldering method described above is particularly preferable even in this embodiment. Here, the conductive particles 22-1, 23-1 of the microcapsules 22-1, 22-2, 23-1, 23-2 may be made of, for example, tin and the electronic circuit system 10 and the substrate 20. Pads 11 and 21 may be made of copper or nickel. When the conductive particles of the microcapsules have a diameter smaller than 10 μm, the tin is completely converted into the intermetallic phases 26 and 28 upon contact of the solder metal and the pad metal. Again an electromechanical connection is produced which has a much higher melting point than the melting point of the solder metal and special mechanical properties such as high tensile strength and creep resistance.

많은 근거로 볼 때 10㎛, 바람직하게는 10㎛ 보다 작은 직경을 갖는 작은 크기의 전도성 입자가 바람직하다.On many grounds small size conductive particles having a diameter of less than 10 μm, preferably less than 10 μm, are preferred.

첫째, 확산 납땜이 이루어질 때 화학적 변환의 프로세스는 전도성 입자가 두꺼우면 두꺼울 수록 더 길어진다. 예컨대 40㎛의 직경에서 반응은 30분 동안 지속된다. 10㎛ 보다 작은 직경에서의 반응 시간은 대략 몇 분 내에 이루어진다.First, the process of chemical conversion when diffusion soldering takes place, the thicker the conductive particles, the longer. For example, at a diameter of 40 μm, the reaction lasts for 30 minutes. Reaction times at diameters smaller than 10 μm occur in approximately a few minutes.

둘째, 패드(11, 21)는 변환 반응을 위한 충분한 금속이 공급될 수 있도록 하기 위해 충분히 두꺼워야만 한다. 바람직한 직경을 갖는 전도성 입자에서는 비교적 적은 땜납 금속이 사용될 수 있기 때문에, 완전한 변환을 위해서는 이에 상응하는 적은 패드 금속이 사용될 필요가 있다.Second, the pads 11 and 21 must be thick enough to allow sufficient metal to be supplied for the conversion reaction. Since relatively few solder metals can be used in the conductive particles having the desired diameter, correspondingly less pad metal needs to be used for complete conversion.

셋째, 전도성 입자의 작은 직경은 미세한 구조의 접촉부에 유리하며, 이는 큰 집적률을 갖는 집적 반도체 회로에 특히 장점을 제공한다.Third, the small diameter of the conductive particles is advantageous for the contact of the microstructure, which provides particular advantages for integrated semiconductor circuits having a high integration rate.

넷째, 전도성 입자의 직경은 납땜 조인트의 두께를 결정한다. 얇은 납땜 조인트는 개선된 파괴 특성을 갖는다. 5㎛ 보다 작은 두께에서 상기 조인트는 휠 때 탄성 작용을 하며, 두께가 10㎛ 보다 클 때는 부서지기 쉽기 때문에, 응력 균열이 쉽게 나타날 수 있다.Fourth, the diameter of the conductive particles determines the thickness of the braze joint. Thin solder joints have improved fracture properties. At thicknesses less than 5 μm, the joints are elastic when wheeling, and when they are larger than 10 μm, they are brittle, so stress cracking can easily occur.

위에 기술된 실시예의 변형예에서 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)의 전도성 입자(22-1, 22-2)는 완전히 땜납 재료로 이루어지는 것이 아니라, 땜납 재료에 의해 커버된 금속 코어로 이루어질 수 있다. 이는 예컨대 주석 땜납 층에 의해 커버된 구리 코어일 수 있다. 상기 주석 땜납 층이 주석-교체 배스(exchange bath) 내에서 무전 증착될 경우에 구리 코어의 가장 상부층이 이에 상응하는 얇은 주석층으로 대체된다. 주석층의 전형적인 두께는 200nm이다.In a variant of the embodiment described above, the conductive particles 22-1, 22-2 of the microcapsules 22-1, 22-2, 23-1, 23-2 are not entirely made of a solder material, but are solder materials. It can be made of a metal core covered by. It may be for example a copper core covered by a tin solder layer. When the tin solder layer is electrolessly deposited in a tin-exchange bath, the top layer of the copper core is replaced with a corresponding thin tin layer. Typical thickness of the tin layer is 200 nm.

물체(object)의 전기 기계적 접속시 사용하기 위한 이러한 타입의 전도성 입자의 용도는 예컨대 "Electronic Components and Technology Conference", 1996, 565-570페이지에 공지되어 있다. 상기 문서에는 낮은 용융점의 금속(땜납 금속)으로 커버된 전도성 충전제 분말, 열가소성 중합체 플라스틱, 그리고 소량의 부가의 유기 첨가제로 이루어진 전도성 접착제 재료가 기술된다. 여기서, 충전제 입자는물체 간의 접속이 제조될 때 낮은 용융점을 갖는 금속으로 코팅되며, 상기 금속은 인접한 충전제 입자 사이, 그리고 충전제 입자와 금속 접속 소자 사이의 야금 접속을 실현하기 위해 접속될 물체 위에 용융된다. 이러한 접속은 도 1에 따른 배치에 상응한다. 여기서도 위에 기술된 문제점들, 즉 중합체 플라스틱으로 형성된 접착제 및 전도성 입자의 충전률에 관련된 문제들이 나타난다.The use of conductive particles of this type for use in the electromechanical connection of objects is known, for example, from "Electronic Components and Technology Conference", 1996, pages 565-570. The document describes a conductive adhesive powder consisting of a conductive filler powder covered with a low melting point metal (solder metal), a thermoplastic polymer plastic, and a small amount of additional organic additives. Here, the filler particles are coated with a metal having a low melting point when the connection between objects is made, and the metal is melted on the object to be connected to realize metallurgical connection between adjacent filler particles and between the filler particles and the metal connecting element. . This connection corresponds to the arrangement according to FIG. 1. Here too, the problems described above, namely, the problems related to the filling rate of the adhesive particles and the conductive particles formed from the polymer plastics, appear.

위에 기술된 2개의 실시예에서와 마찬가지로 이러한 전도성 입자(22-1, 22-2)는 절연 에나멜 층의 형태로 제공된 유전체(22-2, 23-2)에 의해 커버된다. 전도성 입자가 2 부분으로 형성될 수 있다는 사실이 도 2 내지 4에 명확하게 도시되지 않는다는 것이 언급될 것이다.As in the two embodiments described above, these conductive particles 22-1 and 22-2 are covered by dielectrics 22-2 and 23-2 provided in the form of insulating enamel layers. It will be mentioned that the fact that the conductive particles can be formed in two parts is not clearly shown in FIGS.

땜납 금속으로 커버된 금속 코어의 형태로 제공된 전도성 입자(22-1, 23-1)의 장점은, 바람직하게는 확산 납땜 프로세스의 형태인 납땜 프로세스가 전체적으로 매우 얇은 땜납 층 때문에 매우 신속하고 정확하게 실행된다는데 있다. 부가의 장점은, 패드(11, 21) 간의 가로 방향 갭 내에 제공된, 패드(11, 21)에 접촉되지 않는 마이크로 캡슐(22-1, 22-2)에서도 땜납은 코어 금속에 반응하고 금속간 위상으로 변환된다는데 있다. 따라서, 이러한 마이크로 캡슐은 땜납의 용융 온도 보다 높은 온도에 대해 안정적이다. 왜냐하면, 상기 마이크로 캡슐은 더 이상 액화될 수 없기 때문이다.The advantage of the conductive particles 22-1, 23-1 provided in the form of a metal core covered with solder metal is that the soldering process, preferably in the form of a diffusion soldering process, is carried out very quickly and accurately due to the very thin solder layer as a whole. There is. An additional advantage is that even in microcapsules 22-1, 22-2, which are not in contact with the pads 11, 21, provided in the transverse gap between the pads 11, 21, the solder reacts to the core metal and the intermetallic phase is present. Is converted to. Thus, these microcapsules are stable to temperatures higher than the melting temperature of the solder. This is because the microcapsules can no longer be liquefied.

또한 전도성 입자의 땜납 층의 적은 두께 및 그 결과로서 나타나는 비교적 작은 땜납 금속의 양 때문에 패드(11, 21)의 두께가 감소될 수 있다. 왜냐하면, 땜납의 양을 완전히 변환시키기 위해 이에 상응하는 적은 양의 패드 재료가 요구되기 때문이다. 땜납 층의 두께가 작아야되는 부가의 원인은, 전도성 입자의 땜납이 절연 에나멜 층이 터질때에도 더 이상 "흘러나올" 수 없기 때문에 패드가 더 이상 상승되어서는 안된다는데 있다. 이때, 땜납은 작은 층 두께 때문에 금속 코어 표면의 습윤 상태가 양호할 때 상기 금속 코어 표면에 접착되어 있다.The thickness of the pads 11 and 21 can also be reduced because of the small thickness of the solder layer of conductive particles and the resulting relatively small amount of solder metal. This is because a correspondingly small amount of pad material is required to completely convert the amount of solder. An additional cause for the thickness of the solder layer to be small is that the pads should no longer be raised because the solder of the conductive particles can no longer "flow" when the insulating enamel layer bursts. At this time, the solder adheres to the metal core surface when the wet state of the metal core surface is good because of the small layer thickness.

상기 근거들로 볼 때, 모든 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)에서 패드(11, 21) 사이, 그리고 장치의 동작 온도에 있는 서로 마주놓인 패드 사이의 가로 방향 갭 내에는 단락을 야기하는 액체 땜납은 더 이상 형성될 수 없다.In view of the above, the transverse spaces between pads 11 and 21 in all microcapsules 22-1, 22-2, 23-1 and 23-2, and between opposite pads at the operating temperature of the device Within the directional gap, liquid solder causing short circuits can no longer be formed.

패드(11, 21)와의 전기 기계적 접촉은 전도성 입자(23-1, 23-2)의 땜납과 패드(11, 21)의 금속과의 반응에 의해 생성된다.Electromechanical contact with the pads 11, 21 is produced by the reaction of the solder of the conductive particles 23-1, 23-2 with the metal of the pads 11, 21.

특히 패드(11, 21) 위에 제공된, 땜납 금속과 다른 금속 및 땜납 층(25, 27)으로 이루어진 전도성 입자(22-1, 23-1), 그리고 땜납 층으로 커버된 금속 코어로 이루어진 전도성 입자를 포함하는 실시예에서의 부가의 장점은, 확산 납땜 방법에서 금속간 위상(26, 28)의 형태로 제공된, 특히 잘 제어될 수 있는 얇은 땜납 층이 제조될 수 있다는데 있다.In particular, conductive particles 22-1 and 23-1 made of solder metal and other metals and solder layers 25 and 27, provided on the pads 11 and 21, and conductive particles made of a metal core covered with a solder layer, An additional advantage in the incorporating embodiment is that in the diffusion soldering method, a particularly well controllable thin solder layer provided in the form of intermetallic phases 26, 28 can be produced.

위에 기술된 실시예에서 마이크로 캡슐(22-1, 22-2, 23-1, 23-2)은 중합체 막 내로 언급된 중합체(24) 또는 액화제와 같은 절연 액체가 매립되는 것을 포함하는 변형예와는 별도로, 패이스트로 처리될 수 있다. 접착제의 경우 접착 본드 및 납땜 조인트의 장점들이 서로 조합될 수 있다. 이러한 접착 본드는 부가의 기계적 안정성 및 안전한 전기 접속부의 납땜 조인트를 보장한다.In the above-described embodiment, the microcapsules 22-1, 22-2, 23-1, 23-2 are variations in which an insulating liquid such as the polymer 24 or the liquefiing agent mentioned in the polymer film is embedded. Apart from this, it can be treated as a paste. In the case of adhesives, the advantages of adhesive bonds and solder joints can be combined with each other. This adhesive bond ensures additional mechanical stability and solder joints of the safe electrical connections.

요약하자면, 바람직한 확산 납땜시 마이크로 캡슐 또는 전자 회로 시스템과기판 위의 접속 소자 위에 제공된 얇은 층으로서의 땜납 재료가 완전히 금속간 위상으로 변환되며, 즉 땜납 재료의 잔여물이 남아있지 않기 때문에, 본 발명에 따라 크리프 저항성을 갖는 접속부가 제조될 수 있다는 것이 한번 더 언급될 것이다. 또한 이러한 얇은 땜납 재료 층은 납땜 프로세스가 비교적 신속하게 실행되는 것을 보장한다.In summary, in the preferred diffusion soldering, the solder material as a thin layer provided over the microcapsule or electronic circuit system and the connecting element on the substrate is completely converted into an intermetallic phase, i.e., no residue of the solder material remains, It will be mentioned once again that a connection with creep resistance can thus be produced. This thin layer of solder material also ensures that the soldering process runs relatively quickly.

또한 마이크로 캡슐의 높은 충전률 때문에 접속 소자 구조물의 크기가 작을 때에도 양호한 열 전도시 안전한 전기 접속이 보장되고, -납땜된 마이크로 캡슐에 의한 기계적 납땜 조인트 때문에- 순수한 접착 본드에 비해 훨씬 더 안전한 기계적 접속부가 보장된다.The high filling rate of the microcapsules also ensures good thermal conduction and safe electrical connection even when the size of the connection element structure is small, and because of the mechanical solder joints by the soldered microcapsules-a much safer mechanical connection than a pure adhesive bond. Guaranteed.

최종적으로 접속 과정이 전체적으로 산화 금속, 유리 또는 세라믹 또는 접합제(binder)로 이루어진 절연 잔여물이 접속부에 남아있지 않도록 형성될 수 있기 때문에 전기 기계적 접속부의 고온에 대한 안정성이 보장된다.Finally, the stability of the electromechanical connections is ensured, since the connection process can be formed so that the insulating residue, which consists entirely of metal oxide, glass or ceramic or binder, does not remain in the connection.

Claims (34)

전자 회로 시스템(10) 및 기판(20)이 기계적으로 서로 고정 접속되고, 상기 전자 회로 시스템(10) 및 기판(20) 위에 제공된 전기 접속 소자(11, 21)는 마이크로 캡슐(23-1, 23-2)에 의해 도전 접속되며, 상기 마이크로 캡슐(23-1, 23-2)은 유전체(23-2)로 코팅된 적어도 부분적으로 전도성 입자(23-1)로 형성되며, 상기 마이크로 캡슐(23-1, 23-2)의 유전체(23-2)는 전도성 입자(23-1)를 적어도 부분적으로 노출시키기 위한 기계적 압력에 의해 터지도록 형성된, 전자 회로 시스템(10)과 기판(20) 간의 전기 기계적 접속부에 있어서,The electronic circuit system 10 and the substrate 20 are mechanically fixed to each other, and the electrical connection elements 11 and 21 provided on the electronic circuit system 10 and the substrate 20 are microcapsules 23-1 and 23. -2), the microcapsules 23-1, 23-2 are formed of at least partially conductive particles 23-1 coated with a dielectric 23-2, and the microcapsules 23 Dielectrics 23-2 of -1, 23-2 are formed between the electronic circuit system 10 and the substrate 20, which are formed to burst by mechanical pressure to at least partially expose the conductive particles 23-1. In the mechanical connection, 전도성 납땜 조인트(25 내지 28)가 전자 회로 시스템(10) 및 기판(20)의, 마이크로 캡슐(23-1, 23-2)과 전도성 접속 소자(11, 21) 사이에 제공되는 것을 특징으로 하는 전기 기계적 접속부.A conductive solder joint 25 to 28 is provided between the microcapsules 23-1 and 23-2 and the conductive connecting elements 11 and 21 of the electronic circuit system 10 and the substrate 20. Electromechanical connections. 제 1항에 있어서,The method of claim 1, 상기 전자 회로 시스템(10)과 기판(20) 간의 기계적으로 고정된 접속부는 접착제(24)에 의해 제공되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connections, characterized in that the mechanically fixed connection between the electronic circuit system (10) and the substrate (20) is provided by an adhesive (24). 제 1항 및 2항에 있어서,The method according to claim 1 and 2, 상기 접착제(24)로는 중합체가 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that a polymer is used as the adhesive (24). 제 1항 내지 3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 마이크로 캡슐(23-1, 23-2)은 상기 접착제(24) 내로 매립되는 것을 특징으로 하는 전기 기계적 접속부.And the microcapsule (23-1, 23-2) is embedded into the adhesive (24). 제 1항에 있어서,The method of claim 1, 상기 전자 회로 시스템(10)과 기판(20) 간의 기계적으로 고정된 접속부가 상기 전자 회로 시스템(10) 및 기판(20)의 의도된 전자에 의한 동작에 대해 비활성인 접속 소자(11, 21) 간의 납땜 조인트로 형성되는 것을 특징으로 하는 전기 기계적 접속부.The mechanically fixed connection between the electronic circuit system 10 and the substrate 20 is between the connection elements 11, 21 which are inactive with respect to the intended electronics operation of the electronic circuit system 10 and the substrate 20. An electromechanical connection, characterized in that it is formed from a soldered joint. 제 1항 내지 5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5, 상기 마이크로 캡슐(23-1, 23-2)로서 상기 유전체(23-2)로 커버된, 구리, 니켈, 은, 금으로 이루어진 금속 그룹으로부터 선택되는 전도성 금속 입자(23-1)가 사용되는 것을 특징으로 하는 전기 기계적 접속부.As the microcapsules 23-1 and 23-2, conductive metal particles 23-1 selected from a metal group consisting of copper, nickel, silver and gold, covered with the dielectric 23-2, are used. Characterized by an electromechanical connection. 제 1항 내지 5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5, 상기 마이크로 캡슐(23-1, 23-2)로서 상기 유전체(23-2)로 커버된, 납땜가능한 금속 합금으로 이루어진 전도성 금속 입자(23-1)가 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that as the microcapsules (23-1, 23-2), conductive metal particles (23-1) made of a solderable metal alloy covered with the dielectric (23-2) are used. 제 1항 내지 5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5, 상기 마이크로 캡슐(23-1, 23-2)로는 상기 유전체(23-2)로 커버된 금속 증착된 절연 입자(23-1)가 사용되는 것을 특징으로 하는 전기 기계적 접속부.The microcapsule (23-1, 23-2) is an electromechanical connection, characterized in that metal deposited insulating particles (23-1) covered with the dielectric (23-2) are used. 제 8항에 있어서,The method of claim 8, 상기 금속 증착된 절연 입자(23-1)로는 은으로 도금된 주석 산화물 입자가 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electro-mechanical connection portion, characterized in that the tin oxide particles plated with silver is used as the metal-deposited insulating particles (23-1). 제 6항 내지 9항 중 어느 한 항에 있어서,The method according to any one of claims 6 to 9, 상기 마이크로 캡슐(23-1, 23-2)의 유전체(23-2)로는 절연 에나멜이 사용되는 것을 특징으로 하는 전기 기계적 접속부.Insulation enamel is used as the dielectric (23-2) of the microcapsules (23-1, 23-2). 제 10항에 있어서,The method of claim 10, 상기 절연 에나멜로는 납땜 액화제가 사용되는 것을 특징으로 하는 전기 기계적 접속부.The insulating enamel is an electromechanical connection, characterized in that a brazing liquefier is used. 제 1항 내지 11항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 11, 상기 마이크로 캡슐(23-1, 23-2) 및 땜납 층(25, 27)의 전도성 입자(23-1)의 재료로 이루어진 금속간 위상(26, 28)의 형성하에, 접속 소자(11, 21) 위에 제공된땜납 층(25, 27)의 납땜에 의해 전자 회로 시스템(10) 및 기판(20)의 접속 소자(11, 21) 사이에 전도성 납땜 조인트(25 내지 28)가 형성되는 것을 특징으로 하는 전기 기계적 접속부.Under the formation of the intermetallic phases 26, 28 made of the material of the microcapsules 23-1, 23-2 and the conductive particles 23-1 of the solder layers 25, 27, the connection elements 11, 21 Conductive solder joints 25 to 28 are formed between the electronic circuit system 10 and the connection elements 11 and 21 of the substrate 20 by the soldering of the solder layers 25 and 27 provided above. Electromechanical connections. 제 12항에 있어서,The method of claim 12, 상기 땜납 층(25, 27)을 위한 재료로는 주석, 인듐, 갈륨으로 이루어진 그룹으로부터 선택된 금속이 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that a metal selected from the group consisting of tin, indium and gallium is used as the material for the solder layer (25, 27). 제 12항에 있어서,The method of claim 12, 상기 땜납 층(25, 27)을 위한 재료로는 낮은 용융점을 갖는 금속 합금이 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that a metal alloy having a low melting point is used as the material for the solder layer (25, 27). 제 13항 또는 14항에 있어서,The method according to claim 13 or 14, 상기 땜납 층(25, 27)은 교대로 무전 증착되는 것을 특징으로 하는 전기 기계적 접속부.And the solder layers (25, 27) are alternately electrolessly deposited. 제 1항 내지 15항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 15, 상기 전자 회로 시스템(10) 및 기판(20)의 접속 소자(11, 21)를 위한 재료로는 상기 마이크로 캡슐(23-1, 23-2)의 전도성 입자(23-1)의 금속 재료에 매칭된 금속 재료가 사용되는 것을 특징으로 하는 전기 기계적 접속부.As a material for the connection elements 11 and 21 of the electronic circuit system 10 and the substrate 20, matching with the metal material of the conductive particles 23-1 of the microcapsules 23-1 and 23-2. Electromechanical connection, characterized in that a metal material is used. 제 16항에 있어서,The method of claim 16, 상기 접속 소자(11, 21)를 위한 재료로는 구리 또는 니켈이 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that copper or nickel is used as material for the connection element (11, 21). 제 1항 내지 17항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 17, 상기 마이크로 캡슐(23-1, 23-2)로 이루어진, 중합체 필름 내에 매립된 단일층으로 형성된 동일한 크기의 층이 제공되는 것을 특징으로 하는 전기 기계적 접속부.An electromechanical connection, characterized in that the same sized layer formed of a single layer embedded in a polymer film is provided, consisting of the microcapsules (23-1, 23-2). 제 1항 내지 5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5, 상기 마이크로 캡슐(23-1, 23-2)로는 절연 에나멜(23-2)로 커버된 전도성 금속 입자(23-1)가 사용되며, 상기 금속 입자(23-1)는 적어도 부분적으로 땜납 금속으로 이루어지는 것을 특징으로 하는 전기 기계적 접속부.As the microcapsules 23-1 and 23-2, conductive metal particles 23-1 covered with insulating enamel 23-2 are used, and the metal particles 23-1 are at least partially solder metal. Electromechanical connection, characterized in that made. 제 19항에 있어서,The method of claim 19, 상기 마이크로 캡슐(23-1, 23-2)의 전도성 입자(23-1)는 완전히 땜납 금속으로 이루어지는 것을 특징으로 하는 전기 기계적 접속부.And the conductive particles (23-1) of the microcapsules (23-1, 23-2) are made entirely of solder metal. 제 19항 또는 20항에 있어서,The method of claim 19 or 20, 상기 전도성 입자(23-1)를 위해 주석, 인듐, 갈륨으로 이루어진 그룹으로부터 선택된 땜납 금속이 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that for the conductive particles (23-1) a solder metal selected from the group consisting of tin, indium and gallium is used. 제 19항 또는 20항에 있어서,The method of claim 19 or 20, 상기 전도성 입자(23-1)를 위해 연납 합금이 사용되는 것을 특징으로 하는 전기 기계적 접속부.An electromechanical connection, characterized in that a solder alloy is used for the conductive particles (23-1). 제 19항 내지 22항 중 어느 한 항에 있어서,The method according to any one of claims 19 to 22, 상기 전자 회로 시스템(10) 및 기판(20)의 접속 소자(11, 21)를 위해 납땜가능한 금속이 사용되는 것을 특징으로 하는 전기 기계적 접속부.An electromechanical connection, characterized in that a solderable metal is used for the connection element (11, 21) of the electronic circuit system (10) and the substrate (20). 제 23항에 있어서,The method of claim 23, wherein 상기 접속 소자(11, 21)용 납땜가능한 금속으로는 구리, 니켈, 은, 금으로 이루어진 그룹으로부터 선택된 금속이 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that a metal selected from the group consisting of copper, nickel, silver and gold is used as the solderable metal for the connection element (11, 21). 제 19항에 있어서,The method of claim 19, 상기 마이크로 캡슐(23-1, 23-2)의 전도성 입자(23-1)는 땜납 재료로 커버된 전도성 금속 코어로 형성되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that the conductive particles (23-1) of the microcapsules (23-1, 23-2) are formed of a conductive metal core covered with solder material. 제 25항에 있어서,The method of claim 25, 상기 전도성 금속 코어용 재료로는 구리가 사용되는 것을 특징으로 하는 전기 기계적 접속부.And the copper is used as the material for the conductive metal core. 제 25항에 있어서,The method of claim 25, 상기 코어 커버링용 땜납 재료로는 주석이 사용되는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that tin is used as the core covering solder material. 제 1항 내지 27항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 27, 상기 마이크로 캡슐(23-1, 23-2)의 전도성 입자(23-1)는 10㎛, 바람직하게는 10㎛ 보다 작은 직경을 갖는 것을 특징으로 하는 전기 기계적 접속부.Electromechanical connection, characterized in that the conductive particles (23-1) of the microcapsules (23-1, 23-2) have a diameter smaller than 10 mu m, preferably 10 mu m. 제 27항에 있어서,The method of claim 27, 상기 주석 코어 커버링은 200nm의 두께를 갖는 것을 특징으로 하는 전기 기계적 접속부.And wherein said tin core covering has a thickness of 200 nm. 제 1항 내지 18항 중 어느 한 항에 있어서,The method of claim 1, wherein 상기 접속 소자(11, 21) 위에 제공된 땜납 층이 10㎛, 바람직하게는 10㎛ 보다 작은 두께를 갖는 것을 특징으로 하는 전기 기계적 접속부.An electromechanical connection, characterized in that the solder layer provided on the connection element (11, 21) has a thickness of less than 10 mu m, preferably 10 mu m. 제 1항 내지 30항 중 어느 한 항에 따른, 전기 기계적 접속부의 제조 방법에 있어서,In the method of manufacturing an electromechanical connection according to any one of claims 1 to 30, 접착제(24) 또는 중합체 필름 내에 매립된 마이크로 캡슐(23-1, 23-2)을 전자 회로 시스템(10)과 기판(20) 사이에 삽입한 후에, 서로 마주놓인 접속 소자(11, 21) 사이에 존재하는 전도성 입자(23-1) 위에 제공된 유전체(23-2)가 터져서, 마이크로 캡슐(23-1, 23-2) 간의 납땜 조인트(25 내지 28)가 확산 납땜에 의해 제조될 정도로 상기 마이크로 캡슐(23-1, 23-2)을 강하게 압축시키는 것을 특징으로 하는 방법.After inserting the microcapsules 23-1 and 23-2 embedded in the adhesive 24 or the polymer film between the electronic circuit system 10 and the substrate 20, between the connecting elements 11 and 21 facing each other. The dielectric 23-2 provided on the conductive particles 23-1 present in the ruptures so that the solder joints 25 to 28 between the microcapsules 23-1 and 23-2 are manufactured by diffusion soldering. Method for compressing the capsule (23-1, 23-2) strongly. 제 31항에 있어서,The method of claim 31, wherein 상기 접속 소자(11, 21) 위에, 금속 증착된 절연체 및 땜납 금속 형태의, 전도성 입자(23-1) 또는 입자(23-1)의 금속 사이에서 실행되는 확산 납땜 프로세스시 상기 땜납 금속이 완전히 금속간 위상(26, 28)으로 변환될 정도의 두께인 땜납 금속 층(25, 27)을 제공하는 것을 특징으로 하는 방법.On the connection elements 11 and 21, the solder metal is completely metal during the diffusion soldering process performed between the conductive particles 23-1 or the metal of the particles 23-1, in the form of metal deposited insulators and solder metals. Providing a solder metal layer (25, 27) that is thick enough to be converted to an inter phase (26, 28). 제 31항에 있어서,The method of claim 31, wherein 완전히 땜납 금속으로 이루어진 전도성 입자(23-1)를 갖는 마이크로 캡슐(23-1, 23-2)을 사용할 때, 그리고 전자 회로 시스템(10) 및 기판(20) 위에 제공된 땜납 금속을 갖지 않는 접속 소자(11, 21)를 사용할 때 상기 접속 소자(11, 21)의 두께를, 확산 납땜시 변환 프로세스를 위한 충분한 재료가 사용될 수 있을정도로 선택하는 것을 특징으로 하는 방법.When using microcapsules 23-1, 23-2 having conductive particles 23-1 made entirely of solder metal, and connecting elements having no solder metal provided on the electronic circuit system 10 and the substrate 20 When using (11, 21) the thickness of the connection element (11, 21) is selected such that sufficient material for the conversion process in diffusion soldering can be used. 제 31항에 있어서,The method of claim 31, wherein 땜납 금속으로 커버된 전도성 금속 코어로 이루어진 전도성 입자(23-1)를 갖는 마이크로 캡슐(23-1, 23-2)을 사용할 때, 그리고 전자 회로 시스템(10) 및 기판(20) 위에 제공된 땜납 금속을 갖지 않는 접속 소자(11, 21)를 사용할 때 상기 접속 소자(11, 21) 및 땜납 금속의 두께를, 상기 접속 소자 재료와 땜납 금속을 포함하는 코어 금속 간의 변환 프로세스를 위한 확산 납땜시 그것의 재료가 충분해질 정도로 선택하는 것을 특징으로 하는 방법.Solder metal provided on the electronic circuit system 10 and the substrate 20 and when using the microcapsules 23-1, 23-2 having the conductive particles 23-1 made of a conductive metal core covered with solder metal. The thickness of the connecting elements 11 and 21 and the solder metal when using the connecting elements 11 and 21 which do not have a thickness thereof is determined in diffusion soldering for the conversion process between the connecting element material and the core metal including the solder metal. Selecting enough material.
KR1020017016924A 1999-06-30 2000-06-19 Electrical-mechanical connection between electronic circuit systems and substrates and method for the production thereof KR20020022079A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19930189 1999-06-30
DE19930189.1 1999-06-30
PCT/DE2000/002012 WO2001003175A1 (en) 1999-06-30 2000-06-19 Electrical-mechanical connection between electronic circuit systems and substrates and method for the production thereof

Publications (1)

Publication Number Publication Date
KR20020022079A true KR20020022079A (en) 2002-03-23

Family

ID=7913204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020017016924A KR20020022079A (en) 1999-06-30 2000-06-19 Electrical-mechanical connection between electronic circuit systems and substrates and method for the production thereof

Country Status (4)

Country Link
EP (1) EP1192654A1 (en)
JP (1) JP2003504847A (en)
KR (1) KR20020022079A (en)
WO (1) WO2001003175A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847412B2 (en) * 2012-11-09 2014-09-30 Invensas Corporation Microelectronic assembly with thermally and electrically conductive underfill
KR20210004324A (en) 2019-07-04 2021-01-13 삼성전자주식회사 Micro led display module and manufacturing method of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265077A3 (en) * 1986-09-25 1989-03-08 Sheldahl, Inc. An anisotropic adhesive for bonding electrical components
JPH02294097A (en) * 1989-05-08 1990-12-05 Mitsubishi Electric Corp Terminal connecting microcapsule for semiconductor device
JPH0371570A (en) * 1989-08-10 1991-03-27 Casio Comput Co Ltd Binder for conduction and conductive connection structure
TW340132B (en) * 1994-10-20 1998-09-11 Ibm Structure for use as an electrical interconnection means and process for preparing the same
US5749997A (en) * 1995-12-27 1998-05-12 Industrial Technology Research Institute Composite bump tape automated bonding method and bonded structure
DE19640192A1 (en) * 1996-09-30 1998-04-02 Bosch Gmbh Robert Process for flip chip assembly

Also Published As

Publication number Publication date
JP2003504847A (en) 2003-02-04
EP1192654A1 (en) 2002-04-03
WO2001003175A1 (en) 2001-01-11

Similar Documents

Publication Publication Date Title
CN1247053C (en) Multilayer circuit board and method for manufacturing multilayer circuit board
US20110067908A1 (en) Method for producing a printed circuit board and use and printed circuit board
US6608381B1 (en) Integrated electronic device having flip-chip connection with circuit board and fabrication method thereof
US5367195A (en) Structure and method for a superbarrier to prevent diffusion between a noble and a non-noble metal
US6730856B2 (en) Ceramic circuit board and method for manufacturing the same
KR101300384B1 (en) Conductive material, conductive paste, circuit board, and semiconductor device
US8643185B2 (en) Semiconductor apparatus, manufacturing method of semiconductor apparatus, and joint material
JP3045956B2 (en) Metal bond forming method
JPH04234139A (en) Method for direct attachment of semicon- ductor chip to board
JP2020520807A (en) Lead-free solder film for diffusion soldering and method for its manufacture
KR20050022303A (en) Circuit device
JP4672576B2 (en) Electronic device and manufacturing method thereof
EP0751847A1 (en) A method for joining metals by soldering
US5837356A (en) Wiring board and method for manufacturing the same
CN111052347B (en) High density multi-component and tandem package
KR20020022079A (en) Electrical-mechanical connection between electronic circuit systems and substrates and method for the production thereof
JP4917375B2 (en) Power semiconductor module manufacturing method
US20130140067A1 (en) Wafer or circuit board and joining structure of wafer or circuit board
JP2005050886A (en) Compound substrate and its manufacturing method
JPS60140790A (en) Coupling sheet
JP3438583B2 (en) Anisotropic conductive film connection method
WO2024090143A1 (en) Device, electrical device, and substrate
WO2023153163A1 (en) Flip-chip mounting structure and flip-chip mounting method
JPH11260964A (en) Semiconductor package
JP2015109334A (en) Semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application