KR20020006800A - Electrolyte for lithium secondary rechargeable battery - Google Patents

Electrolyte for lithium secondary rechargeable battery Download PDF

Info

Publication number
KR20020006800A
KR20020006800A KR1020000040233A KR20000040233A KR20020006800A KR 20020006800 A KR20020006800 A KR 20020006800A KR 1020000040233 A KR1020000040233 A KR 1020000040233A KR 20000040233 A KR20000040233 A KR 20000040233A KR 20020006800 A KR20020006800 A KR 20020006800A
Authority
KR
South Korea
Prior art keywords
lithium
electrolyte
battery
carbonate
nonionic surfactant
Prior art date
Application number
KR1020000040233A
Other languages
Korean (ko)
Inventor
김순식
한승우
박규태
김영재
이은숙
Original Assignee
한승우
새한에너테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한승우, 새한에너테크 주식회사 filed Critical 한승우
Priority to KR1020000040233A priority Critical patent/KR20020006800A/en
Publication of KR20020006800A publication Critical patent/KR20020006800A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: An electrolyte solution for a lithium secondary battery is provided, to inhibit the degradation of an electrolyte solution at an electrode in overcharging and overdischarging or at a high temperature, thereby increasing the charging/discharging efficiency and the lifetime of a battery and to inhibit the impedance inside of a battery, thereby improving the self-discharging property of a battery. CONSTITUTION: The electrolyte solution comprises an aprotic organic solvent; a lithium salt; and 0.01-10 wt% of a nonionic surfactant. The nonionic surfactant is a fluoro aliphatic ester-based polymer or a fluoro aliphatic ether-based polymer, and whose one terminal is a lipophilic group and another terminal is a fluorocarbonyl group. Preferably the aprotic organic solvent is at least two compounds selected from the group consisting of ethylene carbonate, propylene carbonate, γ-butyrolactone, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and tetrahydrofuran. The lithium salt is selected from the group consisting of LiClO4, LiBF4, LiCF3SO3, LiPF6 and their mixtures.

Description

리튬 이차전지용 전해액{Electrolyte for lithium secondary rechargeable battery}Electrolyte for lithium secondary battery {Electrolyte for lithium secondary rechargeable battery}

본 발명은 비양자성 유기용매, 리튬염 및 계면활성제를 포함하는 리튬이차전지용 전해액에 관한 것이다.The present invention relates to an electrolyte solution for a lithium secondary battery containing an aprotic organic solvent, a lithium salt and a surfactant.

전기 화학적인 산화/환원반응을 통하여 양극 및 음극 활물질의 화학적 에너지를 전기에너지로 변환시킬 수 있는 장치를 전지라고 하며, 특히 리튬이온의 삽입 및 탈리가 가능한 탄소재 및 리튬복합산화물을 각각 활물질로 쓴 음극과 양극 및 리튬이온의 매개체로 비수 전해액을 쓰는 리튬이차전지가 개발되어 널리 쓰이고 있다. 음극 활물질은 구조적, 전기적 성질을 유지하면서 가역적으로 리튬이온을 삽입, 탈리시 케미칼 포텐셜이 금속 리튬과 유사한 탄소계 물질이 주로 사용되어 왔다. 음극 활물질은 전위평탄성이 양호하고 상대적으로 크지만, 충방전 가역성이 우수하나 용량이 작은 결정질계 탄소와 용량은 상대적으로 크지만, 충반전 비가역성이 큰 비결정질계 탄소로 나눈다. 결정질계 탄소가 충방전 효율이 85∼92%로서 비가역용량이 작은 반면에 비결정질계 탄소는 비가역 용량이 20∼30%로 매우 높다.A device that converts chemical energy of positive and negative electrode active materials into electrical energy through electrochemical oxidation / reduction reactions is called a battery. In particular, carbon materials and lithium composite oxides that can insert and detach lithium ions are used as active materials. Lithium secondary batteries using a nonaqueous electrolyte as a medium of a negative electrode, a positive electrode, and lithium ions have been developed and widely used. In the negative electrode active material, lithium ions are reversibly intercalated while maintaining structural and electrical properties, and carbon-based materials similar to metallic lithium during desorption have been mainly used. Although the negative electrode active material has good potential flatness and is relatively large, it is divided into crystalline carbon having excellent charge / discharge reversibility but small capacity, and amorphous carbon having relatively large capacity but large charge / discharge irreversibility. The crystalline carbon has a low irreversible capacity with 85 to 92% of charge and discharge efficiency, while the amorphous carbon has a very high irreversible capacity of 20 to 30%.

전지의 충방전 과정 중에 생기는 비가역 용량은 일차적으로 탄소의 구조적특성에 기인하며, 탄소와 전해액의 계면에서 전해액의 환원반응 정도 및 탄소표면에 형성되는 전해액 분해층에 따라서 크게 달라진다. 전해액 분해층이 불균일하거나 전해액 중에 불순물이 존재하면 탄소에서 제공된 전지로 인해서 전해액의 분해반응이 일어나고, 이는 리튬이온의 탄소격자 안으로 삽입과 탈리를 방해하여 충방전 특성을 열화시켜 전지수명과 용량을 감소시킨다.The irreversible capacity generated during the charge / discharge process of the battery is primarily due to the structural characteristics of carbon, and greatly depends on the degree of reduction reaction of the electrolyte at the interface between the carbon and the electrolyte and the electrolyte decomposition layer formed on the carbon surface. If the electrolyte decomposition layer is uneven or impurities are present in the electrolyte, the decomposition reaction of the electrolyte occurs due to the battery provided by carbon, which impedes the insertion and desorption of lithium ions into the carbon grid, thereby degrading charge and discharge characteristics, thereby reducing battery life and capacity. Let's do it.

특히 전기가 과충전 될 때 활성화된 극판 표면에서 용매의 분해반응과 극판 활물질의 구조 파괴로 인해서 과량의 기체와 열이 발생한다. 전지부반응이 진행될수록 생성된 열은 전지내부 온도를 기하급수적으로 증가시키고, 전지 부반응을 촉진시키는 역할을 한다. 이러한 현상은 특히 전지를 만충전한 후에 고온에서 저장하는 경우에도 동일하게 일어나며, 리튬이차전지의 수명과 자가방전 특성 및 안정성을 향상시키기 위해서는 비수전해액과 전극 반응을 제어하는 기술이 불가피하다.Particularly, when gas is overcharged, excess gas and heat are generated due to the decomposition reaction of the solvent and the structural destruction of the electrode active material on the surface of the activated electrode plate. As the battery side reaction proceeds, the generated heat increases the temperature inside the battery exponentially, and serves to promote battery side reaction. This phenomenon occurs especially when the battery is stored at high temperature after being fully charged, and in order to improve the lifespan, self-discharge characteristics, and stability of the lithium secondary battery, it is inevitable to control the non-aqueous electrolyte and electrode reaction.

전지에서 이러한 현상을 억제하기 위한 일차적인 방법은 난영성 용매를 일정량 첨가하여 최대한 용매의 분해를 억제하고 발화를 억제하는 것이다. 미국 특허 제5916708에서는 불소, 염소 또는 퍼플루오르 알킬기가 함유된 에테르를 전해액의 용매로 사용하여 전지의 안정성을 증가시키는 노력을 하였으나, 이 용매는 낮은 이온전도도로 인해서 전지의 싸이클 특성이 저하되는 단점이 있다. 또한 일본 특허 제07-249432도 부분적으로 플루오르화된 에테르를 용매로 사용하였다. 그러나 이 용매는 높은 증기압, 낮은 끓는점을 가지며 유전상수가 작기 때문에 리튬 염을 해리하기 어려운 등의 단점이 있다.The primary method for suppressing this phenomenon in a battery is to suppress the decomposition of the solvent and suppress the ignition as much as possible by the addition of a certain amount of the flame retardant solvent. U.S. Patent No. 5916708 has tried to increase the stability of the battery by using ether containing fluorine, chlorine or perfluoroalkyl group as a solvent of the electrolyte, but this solvent has a disadvantage of deteriorating the cycle characteristics of the battery due to low ionic conductivity have. Japanese Patent No. 07-249432 also used partially fluorinated ether as a solvent. However, this solvent has a high vapor pressure, a low boiling point, and a low dielectric constant, which makes it difficult to dissociate lithium salts.

두 번째 방법으로는 미국특허 제5169736에서 제시한 것처럼 전해액의 발화성을 억제하기 위하여 폴리프로필렌 옥사이드와 같은 고분자를 첨가하여 전해액을 고형화 시키거나, SiO₂, Al2O₃등의 필러를 첨가하여 전해액의 점도를 증가시켜서 전지의 안정성을 개선하는 방법이 있으나, 이 경우에는 전해액의 높은 점도 및 낮은 리튬이온의 이동도로 인해서 전지 특성이 저하되는 단점이 있다.In the second method, as shown in U.S. Patent No. 5169736, in order to suppress the flammability of the electrolyte, a polymer such as polypropylene oxide may be added to solidify the electrolyte, or a filler such as SiO2, Al 2 O₃ may be added to increase the viscosity of the electrolyte. There is a method of improving the stability of the battery by increasing, in this case, there is a disadvantage in that the battery characteristics are deteriorated due to the high viscosity of the electrolyte and the mobility of low lithium ions.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 음극에서 전해액의 분해반응을 억제하여 전지의 충방전 효율을 증가시키고, 수명을 향상시킬 뿐만 아니라 음극표면에 전기 화학적으로 안정된 전해액 보호층을 형성할 수 있는 전해액을 제공하며, 또한 음극표면에 계면활성제를 도포하여 고전위에서 전지를 장기간 방치하거나 과충전할 때 용매와 활성극판의 직접적인 접촉을 차단하여 용매의 분해를 억제하고, 극판의 열화를 억제할 수 있는 전해액을 제공하는 것을 그 목적으로 한 것이다.The present invention has been made to solve the above-mentioned conventional problems, by suppressing the decomposition reaction of the electrolyte at the negative electrode to increase the charge and discharge efficiency of the battery, improve the life as well as electrochemically stable electrolyte protection on the surface of the negative electrode It provides an electrolyte solution that can form a layer, and also applies a surfactant to the surface of the negative electrode to block the direct contact between the solvent and the active electrode plate when the battery is left unattended or overcharged at a high potential for a long time to suppress the decomposition of the solvent, deterioration of the electrode plate It is an object of the present invention to provide an electrolyte solution capable of suppressing the reaction.

본 발명은 상기의 목적을 달성하기 위하여, 비양자성 용매 및 리튬염으로 이루어진 전해액에 비이온성 계면활성제가 첨가한 전해액을 제공한다.In order to achieve the above object, the present invention provides an electrolyte solution in which a nonionic surfactant is added to an electrolyte solution consisting of an aprotic solvent and a lithium salt.

이하에서 본 발명을 구체적으로 설명하다.Hereinafter, the present invention will be described in detail.

본 발명의 비이온성 계면활성제는 비수전해액 중에 포함되어 음극 또는 양극 표면에 균일하게 도포할 수 있는 것이어야 하며, 극판 내부로 전해질 중의 용매의 침투로 인한 활물질의 구조 파괴 억제 및 고온 및 고전위에서 전지의 자가방전 용량을 감소시킬 수 있는 것이어야 한다.The nonionic surfactant of the present invention should be included in the non-aqueous electrolyte solution so that it can be uniformly applied to the surface of the negative electrode or the positive electrode, and the structure destruction of the active material due to the penetration of the solvent in the electrolyte into the electrode plate and the suppression of the battery at high temperature and high potential It should be capable of reducing the self-discharge capacity.

이온성 계면활성제가 전지의 비가역성 반응을 촉진하기 때문에 방전용량이 작은데 반하여, 비이온성 계면활성제는 화학적으로 안정성이 우수하여 리튬이온의 부반응을 억제하고, 전해액에 대해서 안정성이 우수하므로 방전용량을 증가시킬 수 있다.While the ionic surfactant promotes the irreversible reaction of the battery, the discharge capacity is small, while the nonionic surfactant has excellent chemical stability, thereby suppressing side reactions of lithium ions, and excellent stability against the electrolyte, thereby increasing the discharge capacity. Can be.

본 발명에서 사용가능한 대표적인 비이온성 계면활성제는 플루오르지방족 에스테르계 고분자, 플루오르지방족 에스테르계 고분자 등으로 소수성기의 소수 원자를 플루오르 원소를 일부 혹은 전부를 대체한 것이다. 이러한 비이온성 계면활성제의 구조는 하기 화학식(I)에 도시한 바와 같은 구조로서, 이 때 RF는 용해되지 않는 플루오르탄소 사슬을 나타내며, X는 용해성 기를 나타낸다. 플루오르탄소의 꼬리부분의 구조나 길이에 따라서 열적, 화학적 및 전기적으로 안정한 특성으로 개량이 가능하며, 특히 이 부분은 매우 낮은 표면 장력을 가지고 있다. 그러므로 이 구조를 갖는 플루오르지방족 에스테르계고분자와 플루오르지방족 에스테르계 고분자 계면활성제는 다른 계면활성제에 비해서 매우 적은 농도로도 표면 장력을 낮출 수 있으며, 특히 비수용액과 고형분의 유기 고분자의 표면장력을 낮출 수 있다. 또한 본 발명의 계면활성제는 고분자와 극판의 전해액 함침성을 증가시키며, 특히 리튬고분자 전해질과 같이 미세 다공을 통해서 리튬이온이 이동하는 전지에서는 전해액의 극판 및 고분자 내로의 침투를 용이하게 하여 리튬이온의 이동도를 증가시킨다.Exemplary nonionic surfactants that can be used in the present invention are fluoroaliphatic ester-based polymers, fluoroaliphatic ester-based polymers, and the like, in which a few atoms of hydrophobic groups are replaced by some or all of fluorine elements. The structure of such a nonionic surfactant is a structure as shown in the following formula (I), wherein R F represents an insoluble fluorocarbon chain, and X represents a soluble group. Depending on the length and structure of the tail of the fluorocarbons, it is possible to improve thermally, chemically and electrically stable properties, in particular this part has a very low surface tension. Therefore, fluoroaliphatic ester-based polymers and fluoroaliphatic ester-based polymer surfactants having this structure can lower the surface tension even at very small concentrations compared to other surfactants, and in particular, lower the surface tension of non-aqueous solutions and solid organic polymers. have. In addition, the surfactant of the present invention increases the electrolyte impregnation of the polymer and the electrode plate, especially in a battery in which lithium ions move through micropores, such as a lithium polymer electrolyte, to facilitate the penetration of the electrolyte into the electrode plate and the polymer to facilitate the penetration of lithium ions. Increase mobility.

[화학식 I][Formula I]

본 발명에서는 이상의 비이온성 계면활성제를 비양자성 유기용매와 리튬염으로 구성된 리튬이온 전지용 비수전해액 0.01∼10중량%를 첨가하는 것이 바람직하며, 또한 리튬고분자 전지의 고분자, 세라믹 충전제, 리튬염 및 비수 용매로 구성된 고분자 전해질 중에서 0.01 ∼ 10중량%를 첨가하여 쓸 수 있다.In the present invention, it is preferable to add 0.01 to 10% by weight of the nonaqueous electrolyte for the lithium ion battery composed of the aprotic organic solvent and the lithium salt, and the polymer, ceramic filler, lithium salt and nonaqueous solvent of the lithium polymer battery. It can be used by adding 0.01 to 10% by weight in the polymer electrolyte consisting of.

상기 비양자성 유기용매는 리튬이차전지에 사용 가능한 유기용매이면 가능한데, 예를 들면, 에틸렌카보네이트(ethylene carbonate), 프로필렌 카보네이트(propylene carbonate),-부틸로락톤(-butylrolactone), 디에틸카보네이트(diethyl carbonate), 디메틸카보네이트(dimethyl carbonate), 에틸메틸카보네이트(ethylmethyl carbonate), 테트라하이드로 퓨란(tetrahydrofuran) 및 그 혼합물 중에서 적어도 한가지를 포함하는 비양자성 용매가 사용된다. 리튬염은 리튬퍼클로레이트(LiClO₄), 리튬테트라플루로보레이트(LiBF₄), 리튬트리플루로메탄설페이트(LiCF3SO₃), 리튬헥사플루로포스페이트(LiPF6) 및 혼합물 중에서 적어도 한가지를 선택해서 사용할 수 있다.The aprotic organic solvent may be any organic solvent usable in a lithium secondary battery. For example, ethylene carbonate, propylene carbonate, Butyrolactone ( Aprotic solvents comprising at least one of -butylrolactone, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, tetrahydrofuran and mixtures thereof are used. The lithium salt can be used by selecting at least one of lithium perchlorate (LiClO '), lithium tetrafluoroborate (LiBF'), lithium trifluoromethane sulfate (LiCF 3 SO3), lithium hexafluorophosphate (LiPF 6 ), and a mixture.

리튬이온 전지용에 사용하기 위해서 본 발명에 의한 전해액은 상기의 2종 혹은 그 이상의 유기용매에 농도가 약 1M 농도가 되게 리튬염을 녹여서 제조하고 전해액 대비 0.01 ∼ 10중량%가 되게 비이온성 계면활성제를 첨가하여 제조하며, 음극은 코우크스를 원료로 하는 MCMB, MPCF, 흑연계 및 비흑연계탄소를 활물질로 사용이 가능하며, 양극은 리튬코발트산화물, 리튬망간산화물, 리튬니켈산화물 및 리튬 니켈코발트산화물 중에서 적어도 한가지를 포함하는 리튬복합산화물을 쓸 수 있다.For use in lithium ion batteries, the electrolyte according to the present invention is prepared by dissolving a lithium salt in two or more of the above organic solvents in a concentration of about 1 M, and using a nonionic surfactant in an amount of 0.01 to 10% by weight relative to the electrolyte. The negative electrode can be used as the active material of MCMB, MPCF, graphite-based and non-graphite-based carbon, which is made of coke, and the positive electrode is selected from lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide and lithium nickel cobalt oxide. Lithium complex oxide containing at least one can be used.

본 발명을 리튬고분자 전지에 적용하기 위해서 음극과 양극은 리튬이온 전지와 동일하며, 고분자 전해질은 PVDF, PAN, PEO, PMMA 혹은 이들의 공중합체로 이루어진 고분자 중에서 적어도 한가지를 포함하는 고분자와 실리카, 알루미나 혹은 지르코니아 중에서 적어도 한가지를 포함하는 세라믹 필러, 에틸렌카보네이트(ethylene carbonate), 프로필렌 카보네이트(propylene carbonate),-부틸로락톤(-butylrolactone), 디에틸카보네이트(diethyl carbonate), 디메틸카보네이트(dimethyl carbonate), 에틸메틸카보네이트(ethylmethyl carbonate), 테트라하이드로 퓨란(tetrahydrofuran) 및 그 혼합물 중에서 적어도 두가지를 포함하는 비양자성 용매 및 리튬퍼클로레이트(LiCIO₄), 리튬테르라플루로보레이트(LiPF₄), 리튬트리플루로메탄설페이트(LiCF3SO3), 리튬헥사플루로포스페이트(LiPF6) 및 그 혼합물 중에서 적어도 한가지를 포함하는 전해액에 전해액 대비 0.01 ∼ 10중량%의 비이온성 계면활성제를 고분자 전해질에 첨가하여 쓸 수 있다. 비이온성 계면활성제의 양은0.01 ∼ 5중량%가 더욱 적당하다. 비이온성 계면활성제의 양이 0.01 중량% 미만이면 계면활성제가 극판 표면에 피막형성이 불완전하게 일어나고, 10중량% 초과하면 극판에 전해액 보호층이 과도하게 생성되어 저항이 증가하여 리튬이온의 이온 전도성이 저하되는 단점이 있다.In order to apply the present invention to a lithium polymer battery, the negative electrode and the positive electrode are the same as the lithium ion battery, and the polymer electrolyte includes at least one of a polymer made of PVDF, PAN, PEO, PMMA or a copolymer thereof, and silica and alumina. Or ceramic fillers containing at least one of zirconia, ethylene carbonate, propylene carbonate, Butyrolactone ( aprotic solvents and lithium perchlorates including at least two of -butylrolactone, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, tetrahydrofuran and mixtures thereof ), 0.01 to 10% by weight of the electrolyte solution in an electrolyte solution containing at least one of lithium terafluroborate (LiPF₄), lithium trifluoromethanesulfate (LiCF 3 SO 3 ), lithium hexaflourophosphate (LiPF 6 ) and mixtures thereof % Of nonionic surfactants can be added to the polymer electrolyte for use. The amount of the nonionic surfactant is more preferably 0.01 to 5% by weight. If the amount of the nonionic surfactant is less than 0.01% by weight, the surfactant is incompletely formed on the surface of the electrode plate. When the amount of the nonionic surfactant is more than 10% by weight, the electrolyte plate is excessively formed on the electrode plate, thereby increasing the resistance and increasing the ion conductivity of the lithium ion. There is a disadvantage of deterioration.

이하에서 본 발명을 실시예와 비교예를 들어 좀 더 구체적으로 설명하나, 하기의 실시예는 본 발명의 바람직한 실시예로서, 본 발명을 한정한 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the following Examples are preferred examples of the present invention and do not limit the present invention.

[실시예 1]Example 1

비이온성 계면활성제를 리튬고분자 전지에 적용한 경우로서, 음극은 활물질로 MCMB 75중량부와 P(VDF-HFP) 공중합체 8중량부 및 DBP 17중량부를 아세톤에 녹여서 슬러리를 만들고, Cu exmet위에 직접 도포하여, 열풍건조하였다. 양극은 LiCoO₂와 아세틸렌 블랙 및 P(VDF-HFP) 공중합체 및 DBP를 각각 75, 6, 4 및 15중량부 및 아세톤에 녹여서 슬러리를 만들고, Al exemt위에 직접 도포하여 열풍건조하였다.In the case of applying a nonionic surfactant to a lithium polymer battery, the negative electrode was prepared by dissolving 75 parts by weight of MCMB, 8 parts by weight of P (VDF-HFP) copolymer, and 17 parts by weight of DBP in acetone to form a slurry, and coating directly onto Cu exmet. It was dried by hot air. The positive electrode was dissolved in 75, 6, 4, and 15 parts by weight of LiCoO₂, acetylene black, P (VDF-HFP) copolymer, and DBP and acetone, respectively, to make a slurry, and directly applied on Al exemt, followed by hot air drying.

고분자 전해질은 P(VDF-HFP) 공중합체, 실리카 및 DBP를 각각 50, 30, 20중량부를 아세톤에 녹여서 슬러리를 만들고 PET위에 직접 도포하여 열풍건조한 후에 DBP를 추출 한 후에 1M 리튬헥사플로라이드 및 에틸렌카보네이트/에틸메틸카보네이트로 이루어진 전해액에 2중량부의 플루오르지방족 에스테르계 비이온성 계면활성제가 포함된 전해액을 주입하여 제조하였고, 양극/고분자전해질/음극/고분자전해질/양극의 순으로 조합하여 전지를 만들었다.In the polymer electrolyte, 50, 30 and 20 parts by weight of P (VDF-HFP) copolymer, silica and DBP were dissolved in acetone to make a slurry, followed by direct application on PET, followed by hot air drying to extract DBP, followed by 1M lithium hexafluoride and ethylene An electrolyte solution containing 2 parts by weight of a fluoroaliphatic ester-based nonionic surfactant was prepared by injecting an electrolyte consisting of carbonate / ethylmethyl carbonate, and a battery was prepared by combining anode / polymer electrolyte / cathode / polymer electrolyte / anode.

[실시예 2]Example 2

음극과 양극 및 고분자 전해질은 실시예1과 동일하고, 전해액 중에 플루오르 지방족 에테르계 비이온성 계면활성제를 1중량부 첨가하여 실시예1과 동일하게 전지를 제작하였다.The negative electrode, the positive electrode, and the polymer electrolyte were the same as in Example 1, and 1 part by weight of a fluoroaliphatic ether-based nonionic surfactant was added to the electrolyte to prepare a battery as in Example 1.

[비교실시예 1]Comparative Example 1

실시예1과 동일하고 전해액 중에 비이온성 계면활성제를 첨가하지 않고 전지를 제작하여 전지 특성을 조사하였다.As in Example 1, a battery was prepared without adding a nonionic surfactant to the electrolyte solution, and battery characteristics were investigated.

상기 실시예 및 비교 실시예에 의해 제작된 전지를 4.2V까지 1㎃/㎠의 전류를 인가하여 충전 후에 90℃에서 4시간 방치 후의 전지 내부의 임피던스 변화와 전지의 자가 방전율을 조사하여 하기 표1에 나타내었다. 이에서 보는 바와 같이 고분자 전해질 중에 플루오르지방족 에스테르계 비이온성 계면활성제가 첨가한 경우가 첨가하지 않은 경우에 비해서 전지 내부 임피던스 변화와 자가방전율이 매우 작아서 자기 방전 특성이 개선됨을 알 수 있다.The battery produced by the above Examples and Comparative Examples was applied to a current of 1㎃ / ㎠ up to 4.2V after charging for 4 hours at 90 ℃ after the internal impedance change and the self-discharge rate of the battery was investigated Shown in As can be seen from the case where the fluoroaliphatic ester-based nonionic surfactant was added to the polymer electrolyte, the self-discharge characteristics were improved because the change in the internal impedance of the battery and the self-discharge rate were very small.

계면활성제 함량(무게비%)Surfactant content (% by weight) 임피던스 증가(%)Impedance increase (%) 자가 방전율(%)Self discharge rate (%) 실시예 1Example 1 0.010.01 470470 8.28.2 1One 190190 4.34.3 22 110110 1.51.5 1010 490490 99 실시예 2Example 2 0.010.01 490490 8.68.6 1One 200200 5.05.0 22 125125 1.91.9 1010 510510 9.69.6 비교예Comparative example 00 750750 25.325.3

본 발명은 플루오르지방족 에스테르계 혹은 플루오르지방족 에테르계 비이온성 계면활성제를 전해액 중에 첨가함의 의해 과충전, 고전위 혹은 고온 저장시에 극판에서 전해액의 분해반응을 억제하여 전지의 충방전 효율을 증가시키고, 전지수명을 증가시킬 뿐만 아니라 전지 내부의 임피던스 증가를 억제하여 전지의 자가방전 특성을 개선할 수 있으며, 따라서 리튬이온 고분자 전지뿐만 아니라, 리튬이온 전지 및 리튬고분자 전지에도 적용이 가능하다.The present invention increases the charge and discharge efficiency of the battery by suppressing the decomposition reaction of the electrolyte in the electrode plate during overcharge, high potential or high temperature storage by adding a fluoroaliphatic ester-based or fluoroaliphatic ether-based nonionic surfactant to the electrolyte. In addition, the self-discharge characteristics of the battery may be improved by increasing the internal impedance of the battery, and thus, the present invention may be applied not only to lithium ion polymer batteries but also to lithium ion batteries and lithium polymer batteries.

Claims (5)

비양자성 유기용매, 리튬염 및 비이온성 계면활성제를 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.An aprotic organic solvent, a lithium salt and a nonionic surfactant, characterized in that the electrolyte solution for a lithium secondary battery. 제 1항에 있어서, 비이온성 계면활성제는 플루오르지방족 에스테르계 혹은 플루오르지방족 에테르계 고분자로서, 하기와 같은 구조를 지닌 것을 특징으로 하는 리튬 이차전지용 전해액.The electrolyte of claim 1, wherein the nonionic surfactant is a fluoroaliphatic ester-based or fluoroaliphatic ether-based polymer, and has a structure as follows. (상기 식에서 RF는 플루오르 탄소기이며, X는 친유성 용해성 기임.)(Wherein R F is a fluorocarbon group and X is a lipophilic soluble group.) 제 1항에 있어서, 비이온성 계면활성제는 전해액 대비 0.01 ∼ 10중량% 범위에서 사용됨을 특징으로 하는 리튬 이차전지용 전해액.The electrolyte of claim 1, wherein the nonionic surfactant is used in an amount of 0.01 to 10% by weight relative to the electrolyte. 제 1항에 있어서, 비양자성 유기용매는 에틸렌 카보네이트, 프로필렌 카보네이트,-부틸로락톤, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 테트라하이드로 퓨란 및 그 혼합물 중에서 적어도 두 가지를 포함하는 것임을 특징으로 하는 리튬 이차전지용 전해액.The method of claim 1, wherein the aprotic organic solvent is ethylene carbonate, propylene carbonate, An electrolyte solution for a lithium secondary battery, characterized in that it contains at least two of butyrolactone, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, tetrahydrofuran, and mixtures thereof. 제 1항에 있어서, 리튬염은 리튬퍼클로레이트(LiClO₄), 리튬테트라플루로보레이트(LiBF₄), 리튬트리플루로메탄설페이트(LiCF3SO₃), 리튬헥사플루로포스페이트(LiPF6) 및 그 혼합물 중에서 적어도 한가지를 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.The lithium salt of claim 1, wherein the lithium salt is at least one selected from lithium perchlorate (LiClO₄), lithium tetrafluoroborate (LiBF₄), lithium trifluromethane sulfate (LiCF 3 SO₃), lithium hexafluorophosphate (LiPF 6 ), and mixtures thereof. Electrolyte for lithium secondary battery comprising a.
KR1020000040233A 2000-07-13 2000-07-13 Electrolyte for lithium secondary rechargeable battery KR20020006800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000040233A KR20020006800A (en) 2000-07-13 2000-07-13 Electrolyte for lithium secondary rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000040233A KR20020006800A (en) 2000-07-13 2000-07-13 Electrolyte for lithium secondary rechargeable battery

Publications (1)

Publication Number Publication Date
KR20020006800A true KR20020006800A (en) 2002-01-26

Family

ID=19677841

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000040233A KR20020006800A (en) 2000-07-13 2000-07-13 Electrolyte for lithium secondary rechargeable battery

Country Status (1)

Country Link
KR (1) KR20020006800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370388B1 (en) * 2000-11-30 2003-01-30 제일모직주식회사 Non-aqueous electrolyte solution for lithium battery
KR100669683B1 (en) * 2000-10-10 2007-01-17 삼성에스디아이 주식회사 Lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669683B1 (en) * 2000-10-10 2007-01-17 삼성에스디아이 주식회사 Lithium secondary battery
KR100370388B1 (en) * 2000-11-30 2003-01-30 제일모직주식회사 Non-aqueous electrolyte solution for lithium battery

Similar Documents

Publication Publication Date Title
EP3742537B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR101980318B1 (en) Electrolyte agent and lithium secondary battery comprising the same
EP3648231B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP5258353B2 (en) Nonaqueous electrolyte secondary battery
KR100603303B1 (en) Lithium battery having effective performance
EP1146586A2 (en) Non-aqueous electrolyte secondary battery
KR100803193B1 (en) Organic electrolytic solution and lithium battery employing the same
KR20130125133A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
US10826063B2 (en) Lithium secondary battery
KR100635704B1 (en) Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
KR20180027996A (en) Electrolyte agent and lithium secondary battery comprising the same
KR101605935B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20150029569A (en) Electrolyte solution and lithium secondary battery comprising the same
KR20190033005A (en) Electrolyte agent and lithium secondary battery comprising the same
KR102234706B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR102259744B1 (en) Nonaqueous electrolyte and lithium secondary battery comprising the same
KR20020006800A (en) Electrolyte for lithium secondary rechargeable battery
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100611462B1 (en) Nonaqueous Electrolyte for Battery
KR100417084B1 (en) New additives for electrolyte and lithium ion battery using the same
KR100370383B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100331249B1 (en) Lithium ion polymer battery
KR20150123746A (en) New compounds and non-aqueous solution electrolyte agent comprising thereof and lithium secondary battery comprising the same
US20230318037A1 (en) Method for preparing a lithium ion secondary battery and a lithium ion secondary battery prepared therefrom
KR20190033004A (en) Electrolyte agent and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application