KR200194862Y1 - 지피알 시스템을 이용한 일체형 지하매설물 탐측장치 - Google Patents
지피알 시스템을 이용한 일체형 지하매설물 탐측장치 Download PDFInfo
- Publication number
- KR200194862Y1 KR200194862Y1 KR2020000005508U KR20000005508U KR200194862Y1 KR 200194862 Y1 KR200194862 Y1 KR 200194862Y1 KR 2020000005508 U KR2020000005508 U KR 2020000005508U KR 20000005508 U KR20000005508 U KR 20000005508U KR 200194862 Y1 KR200194862 Y1 KR 200194862Y1
- Authority
- KR
- South Korea
- Prior art keywords
- antenna
- signal
- transmission
- transmitting
- reception
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
본 고안은 최선의 지하매설물 탐측기법을 확립하여 그 성능을 향상시킨 GPR을 제작하고, 또한 소형 일체화를 통해서 작업효율을 향상시킴과 아울러 원가가 대폭 절감된 경제적이고 간편화된 GPR을 개발·보급하여 배관의 안전성을 확보한 GPR 시스템을 이용한 일체형 지하매설물 탐측장치를 제공하기 위하여, GPR 시스템을 이용한 지하매설물 탐측장치에 있어서, 상기 제어장치, 송신 안테나, 수신 안테나, 디스플레이부, 전원 공급부 및 전송선을 이동 바퀴와 손잡이가 구비된 카트상에 적재하되, 상기 송수신 안테나는 송수신 시그널(signal) 손실을 최소화하기 위하여 하단부 카트에 설치되어 지표와 밀착하여 앞, 뒤로 부착함으로써 전자파가 공기중으로 손실되지 않도록 구성한다.
Description
본 고안은 일체형 지하매설물 탐측장치에 관한 것으로, 보다 상세하게는 종래기술의 파이프 로케이터(Pipe locator)의 단점을 보완할 수 있는 지중탐사레이더(GPR; Ground Penetration Radar, 이하 GPR이라고 칭함)를 이용한 일체형 지하매설물 탐측장치에 관한 것이다.
우리가 살고 있는 주거지의 지하에는 가스관, 상·하수도관, 송유관, 통신 및 전력 케이블(cable)관, 각종 덕트(duct) 및 저장 탱크 등과 같은 수많은 지하구조물들이 존재하고 있으며, 경제 발전 및 인구 증가에 따라 지하시설물과 연관된 안전사고가 빈발하고 있다. 또, 이와 같은 추세는 향후 계속하여 증가될 것으로 전망된다. 따라서 이러한 지하시설물들에 대한 세심한 관리와 유지가 시급한 실정이다.
우리나라의 경우 10~70㎏/㎠의 고압 배관망을 1997년말 현재 1,300여 ㎞를 운영하고 있으며 수년 내에 2,000㎞에 이를 예정이다. 고압 배관의 특성상 유사시 '94년의 아현동 사고와 같은 대형사고가 발생하므로 어느 시설물보다도 철저한 관리와 안전 대책 수립이 필요하다.
배관의 안전성에 위해를 주는 요소는 여러 가지를 들 수 있으나, 그 중에서도, 1)타공사(굴삭기, 천공기)에 의한 배관 파손, 2)지반침하 혹은 유동에 따른 배관 변형, 3)지하철 혹은 타 지하시설물로부터의 미주전류에 의한 전기부식을 3대 위해요소로 꼽을 수 있다.
이에 대한 대책을 수립하기 위해서는 무엇보다도 먼저 배관의 정확한 위치를 파악하는 것이 필수적이다. 타공사의 위험을 억제하기 위해서는 공사전 인허가시에 가스배관의 정확한 위치를 파악하여 통보해 주는 것이 최선의 방법이다. 또한 배관의 침하나 유동에 따른 변형량을 알기 위해서도 배관의 정확한 위치 파악이 필수적이다.
현재는 주로 다음과 같은 방법을 사용하여 배관의 위치를 파악하고 있다.
1) 표석을 배관 직상부 중요 지점(곡관부, 횡단전후 등)에 설치한다.
2) 배관 표지판을 배관 직상부나 주변 도로 갓길에 설치한다.
3) Pipe locator를 이용한다.
표석을 사용하는 방법은 표석간의 설치 간격이 너무 멀고 때때로 원 위치에서 벗어나 있어 실효가 없으며, 표지판에 의한 방법은 배관의 정확한 위치에 가리키는 것이 아니라 주변에 고압배관이 있음을 알리는 수준이라 매우 부정확한 방법이다.
파이프 로케이터를 사용하는 방법은 현재 가장 보편적으로 사용되는 방법으로 비교적 정확하고 간편하다는 장점이 있으나, 도심지와 같이 배관이 복잡하게 매설된 곳에서는 간섭으로 인해서 정확도가 크게 떨어지는 단점이 있다.
상기 파이프 로케이터의 단점을 보완할 수 있는 방법중의 하나가 GPR을 이용한 방법이다.
GPR은 물체의 위치 탐지를 위해 고주파 전자파와 수신신호처리 방법을 이용하여 지하에 존재하는 각종 구조물과 지층구조 등을 탐지하는 장비로서 원래는 물리탐사 목적으로 사용되다가 최근에 지하배관 탐지에 적용되기 시작하였다.
그러나, 이와 같은 종래의 GPR은 장비구성이 복잡하고, 탐측결과를 정확하게 분석하기 위해서는 상당한 경험과 숙련도를 쌓아야 하며, 토양의 물성에 따라 탐측결과가 매우 민감하게 달라지기 때문에 매설배관 탐측에 상용화하기는 어려운 상황이다.
즉, 전술한 것처럼 종래의 GPR은 그 정밀성에도 불구하고 탐측결과가 토양의 전기적인 물성에 크게 좌우되고, 탐측결과해석을 위해서는 상당한 숙련도가 필요한 점, 또한, 고가의 장비인 점 등에 단점으로 작용하여 광범위한 보급이 어려운 실정이다. 또한, 메인 콘솔(main console), 송수신안테나, 휴대용 PC, 케이블(cable)등으로 구성되어 작업시 상당한 공간을 차지하며, 유지관리적인 측면에서도 비효율적이다.
따라서, 본 고안은 상기한 제반 문제점을 해결하기 위하여 안출된 것으로서, 그 목적은, 전술한 종래기술의 원리 및 장,단점을 비교하여 최선의 지하매설물 탐측기법을 확립하여 그 성능을 향상시킨 GPR을 제작하고, 또한 소형 일체화를 통해서 작업효율을 향상시킴과 아울러 원가가 대폭 절감된 경제적이고 간편화된 GPR을 개발·보급하여 배관의 안전성을 확보한 GPR 시스템을 이용한 일체형 지하매설물 탐측장치를 제공함에 있다.
도 1은 본 고안의 GPR 시스템을 이용한 지하매설물 탐측장치의 블록도.
도 2는 도 1을 더욱 상세히 나타낸 제어 블록도.
도 3은 본 고안을 장착한 일체형 카트의 측면 투시도.
도 4는 도 3의 사시도.
도 5는 본 고안의 지하매설물의 단면화상을 얻는 기본방법을 나타낸 도면.
도 6은 본 고안의 이미지의 형상화 방법을 나타낸 도면.
도 7은 본 고안의 탐측결과를 나타낸 도면.
도 8은 배관의 길이방향으로 탐측할 경우의 결과를 나타낸 도면.
도 9는 본 고안에 의한 매설깊이 측정원리를 나타낸 도면.
도 10은 100㎒ 중심주파수와 50㎒ 중심주파수를 가진 안테나를 각각 사용하였을 경우의 탐측결과를 나타낸 도면.
<도면의 주요 부분에 대한 부호의 설명>
100 : 제어장치 110 : 수신 전치 증폭기
120 : A/D 컨버터 130 : 펄스 발생기
140 : 펄스 송신 회로 150 : CPU
200 : 송신 안테나 300 : 수신 안테나
400 : 디스플레이부 500 : 전원 공급부
800 : 카트 810 : 하단부 카트
820 : 손잡이 830 : 이동 바퀴
900 : 전송선
상기와 같은 목적을 달성하기 위한 본 고안에 따른 GPR 시스템을 이용한 일체형 지하매설물 탐측장치의 특징은, 시스템 전체를 제어하고, 수신 안테나로부터 전송된 신호를 기록, 저장하여 실내에서의 자료처리를 위해 필요한 PC로 자료를 전송하는 역할을 담당하며, 제어장치에서 신호가 기록되는 최초 시간, 아날로그(analog)신호인 수신신호의 디지털 샘플링 간격, 신호가 기록되는 전체시간범위, 스태킹(stacking)횟수 등 탐사에 필요한 여러 변수들을 결정하며, 결정된 변수에 적합한 송수신 펄스를 발생시켜 증폭시킨 후 송신 안테나를 통해서 방사하며, 수신 안테나를 통해 수신된 신호를 증폭시켜서 기록함과 아울러, 샘플링 간격 및 트레이스(trace) 당 샘플링 간격 및 개수를 결정하는 제어장치; 상기 제어장치에서 발생한 펄스를 방사시키며 매질을 통과한 후 매설물체에서 반사되어 돌아오는 신호를 받아들이는 송신 및 수신 안테나; 상기 제어장치에서 획득한 펄스 자료를 영상으로 구현시키며, 처리된 데이터를 대상으로 고해상도의 화면을 다양한 구현 색상을 적용하여 보다 높은 분해능의 단면도를 나타내는 디스플레이부; 상기 제어장치와 송신 및 수신 안테나 사이의 자료 전송을 담당하고, 레이다파의 송신 및 반사파의 수신을 최저의 잡음 상태에서 전달하는 기능을 담당하도록 동축케이블이나 광케이블로 된 전송선; 및 상기 각부에 구동전원을 공급하되, 전자파 펄스의 발생, 자료의 송수신을 위한 필요동력으로 양질의 펄스와 노이즈 발생을 줄이기 위하여 DC전원을 사용하는 전원 공급부를 포함하는 GPR 시스템을 이용한 지하매설물 탐측장치에 있어서, 상기 제어장치, 송신 안테나, 수신 안테나, 디스플레이부, 전원 공급부 및 전송선을 이동 바퀴와 손잡이가 구비된 카트상에 적재하되, 상기 송수신 안테나는 송수신 시그널(signal) 손실을 최소화하기 위하여 하단부 카트에 설치되어 지표와 밀착하여 앞, 뒤로 부착함으로써 전자파가 공기중으로 손실되지 않도록 구성한다.
이하, 첨부된 도면을 참조하여 본 고안의 바람직한 실시예를 상세하게 설명한다.
본 고안은 약 1~1800㎒ 주파수 범위의 전자파(electromagnetic radio wave)를 송신기(transmitter)로부터 지하로 방사시켜 서로 전기적 특성이 다른 지하매질간의 경계면(예를 들어서 매설구조물과 토양의 접촉면)에서 반사되어 지상으로 돌아오는 전자파를 수신기(receiver)로 수집, 기록한 뒤 PC에 의한 자료처리와 해석과정을 거쳐 지하매설물의 구조와 상태를 규명하여 영상화하는 비파괴 탐측장비이다.
도 1에는 본 고안의 GPR 시스템을 이용한 지하매설물 탐측장치의 블록도가 도시되어 있다. 또한 도 2는 도 1을 더욱 상세히 나타낸 제어 블록도이고, 도 3은 본 고안을 장착한 카트의 측면 투시도이며, 도 4는 도 3의 사시도이다.
도시된 바와 같이, 본 고안은 제어장치(100), 송신 안테나(200), 수신 안테나(300), 디스플레이부(400), 전원 공급부(500) 및 전송선(900)으로 구성된다.
제어장치(main console)(100)는 시스템 전체를 제어하고, 수신 안테나(300)로부터 전송된 신호를 기록, 저장하여 실내에서의 자료처리를 위해 필요한 PC로 자료를 전송하는 역할을 담당한다. 특히, 제어장치(100)에서 신호가 기록되는 최초 시간, 아날로그(analog)신호인 수신신호의 디지털 샘플링 간격, 신호가 기록되는 전체시간범위, 스태킹(stacking)횟수 등 탐사에 필요한 여러 변수들을 결정하며, 결정된 변수에 적합한 송수신 펄스를 발생시켜 증폭시킨 후 송신 안테나(200)를 통해서 방사하며, 수신 안테나(300)를 통해 수신된 신호를 증폭시켜서 기록한다. 또한, 샘플링 간격 및 트레이스(trace) 당 샘플링 간격 및 개수를 결정한다.
송신 및 수신 안테나(transmitter & receiver)(200)(300)는 GPR에서 가장 핵심이 되는 부분으로서 제어장치(100)에서 발생한 펄스를 방사시키며 매질을 통과한 후 매설물체에서 반사되어 돌아오는 신호를 받아들이는 장치로서, 탐사한계깊이를 맞춰서 선택한 방출주파수를 따라 다른 안테나를 사용한다.
디스플레이부(400)는 획득한 펄스 자료를 영상으로 구현시키는 장치로서 처리된 데이터를 대상으로 고해상도의 화면을 다양한 구현 색상을 적용하여 보다 높은 분해능의 단면도를 나타낼 수 있다.
전송선(cable)(900)은 제어장치(100)와 송신 및 수신 안테나(200)(300) 사이의 자료 전송을 담당하는 부분으로 레이다파의 송신 및 반사파의 수신을 최저의 잡음(nose) 상태에서 전달하는 기능을 담당하여 동축케이블이나 광케이블을 사용하는 것이 바람직하다.
전원 공급부(500)는 전자파 펄스의 발생, 자료의 송수신을 위한 필요동력으로 양질의 펄스와 노이즈 발생을 줄이기 위하여 DC전원을 사용하는 것이 바람직하다.
상기 제어장치(100)는 펄스 발생기(130) 및 펄스 송신 회로(140)를 통하여 초광대역폭의 펄스를 발생시켜 이를 송신하는 송신수단; 상기 수신 안테나(300)로부터 입력된 신호를 증폭하는 수신 전치 증폭기(110); 상기 수신 전치 증폭기(110)에서 증폭된 아날로그 신호를 디지털 신호로 변환하는 A/D 컨버터(120); 및 시스템 전체를 제어하고 원시 데이터를 수집하며 송신에서부터 수신까지의 전파소요시간이 측정되는 CPU(150)를 포함한다.
또한, 본 고안은 도 3 및 도 4에 도시된 바와 같이, 상기 제어장치(100), 송신 안테나(200), 수신 안테나(300), 디스플레이부(400), 전원 공급부(500) 및 전송선(900) 등을 이동 바퀴(830)와 손잡이(820)가 구비된 카트(cart)(800)상에 적재되어 장비의 특성상 이동성이 좋아지므로 작업자의 피로도를 줄이게 된다.
송수신 안테나(200)(300)는 송수신 시그널(signal) 손실을 최소화하기 위하여 하단부 카트(810)에 설치되어 지표와 밀착하여 앞, 뒤로 부착함으로써 전자파가 공기중으로 손실되지 않으며, 무게가 가벼워 작업성이 좋다.
또한, 전원 공급부(500)는 경량의 전지(battery)로 구동할 수 있으므로, 재충전이 가능하고, 전지교체가 쉽다. 작업자의 신속하고도 원활한 탐측을 돕기 위하여 기기의 정보를 표시할 수 있는 디스플레이부(400)는 CRT 모니터 또는 LCD패널로 이루어지고 야외의 직사광선 하에서도 충분한 판독이 될 수 있도록 고해상도와 높은 명암 대비율을 갖는다.
이와 같이 구성된 본 고안의 탐측원리를 첨부된 도면을 참조하여 설명하면 다음과 같다. 먼저, 송신 안테나(200)에서 방출된 전자파가 매질중으로 전파해 나가다가 어떤 물체에 부딪친 후 반사해 오는 파를 검출, 전자파의 비행시간과 전파속도로부터 물체와 송신기사이의 거리를 측정한다.
그러나, 지하매질의 경우 레이더가 전파되는 공기보다 물리적으로 매우 불균질(non-homogeneous)하므로 레이더와 같이 정보를 쉽게 알아내기는 곤란하다. 즉, 물리적 불균질성으로 인해서 지하에서 반사되어 온 신호중에는 많은 잡음(noise)이 포함되어 판독하기가 쉽지 않다. 따라서, 탐사데이터는 적절한 처리를 거쳐야 한다.
본 고안을 이용하여 지하매설물의 단면화상을 얻는 기본방법은 도 5에 도시된 바와 같다. 도 5에서 (a)는 전자파의 송수신, (b)는 획득한 펄스자료를 나타낸다.
도시된 바와 같이 송신 안테나(radio transmitter;XMIT)와 수신기(receiver)가 한 쌍의 송수신 안테나(200)(300)를 이루면서 지상에서 접촉하게 된다. 송신기로부터 방출된 신호는 지중으로 짧은 거리를 침투한다. 지하에서 전파되는 신호(radio wave)는 주변 토양과 전기적 물성이 다른 어떤 물질과 부딪치면 반사하게 된다. 예를 들어 매설배관이나 지하 공동(空洞; void)으로부터 신호가 반사된다. 지하의 물체로부터 반사된 신호(radio signal)는 도 5의 (b)와 같이 방출된 후 시간이 조금 경과한 후에 도착하게 된다.
도 6은 본 고안의 이미지의 형상화 방법을 나타낸 도면으로서, 탐측자가 쉽게 인식할 수 있도록 일반적으로 PC스크린과 같은 디스플레이부(400)에 매설물체로부터 반사된 펄스 에코(pulse echo)를 형상화시킨다. 레이더는 지상에서 도 6의 (a)와 같이 일정간격으로 이동하며(1→2→3), 이에 따라 도6의 (b)에서 처럼 새로운 에코(echo)가 이전 에코의 옆에 그려진다. 이 펄스패턴이 PC의 화면에 연속적으로 출력된다. 이와 같은 방법으로 충분한 양의 신호를 검출하면 작업자는 화면의 에코 패턴을 보고 지하에 매설된 물체가 있다고 인식할 수 있게 된다.
상기와 같은 탐측결과는 도 7의 오른쪽 그림(b)의 하단부 반사파(reflected pulse)를 연결하면 쌍곡선(hyperbola)의 형태로 나타난다. 도 7의 (a)에 도시된 바와 같이 지하에 배관이 매설된 경우, 배관을 가로질러 탐측하는 경우 매설물체가 송수신 안테나(200)(300)의 전면에 있을 경우 방출된 에코가 물체에 반사되어 돌아오는 데에는 어느 정도의 시간이 걸린다.
송수신 안테나(200)(300)가 물체에 접근함에 따라 이 시간은 점차 줄어들게 된다. 매설물체의 직상부에 안테나(200)(300)가 있을 경우 에코의 반사시간이 가장 짧다. 이후 매설물체를 지남에 따라 다시 반사파가 수신 안테나(300)에 도달하는 시간은 늘어난다. 이로 인해 '쌍곡선'이 나타난다. 숙달된 작업자라면 이것이 배관과 같은 작은 물체임을 알 수 있다. 매설구조물의 종류에 따라 다른 패턴이 나타난다. 예를 들어 지하에 매설된 직육면체 저장탱크라면 반사파 곡선의 양끝이 아래로 내려가는 평평한 곡선으로 나타날 것이다.
그런데, 배관의 길이방향으로 탐측을 한다면 그 결과는 도 8에 도시된 바와 같을 것이다. 즉, 송수신 안테나(200)(300)와 배관의 거리가 항상 같기 때문에 수신되는 반사파의 펄스를 이으면 직선으로 나타나게 된다. 문제는 다른 조건에서도 같은 결과가 나타난다는 점이다. 예를 들어 특히, 점토(clay)/암반(bedrock)층과 같이 지층이 나뉘는 지역을 탐측을 했다고 가정하면 두 지층의 징계부분에서도 탐측 결과는 도 8과 같은 직선으로 나타나므로 탐측결과 지하에 배관이 매설되어 있다고 말할 수 없게 된다. 따라서, 매설배관의 탐측시에는 배관을 가로질러 탐측해야 한다.
본 고안에 의한 매설깊이 측정원리는 도 9에 도시된 바와 같다. 즉, 주변 토양에 관한 어느 정도의 정보를 가지고 있지 않다면 매설물의 매설깊이를 결정하는 것은 쉽지 않다. 원칙적으로 GPR시스템은 전자파 및 펄스의 방출/도달시간을 매우 정확하게 측정한다. 다시 말해서, 토양 중에서 전자파의 이동속도를 안다면, 도 9(b)의 송신파(directed pulse)와 수신파(reflected pulse) 사이의 시간을 알고 있으므로 매설깊이를 계산할 수 있다. 따라서, 이와 같은 과정을 내부적으로 거쳐서 PC에 나타나는 영상에 매설 깊이가 표시된다.
그러나, 레이더 신호의 속도는 토양종류에 따라서 민감하게 변한다. 공기중에서 레이다파는 297,600㎞/sec의 속도로 전파된다. 그러나, 토양 중에서는 토양의 수분함량, 공극률 등에 따라 속도가 매우 민감하게 변한다. 따라서, 경험적으로 토양의 전기적 특성, 전기전도도 및 유전상수(dielectric constant)를 알고 있거나, 매설깊이를 알고 있는 매설물체가 있다면, GPR탐측으로 측정한 매설심도를 정확하게 보정할 수 있다. 따라서, GPR을 통해서 정확한 매설심도를 측정하기 위해서는 토양에 대한 정보가 필수적이다. 다음의 표 1은 일반적인 토양종류에 따른 전자파의 전파특성을 나타낸 것이다.
재료 | 유전상수 | 속도(m/㎱) | 감쇄계수(㏈/m) |
air | 1 | 0.30 | 0 |
distilled water | 80 | 0.033 | 0.002 |
fresh water | 80 | 0.033 | 0.1 |
sea water | 80 | 0.01 | 1000 |
dry sand | 3~5 | 0.15 | 0.01 |
saturated snad | 20~30 | 0.06 | 0.03~0.3 |
limestone | 4~8 | 0.12 | 0.4~1 |
silt | 5~30 | 0.09 | 1~100 |
clay | 5~40 | 0.07 | 1~100 |
granite | 4~6 | 0.13 | 0.01~1 |
dry salt | 5~6 | 0.13 | 0.01~1 |
ice | 3~4 | 0.16 | 0.01 |
한편, 탐측시 고려해야 할 사항으로, GPR탐사에서 가장 중요한 변수 중의 하나가 운용주파수 선정이다. 적절한 주파수 선정은 탐사의 성공여부를 좌우한다고 할 수 있다. 주파수 선정은 탐사 대상체를 명확히 정의함에 따라 이루어질 수 있다. 이것은 탐측에 앞서서 현장 탐사를 실행해야함을 의미한다.
주파수 선정시 고려해야 할 점은 현장의 지질상태, 표면장애물, 토양의 전기적 특성, 대상체의 매설깊이 등이다. 이중 주파수 선정에서 가장 중요한 인자는 탐측심도로서, 이는 고주파일수록 탐측심도가 낮아지는 반비례관계가 있기 때문이다. 따라서, 목표물의 심도 및 크기에 따라 주파수를 적절하게 선정해야 한다.
도 10은 100㎒ 중심주파수와 50㎒ 중심주파수를 가진 안테나를 각각 사용하였을 경우의 탐측결과이다. 여기에서 알 수 있는 것처럼 탐사대상체의 매설깊이에 따라 50㎒의 저주파안테나를 사용한 경우에는 심도가 큰 매설물에 대한 정보가, 100㎒의 안테나를 사용한 경우에는 심도가 작은 매설물에 대한 정보가 상대적으로 자세하게 나타남을 알 수 있다.
또한, 아래 표2에는 중심주파수에 따른 대략적인 탐측가능깊이를 나타내었다.
깊이(m) | 중심주파수(㎒) |
0.5 | 1,000 |
1.0 | 500 |
2.0 | 200 |
7.0 | 100 |
10.0 | 50 |
30.0 | 25 |
50.0 | 10 |
가스배관의 매설심도탐측시에는 현재, 225㎒의 중심주파수를 가진 안테나를 주로 사용하고 있으며, 여러 배관이 교차되는 지점등에서 가스배관보다 매설심도가 낮은 타배관등의 탐측을 위해서 400㎒의 안테나도 사용하고 있으나, 일반적인 가스배관의 매설심도가 대략 2m정도이므로 본 고안에서는 중심주파수가 200㎒정도의 안테나를 사용하는 것이 가장 바람직하다.
또한, 타임 윈도우(Time window)란 얼마만큼의 시간동안 자료를 받을 것인가를 의미하는 것으로 이는 탐측대상물체의 매설심도와 관계가 있다. 즉, 전자파가 매설물체까지 전파되었다가 다시 되돌아오는 시간이상의 충분한 시간동안 데이터를 받아야 한다. 이는 토양중의 전자파 전파속도와도 밀접한 관계가 있다. 따라서, 타임 윈도우 선택시에는 대상물체의 매설깊이뿐만 아니라 토양의 전기적 특성에 관한 정보를 알아야 한다.
샘플링 인터벌(Sampling interval)은 반사되어 돌아오는 파형을 얼마만큼의 시간간격으로 수집할 것인가를 의미하는데, 일반적으로 사용하는 안테나의 중심주파수에 따라 그 값이 다르다. 상기의 두가지 변수는 송수신 안테나(200)(300)의 종류에 따라서 가장 적합한 값들을 주파수에 따라 사용하는 것이 바람직하다.
또한, 토양의 전기전도도가 높다면 전자파의 전파는 어려워진다. 일반적으로 전지전도도가 0.01Ω-1·㎝-1이상이면 GPR탐사가 어렵다고 본다. 따라서, 탐측전에 탐측할 지역의 전기적인 특성을 미리 파악, 또는 예측하는 것은 탐측결과의 질을 높이는데 필수적이다. 아래의 표 3에 전기 전도도에 따라 매질을 분류하였다.
탐사조건 | 전기전도도(σ)(Ω-1·㎝-1) | 매질 |
좋음 | σ<10-7 | 공기, 건조한 화강암, 건조한 석회암, 콘크리트, 아스팔트 |
나쁘지 않음 | 10-7<σ<10-2 | fresh water, 얼음, 눈, 모래, sit, 건조한 점토, 현무암 |
나쁨 | σ>10-2 | 젖은 점토, 젖은 현무암, 해수, 해빙 |
다음으로는 본 고안을 구성하는 각각의 구성요소들의 특징을 통하여 본 고안의 작용을 더욱 상세히 설명한다.
전술한 것처럼 본 고안의 GPR의 구조는 매우 복잡하다. 즉, 지표면에 밀착되어 송신과 수신을 담당하는 송수신 안테나(200)(300), 초광대역의 펄스를 발생시키는 필스 송신 회로(140) 및 펄스 발생부(130), 송신출력을 제어하고 수신 주파수를 분석하는 CPU(150)와 인터페이스(Interface)를 위한 수십미터의 송/수신용 케이블(900), 현장데이터 운용의 제어 분석 및 수집, 보관을 위한 PC(미도시), 모든 장치의 동작전원을 공급하는 전원 공급부(500) 등으로 구성되어 매우 복잡한 결선이 요구되며, 많은 장치(Device)의 구성등 물리적인 문제점 때문에 일일 탐측 속도가 대략 1㎞/Day 정도일 것으로 예상된다.
전기적인 문제점요소로는 전지로부터 전원을 공급받아 동작되므로 전지의 용량에 의하여 일일 탐측거리가 제한된다. 초광대역의 펄스를 생성하는 펄스 송신 회로(140), 펄스 발생기(130) 및 송수신 안테나(200)(300)의 소모전류는 많을 수밖에 없으므로 중량의 예비 전원을 항상 준비하고 탐측을 진행하는 것이 바람직하다.
또한 여러개의 장치를 한개의 기구물에 장착하였을 때 초광대역의 펄스로 인하여 각 장치 상호간의 노이즈로 인하여 많은 오동작의 가능성이 있다. 이러한 노이즈에 의한 오동작을 제거하기 위해서는 본 고안에서와 같이 노이즈 필터링을 할 수 있는 구조물에 각각의 장치가 별도로 분리되어 장착할 수 있어야 하며, 중량의 예비 배터리가 장착될 수 있는 구조로 된 일체형 기구물 카트(800)가 바람직하다. 따라서, 기구물의 일체화로 현장에서의 탐측준비가 매우 향상되었으며(현장에서의 준비, 각 모듈별 인터페이스), 현장의 탐측 및 장비의 이동이 간편해졌고 예비 배터리 장착이 가능하여 물리적인 요소 및 전기적인 요소가 해결되어 탐측속도 4㎞/Day가 가능하다.
따라서 이상에 설명한 바와 같이, 본 고안에 따른 GPR 시스템을 이용한 일체형 지하매설물 탐측장치에 의하면, 카트(cart)상에 적재되어 장비의 특성상 이동성이 좋아지므로 작업자의 피로도를 줄이게 된다. 안테나는 송수신 시그널(signal) 손실을 최소화하기 위하여 카트의 아래측에 설치되어 지표와 밀착하여 앞, 뒤로 부착함으로써 전자파가 공기중으로 손실되지 않으며, 무게가 가벼워 작업성이 좋다. 경량의 전지(battery)로 구동할 수 있으므로, 재충전이 가능하고, 전지교체가 쉽다. 작업자의 신속하고도 원활한 탐측을 돕기 위하여 기기의 정보를 표시할 수 있는 디스플레이 장치는 CRT 모니터 또는 LCD패널로 이루어지고 야외의 직사광선 하에서도 충분한 판독이 될 수 있도록 고해상도와 높은 명암 대비율을 갖는다. 현장 작업에서 수집한 원데이터는 신뢰성있는 대용량의 저장장치에 보관한 후, 재판독이 가능하므로 작업후 사무실(연구실)에서 보다 정밀한 영상의 분석 및 구성이 가능하게 되는 등의 다양한 효과가 있다.
본 고안은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 고안의 요지를 벗어남이 없이 당해 고안이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 기재된 청구범위 내에 있게 된다.
Claims (3)
- 시스템 전체를 제어하고, 수신 안테나(300)로부터 전송된 신호를 기록, 저장하여 실내에서의 자료처리를 위해 필요한 PC로 자료를 전송하는 역할을 담당하며, 제어장치(100)에서 신호가 기록되는 최초 시간, 아날로그(analog)신호인 수신신호의 디지털 샘플링 간격, 신호가 기록되는 전체시간범위, 스태킹(stacking)횟수 등 탐사에 필요한 여러 변수들을 결정하며, 결정된 변수에 적합한 송수신 펄스를 발생시켜 증폭시킨 후 송신 안테나(200)를 통해서 방사하며, 수신 안테나(300)를 통해 수신된 신호를 증폭시켜서 기록함과 아울러, 샘플링 간격 및 트래이스(trace) 당 샘플링 간격 및 개수를 결정하는 제어장치(100); 상기 제어장치(100)에서 발생한 펄스를 방사시키며 매질을 통과한 후 매설물체에서 반사되어 돌아오는 신호를 받아들이는 송신 및 수신 안테나(200)(300); 상기 제어장치(100)에서 획득한 펄스 자료를 영상으로 구현시키며, 처리된 데이터를 대상으로 고해상도의 화면을 다양한 구현 색상을 적용하여 보다 높은 분해능의 단면도를 나타내는 디스플레이부(400); 상기 제어장치(100)와 송신 및 수신 안테나(200)(300) 사이의 자료 전송을 담당하고, 레이다파의 송신 및 반사파의 수신을 최저의 잡음 상태에서 전달하는 기능을 담당하도록 동축케이블이나 광케이블로 된 전송선(900); 및 상기 각부에 구동전원을 공급하되, 전자파 펄스의 발생, 자료의 송수신을 위한 필요동력으로 양질의 펄스와 노이즈 발생을 줄이기 위하여 DC전원을 사용하는 전원 공급부(500)를 포함하는 GPR 시스템을 이용한 지하매설물 탐측장치에 있어서, 상기 제어장치(100), 송신 안테나(200), 수신 안테나(300), 디스플레이부(400), 전원 공급부(500) 및 전송선(900)을 이동 바퀴(830)와 손잡이(820)가 구비된 카트(cart)(800)상에 적재하되, 상기 송수신 안테나(200)(300)는 송수신 시그널(signal) 손실을 최소화하기 위하여 하단부 카트(810)에 설치되어 지표와 밀착하여 앞, 뒤로 부착함으로써 전자파가 공기중으로 손실되지 않도록 구성하는 것을 특징으로 하는 GPR 시스템을 이용한 일체형 지하매설물 탐측장치.
- 제 1항에 있어서, 상기 송신 안테나(200)는 다이폴 안테나를 사용하되, 중심주파수가 대략 200㎒정도의 안테나를 사용하는 것을 특징으로 하는 GPR 시스템을 이용한 일체형 지하매설물 탐측장치.
- 제 1항에 있어서, 상기 제어장치(100)는 펄스 발생기(130) 및 펄스 송신 회로(140)를 통하여 초광대역폭의 펄스를 발생시켜 이를 송신하는 송신수단; 상기 수신 안테나(300)로부터 입력된 신호를 증폭하는 수신 전치 증폭기(110); 상기 수신 전치 증폭기(110)에서 증폭된 아날로그 신호를 디지털 신호로 변환하는 A/D 컨버터(120); 및 시스템 전체를 제어하고 원시 데이터를 수집하며 송신에서부터 수신까지의 전파소요시간이 측정되는 CPU(150)를 포함하는 것을 특징으로 하는 GPR 시스템을 이용한 일체형 지하매설물 탐측장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2020000005508U KR200194862Y1 (ko) | 2000-02-28 | 2000-02-28 | 지피알 시스템을 이용한 일체형 지하매설물 탐측장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2020000005508U KR200194862Y1 (ko) | 2000-02-28 | 2000-02-28 | 지피알 시스템을 이용한 일체형 지하매설물 탐측장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR200194862Y1 true KR200194862Y1 (ko) | 2000-09-01 |
Family
ID=19644295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR2020000005508U KR200194862Y1 (ko) | 2000-02-28 | 2000-02-28 | 지피알 시스템을 이용한 일체형 지하매설물 탐측장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200194862Y1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100996893B1 (ko) | 2008-07-30 | 2010-11-26 | 한국과학기술연구원 | 내장형 시추공레이더시스템 |
KR101310215B1 (ko) * | 2009-12-21 | 2013-09-24 | 한국전자통신연구원 | 착용형 지하 매설물 탐지 장치 및 방법 |
-
2000
- 2000-02-28 KR KR2020000005508U patent/KR200194862Y1/ko not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100996893B1 (ko) | 2008-07-30 | 2010-11-26 | 한국과학기술연구원 | 내장형 시추공레이더시스템 |
KR101310215B1 (ko) * | 2009-12-21 | 2013-09-24 | 한국전자통신연구원 | 착용형 지하 매설물 탐지 장치 및 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101267017B1 (ko) | 지피알 탐사장비의 신호처리에 의한 지하시설물 탐측시스템 | |
US6003376A (en) | Acoustic system for measuring the location and depth of underground pipe | |
Hao et al. | Condition assessment of the buried utility service infrastructure | |
Yelf | Application of ground penetrating radar to civil and geotechnical engineering | |
KR102177812B1 (ko) | 하이브리드 멀티 탐사를 실시하여 탐사율을 향상시킬 수 있는 지하시설물 탐사시스템 | |
KR101267016B1 (ko) | 지피알 시스템을 이용한 지하시설물 탐측의 신호해석 장치 | |
US6725161B1 (en) | Method for locating and identifying underground structures with horizontal borehole to surface tomography | |
KR100365140B1 (ko) | 지피알 시스템을 이용한 지하매설물 탐측장치 | |
Vickers et al. | Archeological investigations at Chaco Canyon using a subsurface radar | |
Shahandashti et al. | Advanced Geophysical Tools for Geotechnical Analysis | |
KR100365141B1 (ko) | 지피알 시스템을 이용한 지하매설물 탐측공법 | |
KR100399984B1 (ko) | 전자 지하탐사방법 및 지하탐사시스템 | |
KR200194862Y1 (ko) | 지피알 시스템을 이용한 일체형 지하매설물 탐측장치 | |
KR200194861Y1 (ko) | 지피알 시스템을 이용한 지하매설물 탐측장치의 수신신호해석부 | |
KR200194863Y1 (ko) | 지피알 시스템을 이용한 수신신호 저장부를 갖는지하매설물 탐측장치 | |
KR200194864Y1 (ko) | 지피알 시스템을 이용한 지하매설물 탐측장치의 신호처리부 | |
KR200188711Y1 (ko) | 지피알 시스템을 이용한 지하매설물 탐측장치의 안테나 구조 | |
KR200194860Y1 (ko) | 지피알 시스템을 이용한 지하매설물 탐측장치의 수신전치 증폭기 | |
US6949930B2 (en) | Time domain induction method and apparatus for locating buried objects in a medium by inducing and measuring transient eddy currents | |
KR200194859Y1 (ko) | 지피알 시스템을 이용한 지하매설물 탐측장치의 펄스발생기 | |
Ékes et al. | Completing condition assessments using in-pipe GPR as pipe penetrating radar | |
KR102189112B1 (ko) | 지피알 시스템을 이용한 지하시설물 탐지시스템 | |
Metje et al. | Locating blockages in buried (telecoms) ducts: a new approach | |
CN116908830A (zh) | 埋地管道阀门井探测方法 | |
Reiter et al. | Availability, Feasibility, and Reliability of Available Nondestructive Evaluation (NDE) Technologies for Detecting and Locating Buried Utilities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REGI | Registration of establishment | ||
T201 | Request for technology evaluation of utility model | ||
T701 | Written decision to grant on technology evaluation | ||
G701 | Publication of correction | ||
FPAY | Annual fee payment |
Payment date: 20090409 Year of fee payment: 10 |
|
EXPY | Expiration of term |