KR200191363Y1 - Stiffness improvement of inner support section area by filling concrete in steel box girder bridge. - Google Patents

Stiffness improvement of inner support section area by filling concrete in steel box girder bridge. Download PDF

Info

Publication number
KR200191363Y1
KR200191363Y1 KR2019990026272U KR19990026272U KR200191363Y1 KR 200191363 Y1 KR200191363 Y1 KR 200191363Y1 KR 2019990026272 U KR2019990026272 U KR 2019990026272U KR 19990026272 U KR19990026272 U KR 19990026272U KR 200191363 Y1 KR200191363 Y1 KR 200191363Y1
Authority
KR
South Korea
Prior art keywords
section
cross
moment
steel box
designed
Prior art date
Application number
KR2019990026272U
Other languages
Korean (ko)
Other versions
KR20000011297U (en
Inventor
구민세
Original Assignee
구민세
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구민세 filed Critical 구민세
Priority to KR2019990026272U priority Critical patent/KR200191363Y1/en
Publication of KR20000011297U publication Critical patent/KR20000011297U/en
Application granted granted Critical
Publication of KR200191363Y1 publication Critical patent/KR200191363Y1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges

Abstract

기존의 강상자형 단면교는 최대 정모멘트와 절대 최대 부모멘트의 크기가 크게 상이하여 큰 모멘트에 대응되도록 설계하게 되므로 교량 연장을 통해 등단면으로 설계하는 경우 정모멘트구간의 단면이 비경제적으로 크게 설계되고 또는 이를 개선키위해 변단면으로 설계하는 경우 설계상·시공상 어려움과 더불어 교고가 높아진다.Existing steel box-type cross-section bridges are designed to correspond to large moments because the magnitudes of the maximum constant moment and the absolute maximum parent moments differ greatly, so the section of the constant moment section is designed to be uneconomically large when the bridge is designed to be uniform in section. In order to improve or improve the design of the cross section, the design and construction difficulties and the higher the level of education.

본 고안에서는 이러한 단점을 개선하기 위해 절대 최대 모멘트가 최대 정모멘트보다 월등히 큰 내측지점의 좌우로 해당 경간 길이의 약 10%에 해당되는 위치에 압축력에 유리한 콘크리트재를 단면 내부 하부에 충진시켜 합성시키므로 강성을 증대시킨다. 따라서 단면은 기존의 최대 정모멘트에 대응되도록 설계된 최소단면으로 전구간을 등단면화할 수 있고 이로 인하여 기존의 강상자형 등단면 높이보다 약 20% 정도의 높이를 감소시킬 수 있다.In this design, in order to remedy these shortcomings, concrete material, which is advantageous for compressive force, is filled and synthesized in the lower part of the cross section at the position corresponding to about 10% of the span length to the left and right of the inner point where the absolute maximum moment is much larger than the maximum static moment. Increase the stiffness Therefore, the cross section can be equalized in all sections with the minimum cross section designed to correspond to the existing maximum static moment, thereby reducing the height of about 20% than the existing height of the box-shaped back section.

Description

콘크리트 충진에 의한 내측지점부 부근의 강성이 향상된 강상자형 단면 구조{Stiffness improvement of inner support section area by filling concrete in steel box girder bridge.}Stiffness improvement of inner support section area by filling concrete in steel box girder bridge.

기존의 강상자형 단면교는 시공이 타공법보다 비교적 빠르기 때문에 국내외를 막론하고 널리 시공되어지고 있는 실정이다. 또한 강상형교는 비틀림 강성이 크기 때문에 곡선교에서는 매우 장점이 큰 교량 형식이나 단면이 너무 커서 투박하게 보이는 단점이 있다.Existing steel box-type cross-section bridges are widely used both at home and abroad because their construction is relatively faster than other methods. In addition, the steel girder bridge has a large torsional stiffness, and thus, a curved bridge type having a great advantage in a curved bridge or a cross section is too large to be clunky.

모든 연속형 교량에서와 마찬가지로 강상자형교에서도 구조역학상 최대 정모멘트와 최대 부모멘트의 크기가 상이하기 때문에 교량 전 길이를 통해 단면 크기 산정에 비경제성이 내포되고 있다.도면을 참조하여 종래 기술을 설명하면 다음과 같다.As with all continuous bridges, steel box bridges are inconsistent in calculating the cross-sectional size through the entire length of the bridge because the maximum dynamic moment and maximum parent moment are different in structural dynamics. The explanation is as follows.

제1도에서 예시한 연속형교의 경우 부모멘트의 크기는 정모멘트 크기의 절대값으로 약 2배에 달하고 있다. 이러한 이유로 단면설계에서는 가장 큰 모멘트를 기준으로 단면을 결정하여 전 교량길이 구간을 등단면으로 또는 정모멘트구간과 부모멘트구간을 구분하여 각각의 모멘트 크기에 맞도록 설계하는 두 경우가 현재 설계 시공되고 있는 방법들이다. 가장 큰 모멘트를 기준으로 하여 교량 전 길이를 등단면으로 설계하는 경우 시공성은 양호하나 정모멘트구간에서는 정모멘트의 크기에 비해 단면이 지나치게 커짐으로 비경제성을 감수하여야 한다. (제2도 참조)In the case of the continuous bridge illustrated in FIG. 1, the size of the parent moment is about twice the absolute value of the constant moment size. For this reason, in the section design, two cases are currently designed and constructed to determine the section based on the largest moment, and to design the entire bridge length section as an equal section, or to divide the constant moment section and the parent section to fit each moment size. There are ways. When designing the entire length of the bridge on the basis of the largest moment, the workability is good. However, in the constant moment section, the cross section becomes too large compared with the size of the constant moment. (See Figure 2)

한편, 정모멘트구간과 부모멘트구간의 최대모멘트에 맞추어 각각 설계를 하는 경우 설계의 복잡성과 비등단면에서의 곡선처리에 따르는 제작상의 번거로움이 따르게 된다. (제3도 참조)On the other hand, if each design is designed according to the maximum moment between the constant moment section and the parent moment section, the design complexity and manufacturing hassle due to the curve processing in boiling section. (See Figure 3)

따라서 본 고안은 상기한 기존 강상자형 교량의 설계 및 시공상의 문제점을 개선하기 위함이다.Therefore, the present invention is to improve the problems in the design and construction of the existing steel box bridge.

본 고안은 위와 같은 종래 기술의 단점을 해결하고자 하는 목적으로 안출되었으며, 이러한 목적달성을 위하여 종래 기술의 방법과 동일하게 강상자형을 교대 및 교각상에 연결 거치시킨 후 바닥판 콘크리트를 순차적으로 타설하면서 상자형 단면 하부에 기설치된 전단키가 매설되도록 강성 개선용 콘크리트를 충진시킨다.The present invention has been devised for the purpose of solving the above-mentioned disadvantages of the prior art, and in order to achieve this purpose, the steel box type is connected to the alternating and piers in the same manner as in the prior art, and the bottom plate concrete is poured in sequence. The concrete for stiffness improvement is filled so that the shear key already installed under the box-shaped cross section is embedded.

[도 1] 등분포 하중하에서 3경간 연속보 구조시스템 및 모멘트도[Fig. 1] Three span continuous beam structural system and moment diagram under equally distributed load

[도 2] 기존의 등단면 강상자형 단면교의 3경간 구조시스템 및 단면도2 is a three-span structural system and cross-sectional view of a conventional isosection steel box-type sectional bridge

[도 3] 기존의 변단면 강상자형 단면교의 3경간 구조시스템 및 단면도[Figure 3] Three-span structural system and cross-sectional view of the existing cross-sectional steel box type cross section bridge

[도 4] 본 고안에 의한 등단면 강상자형 단면교의 3경간 구조시스템 및 단면도[Figure 4] Three-span structural system and cross-sectional view of a single-sided steel box-type cross section bridge according to the present invention

제1도에서 보인바와 같이 부모멘트구간의 큰 모멘트에 대응되도록 하기 위해서는 그 구간의 단면 강성이 커져야 하는데 본 고안에서는 강성의 향상을 도모키위해 종래의 기술과는 달리 재료값이 저렴하고 압축강도에 유리한 콘크리트재를 사용한다. 구조역학적으로 연속형교에서 내측 지점부 즉, 부모멘트구간 단면의 하부에는 항상 압축력을 받게 된다. 따라서 본 고안에서는 부모멘트가 크게 작용되는 즉, 최대 정모멘트보다 절대값으로 큰 부모멘트 발생 구간 중 내측지점의 좌우로 해당 지간의 약 10%에 해당되는 위치의 상자형 단면 하부에 콘크리트를 충진하여 강성을 높일 수 있으므로 최대 정모멘트에 해당되는 외형적 단면 크기로 전 교량길이를 등단면으로 설계할 수 있다. 제4도는 전형적인 3경간 연속형 교량의 구조시스템과 정모멘트구간의 단면도 및 그와 동일한 크기의 단면하부에 전단연결재가 설치된 상태에서 콘크리트가 충진된 상태를 나타내고 있다. 시공순서는 종래 기술의 방법과 동일하게 강상자형을 교대 및 교각상에 연결 거치시킨 후 바닥판 콘크리트를 순차적으로 타설하면서 상자형 단면 하부에 기설치된 전단키가 매설되도록 강성 개선용 콘크리트를 충진시키면 본 고안의 목적이 달성된다.As shown in FIG. 1, the cross section stiffness of the section must be increased to correspond to the large moment of the parent section. In the present invention, in order to improve the stiffness, the material cost is low and the compressive strength is different. Use advantageous concrete. Structurally, the continuous bridge always receives compressive force at the inner point, that is, at the bottom of the section of the parent section. Therefore, in the present invention, the parent moment is largely acted on, that is, the concrete is filled in the lower portion of the box-shaped cross section at a position corresponding to about 10% of the area between the right and left points of the parent moment generation period which is greater than the absolute maximum moment. Since the rigidity can be increased, the entire bridge length can be designed in the same section with the external cross-sectional size corresponding to the maximum static moment. 4 is a cross-sectional view of a structural system and a constant moment section of a typical three-span continuous bridge, and a state in which a concrete is filled with a shear connector installed under the same size cross section. The construction sequence is similar to the method of the prior art, and the steel box type is connected and mounted on the alternating and pier phases, and then the bottom plate concrete is placed in sequence while filling the concrete for stiffness improvement so that the shear key installed in the lower section of the box is buried. The purpose of this is achieved.

본 고안에 의한 콘크리트 충진에 의한 내측지점부 부근의 강성이 향상된 강상자형 단면 구조는 기존 강상자형의 보 높이를 약 20% 정도 낮출 수 있고 이에 따라 재료 절감 효과와 콘크리트의 큰 강성에 의한 진동 흡수 및 콘크리트가 충진된 위치의 강재 내구성을 향상시킬 수 있다.The steel box-shaped cross-section structure with improved rigidity near the inner branch part by concrete filling according to the present invention can reduce the beam height of the existing steel box type by about 20%, thus reducing the material saving effect and vibration absorption due to the great rigidity of concrete. It is possible to improve the steel durability at the location where the concrete is filled.

Claims (1)

강상자형 연속교의 설계에 있어 내측지점의 좌우로 해당 경간 길이의 약 10%에 해당되는 위치의 강상자형 내부 바닥에 전단 연결재를 설치하고 압축력에 유리한 콘크리트를 충진하여 강성을 향상시킴으로써 최대 정모멘트의 크기에 대응되도록 설계된 단면크기와 거의 동일한 등단면으로 강상자형 연속교를 설계할 수 있는 콘크리트 충진에 의한 내측 지점부 부근의 강성이 향상된 강상자형 단면 구조In the design of steel box type continuous bridge, the shear moment is installed on the inner bottom of the steel box type at about 10% of the span length to the left and right of the inner point, and the rigidity is improved by filling the concrete that is advantageous for compressive force. Steel box-shaped cross section structure with improved rigidity near the inner point part by concrete filling, which can design steel box continuous bridges with the same section as the cross-sectional size designed to cope with
KR2019990026272U 1998-11-04 1999-11-26 Stiffness improvement of inner support section area by filling concrete in steel box girder bridge. KR200191363Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2019990026272U KR200191363Y1 (en) 1998-11-04 1999-11-26 Stiffness improvement of inner support section area by filling concrete in steel box girder bridge.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2019980021398U KR19990007896U (en) 1998-11-04 1998-11-04 Rigidity Improvement Method near the Inner Point by Concrete Filling in Steel Box Bridge
KR2019990026272U KR200191363Y1 (en) 1998-11-04 1999-11-26 Stiffness improvement of inner support section area by filling concrete in steel box girder bridge.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR2019980021398U Division KR19990007896U (en) 1998-11-04 1998-11-04 Rigidity Improvement Method near the Inner Point by Concrete Filling in Steel Box Bridge

Publications (2)

Publication Number Publication Date
KR20000011297U KR20000011297U (en) 2000-06-26
KR200191363Y1 true KR200191363Y1 (en) 2000-08-16

Family

ID=19538815

Family Applications (2)

Application Number Title Priority Date Filing Date
KR2019980021398U KR19990007896U (en) 1998-11-04 1998-11-04 Rigidity Improvement Method near the Inner Point by Concrete Filling in Steel Box Bridge
KR2019990026272U KR200191363Y1 (en) 1998-11-04 1999-11-26 Stiffness improvement of inner support section area by filling concrete in steel box girder bridge.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR2019980021398U KR19990007896U (en) 1998-11-04 1998-11-04 Rigidity Improvement Method near the Inner Point by Concrete Filling in Steel Box Bridge

Country Status (1)

Country Link
KR (2) KR19990007896U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869568B1 (en) 2008-08-18 2008-11-21 노윤근 Opening steel-concrete composite steel girder and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030019808A (en) * 2001-08-31 2003-03-07 재단법인 포항산업과학연구원 Steel Box Bridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869568B1 (en) 2008-08-18 2008-11-21 노윤근 Opening steel-concrete composite steel girder and method for manufacturing the same
WO2010021428A1 (en) * 2008-08-18 2010-02-25 Woo Kyoung Construction Co., Ltd. Opening steel composite girder and method for manufacturing the same

Also Published As

Publication number Publication date
KR19990007896U (en) 1999-02-25

Similar Documents

Publication Publication Date Title
CN104988951B (en) Straddle monorail underground section track wall construction and construction method thereof
CN103147385B (en) Double-spliced extradosed cable-stayed bridge
KR101547538B1 (en) Composite Partial Girder
CN206298836U (en) A kind of bridge of use Z bar plate connector spells construction wide
KR200191363Y1 (en) Stiffness improvement of inner support section area by filling concrete in steel box girder bridge.
CN205857002U (en) A kind of novel low-pylon cable-stayed bridge
CN208455456U (en) A kind of three straddle type environmental type bridges with Horizontal Seismic support construction
KR100328318B1 (en) Stiffness improvement of inner support section area by filling concrete in steel box girder bridge.
CN206219998U (en) A kind of bridge of use corrugated sheet steel connector spells construction wide
CN209211241U (en) A kind of frame pier continuous bridge system
Zeng et al. Analysis of mechanical performance of steel-concrete composite girder bridge with V-shaped piers
CN208380222U (en) Hinged assembly concrete shock frame structural system in beam
CN112069584A (en) Design method of ductile structural pier for railway
CN207904737U (en) Arch bridge in advance
KR20000011297U (en) Stiffness improvement of inner support section area by filling concrete in steel box girder bridge.
JPH0521522Y2 (en)
CN104452569A (en) Large-span prestressed concrete girder bridge cable arrangement method
Mourad et al. Pile forces in integral abutment bridges subjected to truck loads
CN210439127U (en) High-speed railway pier structure
JP2004176344A (en) Box girder bridge
Zhang et al. Numerical Analysis of the Structural Properties of Girdling Beam for a Square Column Used in Bridge Jacking Construction
CN109868725B (en) Bridge span assembly of hollow double-fold-line pedestrian bridge
KR200245269Y1 (en) Steel box girder with multiple layer
KR960001727B1 (en) Prestress combined beam for continuous bridge and its working
Vičan et al. Design and Stability of Long Span Railway Arch Bridge

Legal Events

Date Code Title Description
T201 Request for technology evaluation of utility model
REGI Registration of establishment
LAPS Lapse due to unpaid annual fee
T601 Decision to invalidate utility model after technical evaluation