KR200159136Y1 - Battery cooling structure having horizontal projection part - Google Patents

Battery cooling structure having horizontal projection part Download PDF

Info

Publication number
KR200159136Y1
KR200159136Y1 KR2019960058211U KR19960058211U KR200159136Y1 KR 200159136 Y1 KR200159136 Y1 KR 200159136Y1 KR 2019960058211 U KR2019960058211 U KR 2019960058211U KR 19960058211 U KR19960058211 U KR 19960058211U KR 200159136 Y1 KR200159136 Y1 KR 200159136Y1
Authority
KR
South Korea
Prior art keywords
battery
heat sink
cells
cooling structure
battery module
Prior art date
Application number
KR2019960058211U
Other languages
Korean (ko)
Other versions
KR19980045071U (en
Inventor
정도양
Original Assignee
양재신
대우자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양재신, 대우자동차주식회사 filed Critical 양재신
Priority to KR2019960058211U priority Critical patent/KR200159136Y1/en
Publication of KR19980045071U publication Critical patent/KR19980045071U/en
Application granted granted Critical
Publication of KR200159136Y1 publication Critical patent/KR200159136Y1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 고안은 전기자동차용 배터리 냉각구조에 관한 것으로, 특히 배터리 모듈을 구성하는 각각의 배터리 셀 사이에 알루미늄 또는 마그네슘 재질의 금속재질의 방열판을 각각 삽입하되 상기 각각의 방열판에는 수평방향의 돌출부를 일정간격으로 형성하여 제작함으로써 전기자동차용 배터리의 냉각을 극대화 시킬 수 있도록 한 것을 특징으로 하는 수평돌출부를 갖는 배터리 냉각구조에 관한 것으로, 셀(1)을 일정개수 장착하되 상기 셀(1)을 직렬연결하며 양 사이드에 방열판(2)을 갖는 배터리 모듈(10)에 있어서, 배터리 모듈(10)을 구성하는 각각의 배터리 셀(1) 사이사이 마다에 알루미늄 또는 마그네슘 재질의 금속재질의 방열판(3)을 삽입하되 상기 각각의 방열판에는 수평방향으로 직선형태의 돌출부(3-1)를 일정간격 형성하여 제작하는 것이 특징이다.The present invention relates to a battery cooling structure for an electric vehicle. In particular, a metal heat sink of aluminum or magnesium material is inserted between each battery cell constituting the battery module, and each of the heat sinks has a horizontally spaced protrusion. The present invention relates to a battery cooling structure having a horizontal protrusion, characterized in that to maximize the cooling of an electric vehicle battery by forming and manufacturing the same, and install a predetermined number of cells (1) and connect the cells (1) in series. In the battery module 10 having heat sinks 2 on both sides, an aluminum or magnesium metal heat sink 3 is inserted between each battery cell 1 constituting the battery module 10. However, each of the heat sinks is characterized in that the straight projections formed in a horizontal direction in the horizontal direction to form a predetermined interval.

Description

수평돌출부를 갖는 배터리 냉각구조Battery Cooling Structure with Horizontal Projection

본 고안은 전기자동차용 배터리 냉각구조에 관한 것으로, 특히 배터리 모듈을 구성하는 각각의 배터리 셀 사이에 알루미늄 또는 마그네슘 재질의 금속재질의 방열판을 각각 삽입하되 상기 각각의 방열판에는 수평방향의 돌출부를 일정간격으로 형성하여 제작함으로써 전기자동차용 배터리의 냉각을 극대화 시킬 수 있도록 한 것을 특징으로 하는 수평돌출부를 갖는 전기자동차용 배터리 냉각구조에 관한 것이다.The present invention relates to a battery cooling structure for an electric vehicle. In particular, a metal heat sink of aluminum or magnesium material is inserted between each battery cell constituting the battery module, and each of the heat sinks has a horizontally spaced protrusion. The present invention relates to a battery cooling structure for an electric vehicle having a horizontal protrusion, characterized in that by maximizing the cooling of the battery for the electric vehicle by forming and manufacturing.

일반적으로 전기자동차는 일정개수의 니켈 매탈 하이드라이드 배터리 모듈이 삽입된다. 상기 배터리는 보통 10여개의 배터리 셀들이 직렬로 연결된 상태를 유지하고 있다.In general, electric vehicles are inserted with a certain number of nickel metal hydride battery module. The battery usually maintains about 10 battery cells connected in series.

여기서 일반적인 자동차에 들어가는 배터리에 있어서, 배터리 셀의 구조는 도 1(A,B)에 나타낸 바와같이, 양극판과 음극판이 각각 존재하며, 납, 안티몬 합금제의 격자 또는 납 칼슘계 기판 중에 납산화물의 분말을 묽은 황산으로 칠하고 풀 모양의 것을 충전하여 건조한 다음 화성(전기 화학처리)을 하면 양극판은 다갈색의 이산화납(PbO2)으로, 음극판은 해면상 납(Pb)의 작용물질로 변화한다. 어느것의 작용물질도 전해액이 극판에 침투할 수 있도록 다공성으로 되어 있으며 극판의 두께는 2mm 또는 3mm의 것이 사용된다. 이때 양극판과 음극판이 서로 단락하면, 배터리내의 에너지가 없어져 버리므로 두 극판의 단락을 방지하기 위해서 비 전도성이며 전해액에 부식되지 않는 다공성의 합성수지로 가공된 섬유판이 양극판간에 삽입된다.Here, in a battery for a general automobile, the structure of the battery cell has a positive electrode plate and a negative electrode plate, respectively, as shown in Figs. 1 (A, B), and lead oxide is contained in a lead or antimony alloy lattice or lead calcium-based substrate. The powder is painted with dilute sulfuric acid, filled with grass, dried, and then chemically treated (electrochemical treatment). The anode plate turns to brown brown lead dioxide (PbO 2 ), and the cathode plate turns to the active substance of spongy lead (Pb). Either substance is porous to allow electrolyte to penetrate the plate and the plate is 2mm or 3mm thick. In this case, when the positive electrode plate and the negative electrode plate are shorted to each other, the energy in the battery is lost, so that a fiber plate processed with a non-conductive, porous synthetic resin that is not corroded to the electrolyte is inserted between the positive electrode plates to prevent the short circuit of the two electrode plates.

한편, 극판군은 도 2에 나타낸 바와같이, 몇장의 극판을 각각 조합시켜 이것에 극주를 용접하여 만든다. 이렇게하여 만들어진 극판군을 단전지(1셀)라고 하며, 완전충전으로 약 2.1볼트의 전압을 발생한다. 따라서 단전지 3개를 직렬로 연결하면 6볼트, 6개를 직렬로 연결하면 12볼트의 배터리가 된다.On the other hand, as shown in Fig. 2, the pole plate group is made by welding several pole plates by combining several pole plates, respectively. The plate group made in this way is called a unit cell (one cell), and generates a voltage of about 2.1 volts when fully charged. Therefore, if three single cells are connected in series, six volts will be connected in series, and six will be 12 volts.

그리고 단전지내의 극판장수는 임의대로 제작할 수 있으나, 일반적으로 자동차용 배터리에서는 양극판의 장수가 단전지당 3-5장이 가장 많으며, 최고 14장 정도까지 정도이다.In addition, the number of pole plates in a unit cell can be arbitrarily produced, but in general, in a car battery, the number of positive plates is 3-5 sheets per cell, up to 14 sheets.

또한 전해액의 비중은 배터리가 완전 충전상태일 때 20도에서 1.246, 1.260, 1.280의 3종류를 사용하며, 열대지에서는 1.240, 온대지에서는 1.260, 한랭지에서는 1.280을 사용하는등 한난에 따라 구분되어져 사용한다.In addition, the specific gravity of the electrolyte is used at 1.20, 1.246, 1.260, and 1.280 at 20 degrees when the battery is fully charged, and it is classified according to the climate such as 1.240 in the tropics, 1.260 in the temperate regions, and 1.280 in the cold regions. do.

이러한 이유는 전해액이 온도에 영향을 많이 받기 때문이며, 특히 묽은 황산의 비중은 온도에 따라 변화하는데, 즉, 온도가 높으면 비중이 작아지고 온도가 낮으면 비중이 커지기 때문이며, 따라서 전해액의 비중은 액온을 함께 기록하거나 표준온도(20도)로 환산하여 나타낼 필요가 있다.This is due to the fact that the electrolyte is highly affected by temperature, and in particular, the specific gravity of dilute sulfuric acid changes with temperature, that is, the higher the temperature, the lower the specific gravity, and the lower the temperature, the higher the specific gravity. It is necessary to record them together or convert them to standard temperature (20 degrees).

배터리 전해액의 비중은 온도 1도의 변화에 대해서 0.0007변화하므로 임의의 온도 t에서는 표준온도 20도로 환산하면 다음과 같다.Since the specific gravity of the battery electrolyte changes by 0.0007 with respect to the change of the temperature of 1 degree, the specific temperature t is converted into the standard temperature of 20 degrees as follows.

S20 = St + 0.0007(t-20), 여기서 S20은 표준온도 20도로 환산한 비중, St는 t도에서 실측비중 t는 측정시의 액온이다.S20 = St + 0.0007 (t-20), where S20 is the specific gravity converted to the standard temperature of 20 degrees, and St is the measured specific gravity t at t degrees.

한편, 비중계에 의한 충전상태의 판정을 보면 전해액의 비중이 1.260이면 100퍼센트 충전된 상태이고, 1.210이면 75퍼센트 충전된 상태이며, 1.150이면 50퍼센트 충전된 상태이고, 1.110이면 25퍼센트 충전된 상태이며, 1.050이면 대부분 0이다.On the other hand, the determination of the state of charge by the hydrometer shows that the electrolyte has a specific gravity of 1.260, 100% charged, 1.210, 75% charged, 1.150, 50% charged, 1.110, 25% charged. , 1.050 is mostly 0.

따라서 배터리가 방전되면 방전량에 비례하여 비중은 저하함을 알 수 있으며, 전해액의 비중을 측정하면 충전상태를 알 수 있다.Therefore, when the battery is discharged, it can be seen that the specific gravity decreases in proportion to the discharge amount, and the state of charge can be known by measuring the specific gravity of the electrolyte.

그렇게 때문에 배터리의 방전상태를 오래 지속하면 여러 가지 고장을 유발하므로 1.200 정도로 저하하면 보충할 필요가 있는 것이다.Therefore, if the discharge state of the battery lasts for a long time, it causes various failures.

도 3(A, B)에 기전력과 전해액의 비중관계를 나타내고, 기전력과 전해액의 온도의 관계를 나타내었는바, 이처럼 전해액의 온도에 따라 기전력의 차이가 발생하기 때문에 배터리 사용할 때에는 일정한 온도를 유지하도록 해야한다.3 (A, B) shows the relationship between the electromotive force and the specific gravity of the electrolyte, and the relationship between the electromotive force and the temperature of the electrolyte is shown. As such, a difference in electromotive force occurs depending on the temperature of the electrolyte, so that a constant temperature is maintained when the battery is used. Should be.

상술한 내용을 종합해보면 결국 배터리는 내부에서 일어나는 화학반응으로 충방전이 이루어 지기 때문에 온도변화에 민감하여 배터리의 각각의 셀 온도가 너무 높아도 안되고 너무 낮아도 안된다는 것을 알 수 있다.In summary, it can be seen that the battery is sensitive to temperature change because the battery is charged and discharged by a chemical reaction occurring inside, so that each cell temperature of the battery should not be too high or too low.

구체적으로 전기자동차에 들어가는 니켈 매탈 하이드라이드 배터리 셀에서 발생하는 전지전압은 약 1.2볼트 정도이며, 화학식은 다음과 같다.Specifically, the battery voltage generated in the nickel metal hydride battery cell in the electric vehicle is about 1.2 volts, and the chemical formula is as follows.

정극반응: xNi(OH)2+ xOH-↔ xNiOOH + xH2O + xePositive reaction: xNi (OH) 2 + xOH - ↔ xNiOOH + xH 2 O + xe

부극반응: Mx + xH2O + xe ↔ MHx + xOH- Negative reaction: Mx + xH 2 O + xe ↔ MHx + xOH -

전체 전지반응: Mx + xNi(OH)2↔ MHx + xNiOOHTotal cell reaction: Mx + xNi (OH) 2 ↔ MHx + xNiOOH

여기서 화살표 오른쪽 방향은 충전반응을 일으키는 식이고, 화살표 왼쪽방향은 방전반응을 일으키는 식이다.The right direction of the arrow represents the charging reaction, and the left direction of the arrow represents the discharge reaction.

그런데 현재 전기자동차에 사용되는 니켈 마그네슘 배터리 역시 고온에서의 성능과 내구성이 문제가 되기 때문에 냉각 시스템이 요구되나, 도 4에 나타낸 바와같이 배터리 모듈(10)을 이루는 셀들(1)이 서로 접촉되는 구조를 이루고 있기 때문에, 비록 배터리 모듈의 양 사이드에 방열판(2)이 있음에도 불구하고 각각의 셀(1)에서 발생하는 열을 막을 수가 없어 냉각효과가 매우 낮은 문제점이 있다.However, a nickel magnesium battery used in an electric vehicle is also required to have a cooling system because performance and durability at high temperatures are a problem, but as shown in FIG. 4, the cells 1 forming the battery module 10 are in contact with each other. Since the heat sink 2 is formed on both sides of the battery module, the heat generated from each cell 1 cannot be prevented, and thus the cooling effect is very low.

따라서 니켈 매탈 하이드라이드 배터리의 충전전시 전지의 온도가 일정수준 이상이 되면 전극반응 이외의 부반응인 가스발생이 일어나며 이 반응에 의해 전해질의 감소현상이 발생하게 되며, 전지의 팽창반응에 의해 전지의 수명과 성능저하 현상이 야기된다.Therefore, when the temperature of the battery becomes higher than a certain level during charging and charging of the nickel metal hydride battery, gas generation, which is a side reaction other than the electrode reaction, occurs, and the decrease of the electrolyte occurs by the reaction, and the life of the battery is caused by the expansion reaction of the battery. And performance degradation phenomenon.

또한 온도가 너무 낮으면 정상적으로 전극반응이 나타나지 않아 배터리는 재대로 충방전을 하지 못한다.In addition, if the temperature is too low, the electrode does not react normally, so the battery cannot charge or discharge.

본 고안은 상기와 같은 문제를 해결코자 하는 것으로, 전지의 냉각 및 히팅조건을 효율화하여 전극반응 이외의 부반응에 의한 가스발생 반응을 줄이고, 정상적으로 전극반응을 유도하여 충방전이 재대로 일어날 수 있도록 하는데 그 목적이 있다.The present invention is to solve the above problems, to reduce the gas reaction reaction by side reactions other than the electrode reaction by improving the cooling and heating conditions of the battery, and to induce the normal electrode reaction so that charge and discharge can occur again Its purpose is.

상기 목적을 달성하기 위한 수단으로,As a means for achieving the above object,

배터리 모듈을 구성하는 각각의 배터리 셀 사이에 알루미늄 또는 마그네슘 재질의 금속재질의 방열판을 각각 삽입하되 상기 각각의 방열판에는 수평방향의 돌출부를 일정간격으로 형성하여 제작하여 구성한다.Between the respective battery cells constituting the battery module is inserted into a heat sink made of a metal material of aluminum or magnesium, each of the heat sink is formed by forming a horizontal protrusion at a predetermined interval.

도 1(A, B)는 양극판 및 음극판 구조도.1 (A, B) is a structural diagram of a positive electrode plate and a negative electrode plate.

도 2는 단전지 셀의 조립도.2 is an assembly view of a unit cell.

도 3A는 기전력과 전해액 비중의 상관관계 그래프도.3A is a graph showing the correlation between electromotive force and specific gravity of an electrolyte.

3B는 기전력과 전해액 온도의 상관관계 그래프도.3B is a graph of correlation between electromotive force and electrolyte temperature.

도 4는 일반적인 니켈 매탈 하이브라이드 배터리 구조도.4 is a schematic view of a typical nickel metal hybrid battery structure.

도 5는 본 고안의 니켈 매탈 하이브라이드 배터리 구조도.5 is a structural diagram of a nickel metal hybrid battery of the present invention.

도 6은 본 고안 방열판의 측면도.Figure 6 is a side view of the subject innovation heat sink.

도 7은 본 고안 방열판의 정면도.7 is a front view of the heat sink of the present invention.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

10: 니켈 매탈 하이드라이드 배터리 1: 배터리 셀10: nickel metal hydride battery 1: battery cell

2: 사이드 방열판 3: 알루미늄 방열판2: side heat sink 3: aluminum heat sink

3-1: 돌출부3-1: protrusion

이하 도면을 참조로 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the drawings.

도 5는 본 고안 니켈 매탈 하이드라이드 배터리의 사시도이고, 도 6은 측면도이며, 도 7은 정면도로써, 셀(1)을 일정개수 장착하되 상기 셀(1)을 직렬연결하며 양 사이드에 방열판(2)을 갖는 배터리 모듈(10)에 있어서, 배터리 모듈(10)을 구성하는 각각의 배터리 셀(1) 사이사이 마다에 알루미늄 또는 마그네슘 재질의 금속재질의 방열판(3)을 삽입하되 상기 각각의 방열판에는 수평방향으로 직선형태의 돌출부(3-1)를 일정간격 형성하여 제작한 구성을 갖는다.5 is a perspective view of the inventive nickel metal hydride battery, FIG. 6 is a side view, and FIG. 7 is a front view, in which a certain number of cells 1 are mounted, the cells 1 are connected in series, and heat sinks 2 are provided at both sides. In the battery module 10 having a), inserting a heat sink (3) made of aluminum or magnesium metal between each of the battery cells (1) constituting the battery module 10, wherein each of the heat sinks It has a configuration produced by forming a straight protrusion 3-1 in a horizontal direction at a constant interval.

상기와 같이 구성하는 본 고안은 배터리 셀 사이에 방열판(3)을 설치하되 열 전도율이 플라스틱보다 좋은재질의 알루미늄 또는 마그네슘 등의 경량금속 소재를 이용하기 때문에 배터리를 냉각시 그 효과가 탁월하다.The present invention configured as described above is excellent in the effect of cooling the battery because the heat sink 3 is installed between the battery cells, but the heat conductivity is better than plastic because it uses a lightweight metal material such as aluminum or magnesium.

또한 배터리 셀(1)의 중심부와 셀의 노출부위의 온도를 균일화 시키기 때문에 전지의 성능을 향상시킬 수 있고, 배터리의 과열을 방지하여 배터리의 성능과 수명을 향상시킬 수 있는 잇점이 있다.In addition, since the temperature of the center of the battery cell 1 and the exposed portion of the cell is uniform, the performance of the battery can be improved, and the battery can be prevented from overheating, thereby improving the performance and life of the battery.

특히 본 고안은 방열판(3)을 제작시 수평방향으로 직선형태의 돌출부(3-1)를 일정간격 형성하기 때문에 공기의 흐름을 유도할 수 있어, 배터리 셀에서 발생하는 열을 효과적으로 외부와 교환할 수 있다.In particular, since the present invention forms a straight line protrusion 3-1 in a horizontal direction at the time of manufacturing the heat sink 3, it can induce the flow of air, so that the heat generated from the battery cell can be effectively exchanged with the outside. Can be.

상술한 바와같이 본 고안은 배터리 모듈을 구성하는 각각의 배터리 셀 사이에 알루미늄 내지는 마그네슘 재질의 금속재질의 방열판을 삽입하여 전기자동차용 배터리의 냉각을 극대화 시킬 수 있는 효과가 있다.As described above, the present invention has an effect of maximizing cooling of an electric vehicle battery by inserting a heat sink made of metal of aluminum or magnesium between each battery cell constituting the battery module.

Claims (1)

셀(1)을 일정개수 장착하되 상기 셀(1)을 직렬연결하며 양 사이드에 방열판(2)을 갖는 배터리 모듈(10)에 있어서, 배터리 모듈(10)을 구성하는 각각의 배터리 셀(1) 사이사이 마다에 알루미늄 또는 마그네슘 재질의 금속재질의 방열판(3)을 삽입하되 상기 각각의 방열판에는 수평방향으로 직선형태의 돌출부(3-1)를 일정간격 형성하여 제작하는 것을 특징으로 하는 수평돌출부를 갖는 배터리 냉각구조.In the battery module (10) mounted a certain number of cells (1), but connected in series with the cells (1) and having a heat sink (2) on both sides, each of the battery cells (1) constituting the battery module 10 Inserting a heat sink 3 made of metal of aluminum or magnesium between the intervals between the horizontal projections, characterized in that for each of the heat sink is formed by forming a linear protrusion (3-1) in a horizontal direction in a horizontal direction Having battery cooling structure.
KR2019960058211U 1996-12-27 1996-12-27 Battery cooling structure having horizontal projection part KR200159136Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2019960058211U KR200159136Y1 (en) 1996-12-27 1996-12-27 Battery cooling structure having horizontal projection part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR2019960058211U KR200159136Y1 (en) 1996-12-27 1996-12-27 Battery cooling structure having horizontal projection part

Publications (2)

Publication Number Publication Date
KR19980045071U KR19980045071U (en) 1998-09-25
KR200159136Y1 true KR200159136Y1 (en) 1999-10-15

Family

ID=19483885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2019960058211U KR200159136Y1 (en) 1996-12-27 1996-12-27 Battery cooling structure having horizontal projection part

Country Status (1)

Country Link
KR (1) KR200159136Y1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080280173A1 (en) * 2005-12-02 2008-11-13 Renault S.A.S. Electricity Generation Module Including a Plurality of Electrochemical Cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612239B1 (en) * 2005-04-26 2006-08-11 삼성에스디아이 주식회사 Secondary battery module and wall of secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080280173A1 (en) * 2005-12-02 2008-11-13 Renault S.A.S. Electricity Generation Module Including a Plurality of Electrochemical Cells
US8313854B2 (en) * 2005-12-02 2012-11-20 Renault S.A.S. Electricity generation module including a plurality of electrochemical cells and support plates forming spacers for the electrochemical cells

Also Published As

Publication number Publication date
KR19980045071U (en) 1998-09-25

Similar Documents

Publication Publication Date Title
CN106410101B (en) Battery module, battery pack including the same, and vehicle including the battery pack
CN106257738B (en) Controller for lithium ion secondary battery and vehicle
CN101288189A (en) Battery case having improved thermal conductivity
KR101706305B1 (en) Battery Module Having Temperature Sensor
EP1138554B1 (en) Power system and state of charge estimating method
CN210120197U (en) End plate assembly for fuel cell, fuel cell and vehicle
Jafari et al. Pb acid batteries
JP3292206B2 (en) Nickel zinc battery
JP2009099442A (en) Control valve type lead-acid storage battery
KR200159136Y1 (en) Battery cooling structure having horizontal projection part
Trinidad et al. High power valve regulated lead-acid batteries for new vehicle requirements
KR200159135Y1 (en) Electric vehicle battery cooling structure having projection part
JPH11213962A (en) Storage battery
CN218586051U (en) Battery cell, battery and power consumption device
KR20060062500A (en) Lead-acid battery for automobile
KR19980045122U (en) Battery Cooling Structure for Electric Vehicles
Ohmae et al. Development of 36-V valve-regulated lead-acid battery
US20040185333A1 (en) Colloidal battery
JP2616197B2 (en) Lead storage battery and method of manufacturing the same
CN115968515A (en) Battery, electric equipment, method and equipment for preparing battery
KR101112447B1 (en) Secondary Battery of Improved Safety
US7875386B2 (en) Energy converter cell for the direct conversion of radiation and/or thermal energy into electrical energy
US20210249713A1 (en) Battery Module, and Battery Pack and Vehicle Comprising Same
KR20230015253A (en) Battery, power consumption device, battery manufacturing method and device
JP2009016235A (en) Power storage device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20090630

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee