KR20010104053A - Method of preparing acrolein by oxidation of propylene - Google Patents

Method of preparing acrolein by oxidation of propylene Download PDF

Info

Publication number
KR20010104053A
KR20010104053A KR1020000025445A KR20000025445A KR20010104053A KR 20010104053 A KR20010104053 A KR 20010104053A KR 1020000025445 A KR1020000025445 A KR 1020000025445A KR 20000025445 A KR20000025445 A KR 20000025445A KR 20010104053 A KR20010104053 A KR 20010104053A
Authority
KR
South Korea
Prior art keywords
propylene
acrylic acid
acrolein
oxygen
reaction
Prior art date
Application number
KR1020000025445A
Other languages
Korean (ko)
Inventor
이동철
송광호
박광호
곽석환
이종천
정혜영
Original Assignee
성재갑
주식회사 엘지씨아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성재갑, 주식회사 엘지씨아이 filed Critical 성재갑
Priority to KR1020000025445A priority Critical patent/KR20010104053A/en
Publication of KR20010104053A publication Critical patent/KR20010104053A/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 프로필렌의 기상 산화 반응에 의하여 아크롤레인과 아크릴산을 제조하는 방법에 관한 것이다.The present invention relates to a process for producing acrolein and acrylic acid by vapor phase oxidation of propylene.

본 발명은 희석 가스로서 질소를 그대로 사용하면서 1 단계 고정층 반응기를 2 단계 반응기와 분리시켜서 원료 가스의 산소 함량을 줄이고 프로필렌 함량을 늘려서 폭발 위험성을 제거하고, 몰비를 작게 함으로써 예상되는 제 2 단계 반응에서의 부족한 산소를 제 2 단계 반응기 입구에서 추가로 보충함으로써 아크롤레인 및 아크릴산의 생산성을 증가시키는 방법을 제공한다.The present invention separates the first stage fixed bed reactor from the second stage reactor while using nitrogen as a diluent gas, thereby reducing the oxygen content of the feed gas and increasing the propylene content to eliminate the explosion risk and reducing the molar ratio in the second stage reaction. A method of increasing the productivity of acrolein and acrylic acid is provided by further replenishing the lack of oxygen at the second stage reactor inlet.

Description

프로필렌의 기상 산화 반응에 의한 아크롤레인의 제조 방법{METHOD OF PREPARING ACROLEIN BY OXIDATION OF PROPYLENE}Process for producing acrolein by vapor phase oxidation of propylene {METHOD OF PREPARING ACROLEIN BY OXIDATION OF PROPYLENE}

[산업상 이용분야][Industrial use]

본 발명은 프로필렌의 기상 산화 반응에 의하여 아크롤레인과 아크릴산을 제조하는 방법에 관한 것이다.The present invention relates to a process for producing acrolein and acrylic acid by vapor phase oxidation of propylene.

[종래 기술][Prior art]

아크릴산은 프로필렌의 기상 산화 반응에 의하여 생성된 아크롤레인을 다시 산화 반응시키는 2 단계 촉매 기상 산화 반응에 의해 제조된다. 일반적으로 이러한 2 단계 산화 반응은 프로필렌을 아크롤레인으로 산화시키는 1 단계 촉매와 아크롤레인을 아크릴산으로 산화시키는 2 단계 촉매가 고정층 반응기에 연속적으로 충전되어 있어서 반응기 출구에서 나오는 대부분의 생성물이 아크릴산이 된다.Acrylic acid is prepared by a two-step catalytic gas phase oxidation reaction in which the acrolein produced by the gas phase oxidation reaction of propylene is oxidized again. Typically, this two stage oxidation reaction is a continuous charge of a one stage catalyst for oxidizing propylene to acrolein and a two stage catalyst for oxidizing acrolein to acrylic acid in a fixed bed reactor so that most of the product from the reactor outlet is acrylic acid.

본 발명의 대상이 되는 반응은 상기 2 단계 반응 가운데 프로필렌이 아크롤레인으로 전환되는 1 단계 반응으로서, 프로필렌과 산소가 반응하여 아크롤레인과 물이 생성되고 부산물로는 소량의 이산화탄소, 아세트알데히드, 초산, 아크릴산 등이 생성된다. 본 반응에는 프로필렌과 산소 외에 스팀과 희석 가스로 다량의 질소가 사용되는데 스팀은 1 단계 촉매 상에 생성된 아크릴산과 아크롤레인의 탈착을 증진시키고 이산화탄소의 생성을 억제하여 아크롤레인의 선택도를 높이는 작용을 한다. 또한 본 반응은 극심한 발열 반응으로서 반응시 생성되는 반응열이 81 kcal/mol로 매우 높아서 반응기 내부에서 런어웨이(run-away)가 일어날 가능성이 있고, 프로필렌과 산소의 혼합기체는 폭발 위험성이 있어서 반응열을 제어하고 폭발되는 조성을 피하기 위하여 반응에 참여하지 않는 희석 가스로서 질소가 사용된다.The reaction of the present invention is a one-step reaction in which propylene is converted to acrolein in the two-step reaction, and propylene and oxygen react to generate acrolein and water, and as a by-product, a small amount of carbon dioxide, acetaldehyde, acetic acid, acrylic acid, etc. Is generated. In this reaction, a large amount of nitrogen is used as steam and diluent gas in addition to propylene and oxygen. Steam enhances the desorption of acrylic acid and acrolein produced on the first stage catalyst and suppresses the production of carbon dioxide to increase the acrolein selectivity. . In addition, this reaction is extremely exothermic and the reaction heat generated during the reaction is very high at 81 kcal / mol, which may lead to run-away in the reactor. Nitrogen is used as a diluent gas that does not participate in the reaction to control and avoid explosive compositions.

미국 특허 제5,218,146호에서는 희석 가스로서 질소를 사용하지 않고 탄소 원자수가 1∼5 개인 포화 지방족 탄화수소를 부피비로 5∼70 %, 이산화탄소를3∼50 %, 부피비 총량으로 20∼80 %의 포화 지방족 탄화수소와 이산화탄소를 포함하며, 또한 프로필렌 1 몰 당 0.5∼8 몰의 스팀을 포함하는 희석가스를 1 단계 반응기에 주입하였다.U.S. Patent No. 5,218,146 describes saturated aliphatic hydrocarbons having 5 to 70% by volume, carbon dioxide 3 to 50% and 20 to 80% by volume of total aliphatic hydrocarbons having 1 to 5 carbon atoms without using nitrogen as the diluent gas. And a diluent gas containing carbon dioxide and 0.5 to 8 moles of steam per mole of propylene were introduced into the first stage reactor.

300 ℃ 부근에서 상압 하에서의 비열(kcal/kg·mol·deg)은 메탄 12.5, 에탄 21.3, 프로판 30.9, 부탄 40.3, 이산화탄소 11.5, 증기 8.8, 일산화탄소 7.3, 질소 7.1, 아르곤 5.0, 공기 5.0으로서 지금까지 희석 가스로 사용된 질소에 비하여 열용량이 큰 희석 가스를 사용하여 산화 반응에 의해 발생하는 반응열의 제거에 효과를 거두었다.Specific heat under normal pressure (kcal / kg.mol.deg) at around 300 ° C has been diluted so far as methane 12.5, ethane 21.3, propane 30.9, butane 40.3, carbon dioxide 11.5, steam 8.8, carbon monoxide 7.3, nitrogen 7.1, argon 5.0, air 5.0 Diluent gas having a larger heat capacity than nitrogen used as a gas was used to remove the heat of reaction generated by the oxidation reaction.

그러나 산화 반응시에는 공기 중의 질소와 산소를 사용하기 때문에 원료 가스를 매우 저렴하게 공급할 수 있으나 열용량이 큰 희석기체를 사용할 경우 희석 가스 외에 별도의 산소를 공급해 주어야 하므로 원료 가스의 비용 부담이 커지고 아크릴산의 분리 공정에도 영향을 미쳐서 제조 비용이 증가하는 단점이 있다.However, in the oxidation reaction, raw material gas can be supplied very cheaply because nitrogen and oxygen in the air are used. However, when a diluent gas having a large heat capacity is used, additional oxygen must be supplied in addition to the diluent gas. It also affects the separation process, which increases the manufacturing cost.

희석 가스로서 질소를 사용할 때 반응 생성물에 대한 수율을 증대시키기 위해서는 원료 가스 중에 프로필렌과 산소의 함량을 늘려야 하는데 이는 극심한 발열로 인하여 런어웨이의 가능성이 있고, 폭발 위험성이 있으므로 이러한 방법에는 한계가 있다.When using nitrogen as the diluent gas, in order to increase the yield of the reaction product, it is necessary to increase the content of propylene and oxygen in the source gas, which has a possibility of runaway due to extreme heat generation, and there is a risk of explosion, so this method is limited.

따라서 본 발명은 종래 기술의 문제점을 고려하여 희석 가스로서 질소를 그대로 사용하면서 1 단계 고정층 반응기를 2 단계 반응기와 분리시켜서 원료 가스의 산소 함량을 줄이고 프로필렌 함량을 늘려서 폭발 위험성을 제거하여 아크롤레인및 아크릴산의 생산성을 증가시키는 방법을 제공하는 것을 목적으로 한다.Therefore, in view of the problems of the prior art, the first stage fixed bed reactor is separated from the second stage reactor while nitrogen is used as the diluent gas, thereby reducing the oxygen content of the raw gas and increasing the propylene content to remove the explosion hazards. It is an object to provide a method for increasing productivity.

도 1은 산소/프로필렌의 몰비에 따른 프로필렌의 전환률과 아크롤레인과 아크릴산의 수율을 나타낸 것이다.Figure 1 shows the conversion of propylene and the yield of acrolein and acrylic acid according to the molar ratio of oxygen / propylene.

도 2는 도 1의 촉매층 길이에 따른 반응기 내부의 온도 구배를 나타낸 것이다.Figure 2 shows the temperature gradient inside the reactor according to the catalyst bed length of FIG.

도 3은 프로필렌의 농도에 따른 프로필렌의 전환률과 아크롤레인과 아크릴산의 수율을 나타낸 것이다.Figure 3 shows the conversion of propylene and the yield of acrolein and acrylic acid according to the concentration of propylene.

도 4는 도 3의 촉매층 길이에 따른 반응기 내부의 온도 구배를 나타낸 것이다.Figure 4 shows the temperature gradient inside the reactor according to the catalyst bed length of FIG.

도 5는 프로필렌의 농도가 7.5 %일 때 산소/프로필렌의 몰비에 따른 프로필렌의 전환률과 아크롤레인과 아크릴산의 수율을 나타낸 것이다.Figure 5 shows the conversion of propylene and the yield of acrolein and acrylic acid according to the molar ratio of oxygen / propylene when the concentration of propylene is 7.5%.

[과제를 해결하기 위한 수단][Means for solving the problem]

본 발명은 상기 목적을 달성하기 위하여, 프로필렌을 촉매가 충전된 고정층 반응기에서 기상 산화시켜 아크롤레인을 제조하는 제 1 단계 공정과 제조된 아크롤레인을 고정층 반응기에서 산화 반응시켜서 아크릴산을 제조하는 제 2 단계 공정에 의하여 제조되는 아크릴산의 제조 방법에 있어서,In order to achieve the above object, the present invention provides a first step process for producing acrolein by gas phase oxidation of propylene in a fixed bed reactor filled with a catalyst, and a second step process for producing acrylic acid by oxidizing the prepared acrolein in a fixed bed reactor. In the production method of acrylic acid produced by

상기 제 1 단계 공정의 고정층 반응기에In the fixed bed reactor of the first step process

a) 희석 가스로서 질소; 및a) nitrogen as the diluent gas; And

b) 프로필렌 농도가 7.0∼10.0 부피%이고, 산소/프로필렌의 몰비가 1.2∼b) the propylene concentration is 7.0-10.0 vol% and the molar ratio of oxygen / propylene is 1.2-

1.85인 원료 가스Raw material gas which is 1.85

를 공급하는 아크릴산의 제조 방법을 제공한다.It provides a method for producing acrylic acid to supply.

또한 상기 제 2 단계 공정에 있어서,Also in the second step process,

고정층 반응기에 추가로 산소를 0.1∼10 부피% 공급하여 제조하는 아크릴산의 제조 방법을 제공한다.Provided is a method for producing acrylic acid, which is prepared by further supplying 0.1 to 10% by volume of oxygen to a fixed bed reactor.

본 발명을 하기 도면의 내용을 참조하여 더욱 상세하게 설명한다.The present invention will be described in more detail with reference to the following drawings.

본 발명에 사용된 반응기는 그 크기가 특정되거나 한계가 있는 것은 아니나, 예시를 위하여 설명하면, 외경 1 인치 튜브이고, 반응기 내부에 직경 7 mm, 길이 7.7 mm인 펠렛 형태의 촉매(이하 L 촉매라 함)를 10.9 cm 충전하고, 다시 직경 5.7 mm, 길이 6.4 mm인 촉매(이하 S 촉매라 함)를 충전하여 원료 가스를 반응기 바닥에서부터 주입하여 실험하였다.The reactor used in the present invention is not specific or limited in size, but for illustrative purposes, it is an outer diameter 1 inch tube, pelletized catalyst having a diameter of 7 mm and a length of 7.7 mm (hereinafter referred to as L catalyst). 10.9 cm) was charged, and again a 5.7 mm diameter and 6.4 mm long catalyst (hereinafter referred to as S catalyst) was charged and injected with raw material gas from the bottom of the reactor.

도 1은 산소와 프로필렌의 몰비에 따른 프로필렌의 전환률과 반응 생성물의 수율을 나타낸 것이다. 원료 가스 중 프로필렌의 농도를 7 부피%로 고정시키고, 산소/프로필렌의 몰비를 1.2에서 1.85까지 증가시켰을 때 몰비가 증가함에 따라서 전환률과 수율이 증가하여 원료 가스 내에 프로필렌에 대한 산소의 양이 많아지면 생산성이 높아지나 프로필렌이 일정할 때 산소량의 증가에 따른 폭발 위험성 때문에 몰비를 그 이상 증가시키지는 못하였다.Figure 1 shows the conversion of propylene and the yield of the reaction product according to the molar ratio of oxygen and propylene. When the concentration of propylene in the source gas is fixed at 7% by volume and the molar ratio of oxygen / propylene is increased from 1.2 to 1.85, the conversion and yield increase as the molar ratio increases, so that the amount of oxygen to propylene in the source gas increases. Productivity increased but the propylene ratio did not increase the molar ratio further due to the explosion risk associated with increased oxygen content.

도 2는 촉매층 길이에 따른 반응기 내부의 온도 구배를 나타낸 것으로서 산소/프로필렌의 몰비가 작을 때는 반응속도가 느려서 L 촉매층에서의 온도가 낮고 대부분의 반응이 S 촉매층에서 일어나고 온도가 높은 것으로 보아 촉매의 용량에 비해 프로필렌의 전환률은 높지 않은 것으로 보인다. 산소/프로필렌의 몰비가 1.2에서 1.85로 증가함에 따라서 반응속도가 높아져 L 촉매층에서의 온도가 높아지고, 프로필렌의 반응은 L 촉매층과 S 촉매층에 걸쳐서 균일하게 일어나서 전환률과 반응 생성물의 수율도 증가되었다.Figure 2 shows the temperature gradient in the reactor according to the catalyst bed length, the reaction rate is slow when the molar ratio of oxygen / propylene is low, the temperature in the L catalyst bed is low and most of the reaction occurs in the S catalyst bed and the temperature is high The conversion of propylene does not appear to be high. As the molar ratio of oxygen / propylene increased from 1.2 to 1.85, the reaction rate was increased to increase the temperature in the L catalyst layer, and the propylene reaction occurred uniformly throughout the L catalyst layer and the S catalyst layer, thereby increasing the conversion and yield of the reaction product.

도 3은 산소/프로필렌의 몰비를 1.6으로 고정시키고 프로필렌의 농도를 7∼8 부피%로 증가시켰을 때 프로필렌의 전환률과 반응 생성물의 수율을 나타낸 것이다. 프로필렌의 농도가 증가함에 따라서 반응속도가 높아져서 전환률이 증가하는 것을 볼 수 있으나 그에 따라서 이산화탄소 등의 부산물 생성도 증가하여 반응 생성물의 수율은 프로필렌 농도가 7.8 부피%일 때 가장 크고, 8 부피%일 때는 감소하였다.Figure 3 shows the conversion of propylene and the yield of the reaction product when the molar ratio of oxygen / propylene was fixed at 1.6 and the concentration of propylene was increased to 7-8% by volume. As the concentration of propylene increases, the reaction rate increases to increase the conversion rate, but accordingly, the production of by-products such as carbon dioxide also increases, so that the yield of the reaction product is the highest when the propylene concentration is 7.8% by volume, and when it is 8% by volume. Decreased.

도 4는 도 3에서 촉매층 길이에 따른 반응기 내부의 온도 구배를 나타낸 것으로서 프로필렌의 농도가 증가할수록 전체 촉매층의 온도가 증가하고 특히 L 촉매층에서의 온도가 높아져 산소/프로필렌의 몰비가 낮을 때 L 촉매층에서의 반응속도가 느렸던 단점을 보완하고, 원료 가스 중 프로필렌의 함량을 늘렸을 때 전환률과 반응 생성물의 수율이 증가되어 본 공정의 생산성을 증가시킨 것이다.4 shows the temperature gradient in the reactor according to the length of the catalyst bed in FIG. 3 as the concentration of propylene increases, the temperature of the entire catalyst bed increases, especially in the L catalyst bed when the molar ratio of oxygen / propylene is low because the temperature in the L catalyst bed is high. To compensate for the slow reaction rate of the, and increase the content of propylene in the feed gas to increase the conversion rate and the yield of the reaction product to increase the productivity of the process.

도 5는 프로필렌의 농도를 7.5 부피%로 고정시키고 산소/프로필렌의 몰비를 1.6∼1.75로 변화시켰을 때 프로필렌의 전환률과 반응 생성물의 수율을 나타낸 것이다. 앞에서의 결과와 마찬가지로 몰비가 1.6 일 때 보다 1.75일때 프로필렌의 전환률과 생성물의 수율이 높다.Figure 5 shows the conversion of propylene and the yield of the reaction product when the concentration of propylene was fixed at 7.5% by volume and the molar ratio of oxygen / propylene was changed from 1.6 to 1.75. As with the previous results, the conversion of propylene and the yield of product are higher when the molar ratio is 1.75 than when 1.6.

또한 이때의 수율은 프로필렌 7 부피%, 산소/프로필렌의 몰비가 1.85일 때의 수율과 비슷하지만 촉매 충전량과 공간속도가 같을 때 프로필렌의 농도가 0.5 부피%가 더 크기 때문에 반응 생성물, 즉 아크롤레인과 아크릴산의 생산량도 그만큼 증가한다.In addition, the yield is similar to the yield when propylene is 7% by volume and the molar ratio of oxygen / propylene is 1.85, but the reaction product, that is, acrolein and acrylic acid, is higher because the concentration of propylene is 0.5% by volume when the catalyst charge and space velocity are the same. The output of that also increases.

본 발명에서는 프로필렌의 제 1 단계 산화 반응에서 같은 공간속도에서 종래의 공정보다 산소/프로필렌의 몰비를 작게 하면서 프로필렌의 농도는 늘려서 단위 시간당 아크롤레인과 아크릴산의 생산량을 증가시킬 수 있었고, 몰비를 작게 함으로써 예상되는 제 2 단계 반응에서의 부족한 산소를 제 2 단계 반응기 입구에서 추가로 보충함으로써 공정을 개선한 것이다.In the present invention, at the same space velocity in the first stage oxidation reaction of propylene, while the molar ratio of propylene is lower than that of the conventional process, the concentration of propylene can be increased to increase the production of acrolein and acrylic acid per unit time. The process was improved by further replenishing the insufficient oxygen in the second stage reaction, which would otherwise be at the second stage reactor inlet.

이하의 실시예에 의하여 본 발명을 구체적으로 설명한다. 단 이들 실시예는 본 발명을 예시하기 위한 것이며 본 발명이 이들만으로 한정되는 것은 아니다.The present invention will be described in detail by the following examples. However, these Examples are only for illustrating the present invention and the present invention is not limited thereto.

[실시예]EXAMPLE

실시예 1Example 1

반응기는 이중관으로 바깥쪽 외경이 3 인치, 안쪽 외경이 1 인치인 관형 반응기에 3 인치 관 안쪽에는 용융염을 채우고 열전쌍을 설치한 후 이를 고온에서 순환시키기 위하여 질소를 흘려주었다.The reactor was a double tube filled with molten salt inside a 3 inch tube in a tubular reactor having an outer outer diameter of 3 inches and an inner outer diameter of 1 inch, and a thermocouple was installed and nitrogen was flowed to circulate it at a high temperature.

1 인치 관 내부에 10.9 cm의 길이로 L 촉매 32.21 g, 30.4 cm의 길이로 S 촉매 91.03 g을 균일하게 충전하고, 촉매층 앞뒤로 알루미나를 충전하였다. 이 반응기를 3 단으로 이루어진 로 안에 설치하고 용융염의 온도를 제어하였다.The inside of the 1-inch tube was uniformly charged with 32.21 g of L catalyst at a length of 10.9 cm and 91.03 g of S catalyst at a length of 30.4 cm, and alumina was charged back and forth over the catalyst layer. The reactor was installed in a three stage furnace to control the temperature of the molten salt.

반응기 출구에서의 조성은 가스크로마토그래피를 사용하여 분석하고, 검출기는 열전도도 검출기와 불꽃 이온화 검출기 두 종류를 사용하였다.The composition at the outlet of the reactor was analyzed using gas chromatography, and two types of detectors were thermal conductivity detectors and flame ionization detectors.

용융염의 온도를 308 ℃로 가열하고, 반응 원료의 공간속도를 3343 cc/min로 고정한 후 프로필렌 7 부피%, 산소는 프로필렌의 1.2 배, 스팀 7.6 부피%, 나머지는 질소인 혼합물을 반응기 하단부에 있는 입구로 공급하였다. 이렇게 반응시킨 프로필렌의 전환률과 아크롤레인 및 아크릴산의 수율은 표 1 에 나타내었다.After heating the molten salt to 308 ° C. and fixing the space velocity of the reaction raw material to 3343 cc / min, a mixture of 7% by volume of propylene, 1.2 times of oxygen by propylene, 7.6% by volume of steam and the rest of nitrogen was placed at the bottom of the reactor. Fed to the inlet. The conversion of propylene and the yield of acrolein and acrylic acid thus reacted are shown in Table 1.

실시예 2∼4Examples 2-4

산소/프로필렌의 몰비를 1.4, 1.6, 1.85로 변환한 것 외에는 실시예 1과 동일하게 아크롤레인과 아클릴산을 제조하고, 그 결과를 표 1에 나타내었다.Acrolein and acrylic acid were produced in the same manner as in Example 1 except that the molar ratios of oxygen / propylene were converted to 1.4, 1.6, and 1.85, and the results are shown in Table 1.

실시예 5∼7Examples 5-7

산소/프로필렌의 몰비를 1.6로 고정하고 프로필렌의 농도를 7.5 부피%, 7.8 부피%, 8 부피%로 증가시킨 것 외에는 실시예 1과 동일하게 아크롤레인과 아클릴산을 제조하고, 그 결과를 표 1에 나타내었다.Acrolein and acrylic acid were prepared in the same manner as in Example 1 except that the molar ratio of oxygen / propylene was fixed at 1.6 and the concentration of propylene was increased to 7.5% by volume, 7.8% by volume, and 8% by volume, and the results are shown in Table 1. Indicated.

실시예 8, 9Examples 8 and 9

프로필렌의 농도를 7.5 부피%로 고정하고, 산소/프로필렌의 몰비를 1.7, 1.75로 변환한 것 외에는 실시예 1과 동일하게 아크롤레인과 아크릴산을 제조하고, 그 결과를 표 1에 나타내었다.Acrolein and acrylic acid were prepared in the same manner as in Example 1 except that the concentration of propylene was fixed at 7.5% by volume and the molar ratios of oxygen / propylene were changed to 1.7 and 1.75. The results are shown in Table 1 below.

프로필렌 1 단계 산화 반응 결과Propylene One Step Oxidation Reaction Result 구 분division 프로필렌농도(부피%)Propylene Concentration (% Volume) 산소/프로필렌몰비Oxygen / propylene molar ratio 프로필렌전환율(%)Propylene Conversion Rate (%) 아크롤레인 +아크릴산 수율(%)Acrolein + Acrylic Acid Yield (%) 아크롤레인 + 아크릴산생산량(cc/min)Acrolein + Acrylic Acid Production (cc / min) 실시예 1Example 1 77 1.21.2 67.8067.80 64.4764.47 150.9150.9 실시예 2Example 2 77 1.41.4 88.6888.68 84.9484.94 198.8198.8 실시예 3Example 3 77 1.61.6 92.7292.72 88.9988.99 208.3208.3 실시예 4Example 4 77 1.851.85 93.8393.83 89.9489.94 210.5210.5 실시예 5Example 5 7.57.5 1.61.6 93.1193.11 89.2489.24 223.8223.8 실시예 6Example 6 7.87.8 1.61.6 93.3393.33 89.4389.43 233.2233.2 실시예 7Example 7 88 1.61.6 93.3493.34 89.3689.36 239.0239.0 실시예 8Example 8 7.57.5 1.71.7 93.4293.42 89.0789.07 223.3223.3 실시예 9Example 9 7.57.5 1.751.75 93.6893.68 89.6089.60 224.7224.7

본 발명의 방법으로 아크롤레인 및 아크릴산을 제조할 때 제 1 단계 반응에서 폭발 위험성이 없으며, 제조되는 반응 생성물인 아크롤레인 및 아크릴산의 수율이 높다.When preparing acrolein and acrylic acid by the method of the present invention, there is no explosion risk in the first stage reaction, and the yield of the acrolein and acrylic acid reaction products to be produced is high.

Claims (2)

프로필렌을 촉매가 충전된 고정층 반응기에서 기상 산화시켜 아크롤레인을 제조하는 제 1 단계 공정과 제조된 아크롤레인을 고정층 반응기에서 산화 반응시켜서 아크릴산을 제조하는 제 2 단계 공정에 의하여 제조되는 아크릴산의 제조 방법에 있어서,In the first step of producing acrolein by gas phase oxidation of propylene in a fixed bed reactor filled with a catalyst, and a method of producing acrylic acid prepared by a second step of producing acrylic acid by oxidizing the prepared acrolein in a fixed bed reactor, 상기 제 1 단계 공정의 고정층 반응기에In the fixed bed reactor of the first step process a) 희석 가스로서 질소; 및a) nitrogen as the diluent gas; And b) 프로필렌 농도가 7.0∼10.0 부피%이고, 산소/프로필렌의 몰비가 1.2∼b) the propylene concentration is 7.0-10.0 vol% and the molar ratio of oxygen / propylene is 1.2- 1.85인 원료 가스Raw material gas which is 1.85 를 공급하는 아크릴산의 제조 방법.Method of producing acrylic acid to supply. 제 1 항에 있어서,The method of claim 1, 상기 제 2 단계 공정의 고정층 반응기에 추가로 산소를 0.1∼10 부피% 공급하는 아크릴산의 제조 방법.The method of producing acrylic acid to supply 0.1 to 10% by volume of oxygen further to the fixed bed reactor of the second step.
KR1020000025445A 2000-05-12 2000-05-12 Method of preparing acrolein by oxidation of propylene KR20010104053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000025445A KR20010104053A (en) 2000-05-12 2000-05-12 Method of preparing acrolein by oxidation of propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000025445A KR20010104053A (en) 2000-05-12 2000-05-12 Method of preparing acrolein by oxidation of propylene

Publications (1)

Publication Number Publication Date
KR20010104053A true KR20010104053A (en) 2001-11-24

Family

ID=45811849

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000025445A KR20010104053A (en) 2000-05-12 2000-05-12 Method of preparing acrolein by oxidation of propylene

Country Status (1)

Country Link
KR (1) KR20010104053A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735873B1 (en) * 1999-07-23 2007-07-06 롬 앤드 하스 캄파니 Process for preparing and purifying acrylic acid from propylene having improved capacity
KR101259649B1 (en) * 2004-07-01 2013-04-30 바스프 에스이 Method for the production of acrolein, acrylic acid, or a mixture thereof by means of heterogeneously catalyzed partial gas phase oxidation of propylene
KR102072475B1 (en) 2018-08-22 2020-02-03 한국화학연구원 Catalyst for manufacturing acrylic acid and a method for manufacturing acrylic acid using it
CN116143606A (en) * 2023-02-27 2023-05-23 山东兴鲁承宏新材料科技有限公司 Acrylic acid synthesis process capable of reducing byproducts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031135A (en) * 1974-07-31 1977-06-21 Basf Aktiengesellschaft Manufacture of acrylic acid by oxidation of propylene with oxygen-containing gases in two separate catalyst stages
US4335264A (en) * 1976-07-07 1982-06-15 E. I. Du Pont De Nemours And Company High yield, low byproduct α, β-unsaturated aldehydes from olefins
US4873368A (en) * 1979-11-19 1989-10-10 Mitsubishi Petrochemical Company Limited Process for producing acrylic acid
US5077434A (en) * 1986-12-11 1991-12-31 Mitsubishi Petrochemical Company Limited Process for production of acrylic acid
US5183936A (en) * 1986-08-21 1993-02-02 Union Carbide Chemicals & Plastics Technology Corporation Anhydrous diluent process for the propylene oxidation reaction to acrolein and acrolein oxidation to acrylic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031135A (en) * 1974-07-31 1977-06-21 Basf Aktiengesellschaft Manufacture of acrylic acid by oxidation of propylene with oxygen-containing gases in two separate catalyst stages
US4335264A (en) * 1976-07-07 1982-06-15 E. I. Du Pont De Nemours And Company High yield, low byproduct α, β-unsaturated aldehydes from olefins
US4873368A (en) * 1979-11-19 1989-10-10 Mitsubishi Petrochemical Company Limited Process for producing acrylic acid
US5183936A (en) * 1986-08-21 1993-02-02 Union Carbide Chemicals & Plastics Technology Corporation Anhydrous diluent process for the propylene oxidation reaction to acrolein and acrolein oxidation to acrylic acid
US5077434A (en) * 1986-12-11 1991-12-31 Mitsubishi Petrochemical Company Limited Process for production of acrylic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735873B1 (en) * 1999-07-23 2007-07-06 롬 앤드 하스 캄파니 Process for preparing and purifying acrylic acid from propylene having improved capacity
KR101259649B1 (en) * 2004-07-01 2013-04-30 바스프 에스이 Method for the production of acrolein, acrylic acid, or a mixture thereof by means of heterogeneously catalyzed partial gas phase oxidation of propylene
KR102072475B1 (en) 2018-08-22 2020-02-03 한국화학연구원 Catalyst for manufacturing acrylic acid and a method for manufacturing acrylic acid using it
CN116143606A (en) * 2023-02-27 2023-05-23 山东兴鲁承宏新材料科技有限公司 Acrylic acid synthesis process capable of reducing byproducts

Similar Documents

Publication Publication Date Title
KR100609203B1 (en) Method for producing vinyl acetate monomer from ethane or ethylene oxidation
US11401220B2 (en) Alkane oxidative dehydrogenation (ODH)
US3987119A (en) Production of vinyl chloride from ethane
US6040467A (en) High purity oxygen for ethylene oxide production
KR100231872B1 (en) Method for production of phenol and its derivatives
EP0318205B1 (en) Process for the production of nitriles and anhydrides
EP3490961B1 (en) Oxidative dehydrogenation (odh) of ethane
EP3490962B1 (en) Oxidative dehydrogenation (odh) of ethane
MY121141A (en) Method for the catalytic gas-phase oxidation of propene into acrolein
EP2935184B1 (en) Integrated process for making acetic acid from syngas
US5300684A (en) Process for the fluidized bed oxidation of ethane to acetic acid
JP3058696B2 (en) Oxychlorination of ethylene in a two-stage fixed bed reactor
US8013198B2 (en) Process for simultaneous production of benzene and ethylene by conversion of acetylene
EP0446869A1 (en) Process for preparing 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane
Roos et al. Reaction path of the oxidative coupling of methane over a lithium-doped magnesium oxide catalyst: Factors affecting the rate of total oxidation of ethane and ethylene
KR20010104053A (en) Method of preparing acrolein by oxidation of propylene
US2069545A (en) Synthesis of hydrocyanic acid
JP2013107873A (en) Method for producing propylene oxide
US4000178A (en) Paraffin ammoxidation process
US3928461A (en) Production of formaldehyde
US4137256A (en) Preparation of peracetic acid by oxidation of acetaldehyde
US4345104A (en) Process for the production of ethylene glycol
KR20010112111A (en) Process and apparatus for fluid bed reactions
JP2003261492A (en) Method for producing (meth)acrylic acid compounds
US5241088A (en) Non-catalytic oxidation of alkylene to alkylene oxide in the presence of recycled aldehyde by-products

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application