KR20010095050A - Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same - Google Patents

Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same Download PDF

Info

Publication number
KR20010095050A
KR20010095050A KR1020010016265A KR20010016265A KR20010095050A KR 20010095050 A KR20010095050 A KR 20010095050A KR 1020010016265 A KR1020010016265 A KR 1020010016265A KR 20010016265 A KR20010016265 A KR 20010016265A KR 20010095050 A KR20010095050 A KR 20010095050A
Authority
KR
South Korea
Prior art keywords
composition
dielectric
weight
magnetic
sio
Prior art date
Application number
KR1020010016265A
Other languages
Korean (ko)
Other versions
KR100415560B1 (en
Inventor
김종희
후지노시게히로
히라이노부타케
Original Assignee
이형도
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기주식회사 filed Critical 이형도
Publication of KR20010095050A publication Critical patent/KR20010095050A/en
Application granted granted Critical
Publication of KR100415560B1 publication Critical patent/KR100415560B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/066Oxidic interlayers based on rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/068Oxidic interlayers based on refractory oxides, e.g. zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • C04B2237/565Using constraining layers before or during sintering made of refractory metal oxides, e.g. zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode

Abstract

PURPOSE: A dielectric ceramic composition and manufacturing method of ceramic capacitors using the composition are provided. The ceramic composition having excellent dielectric properties(low dielectric loss, high dielectric constant and stable temperature characteristics) in the range of high frequency enables low temperature sintering so that it can save manufacturing cost. CONSTITUTION: The composition comprises SrxBa(1-x)(ZryTi(1-y))O3 as a main component, 0.05-15wt.% of MnO2, 0.001-5wt.% of one or more kinds of Bi2O3, PbO, Sb2O3, and 0.5-15wt.% of glass composition in ZnO-SiO2 system or LiO2-Al2O3-SiO2 system, where 0.8<=x<=1, 0.9<=y<=1. The multilayered ceramic capacitors are produced through a conventional process, ball-milling, forming to a dielectric sheet(11), forming an electrode(12) made of non-metallic or carbon-based materials, multi-layering the sheets, pressing and sintering at 925-1080deg.C in a reductive(N2-H2) or inert gas atmosphere.

Description

유전체 자기 조성물과 이를 이용한 자기커패시터 및 그 제조방법{Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same}Dielectric ceramic composition, magnetic capacitor using same and method for manufacturing the same {Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same}

본 발명은 유전체 자기조성물과 이를 이용한 자기커패시터 및 그 제조방법에 관한 것으로, 특히, 고주파수 대역에서 유전체손실이 적으면서도 안정한 특성을 갖고, 더욱이 저온에서의 소성을 실현하여 전극재료로 동(Cu), 텅스텐(W) 등의 비(卑)금속, 또는 카본, 그라파이트 등의 탄소계 물질을 이용하는 것이 가능하고, 그 결과 제조 코스트의 대폭적인 저하, 제품의 코스트다운을 가능하게 하는 유전체 자기조성물과 이것을 이용한 자기커패시터 및 그 제조방법에 관한 것이다.The present invention relates to a dielectric magnetic composition, a magnetic capacitor using the same, and a method of manufacturing the same. Particularly, the present invention relates to a dielectric material having low dielectric loss in a high frequency band and stable properties, and furthermore, to achieve low temperature firing and to produce copper (Cu), Non-metals such as tungsten (W), or carbon-based materials such as carbon and graphite can be used, and as a result, a dielectric magnetic composition that enables a significant reduction in manufacturing cost and a cost reduction of a product, A magnetic capacitor and a method of manufacturing the same.

종래, 소형이면서도 대용량의 커패시터로서, 세라믹스의 유전특성을 이용한 세라믹 커패시터가 알려져 있다. 이 세라믹 커패시터는 루틸(rutile)형의 TiO2, 페로브스카이트형의 MgTiO3, CaTiO3, SrTiO3등의 유전체재료 한가지 또는 이들을 조합하여 소망의 특성을 갖는 커패시터로 만든다.Background Art Conventionally, ceramic capacitors using dielectric characteristics of ceramics are known as small and large capacity capacitors. The ceramic capacitor is made of a capacitor having a dielectric material, one or a desired combination of properties thereof, such as rutile (rutile) Type of TiO 2, the perovskite-type of MgTiO 3, CaTiO 3, SrTiO 3 .

세라믹 커패시터는 단층형과 적층형으로 분류된다.Ceramic capacitors are classified into single layer type and stacked type.

단층세라믹 커패시터는 상술한 재료 분말을 가압성형하여 예를 들어 펠릿(원판상), 로드(원통상), 칩(각형상) 등의 성형체로 하고, 이 성형체를 대기중 1200∼1400℃의 온도에서 소성하여 소결체로 하고, 이 소결체의 양표면에 전극을 형성하여 얻을 수 있다.The single-layer ceramic capacitor is press-molded the above-described material powder to form a molded body such as pellets (plates), rods (cylindrical), chips (squares), and the like, and the molded body is formed at a temperature of 1200 to 1400 ° C in air. It can be obtained by firing to form a sintered body and forming electrodes on both surfaces of the sintered body.

또한 적층 세라믹 커패시터는 상술한 재료 분말과 유기바인더 및 유기용제를 혼련하여 슬러리로 하고, 이 슬러리를 닥터브레이드(doctor blade)법에 의해 시트상에 성형하고 탈지하여 그린시트(green sheet)로 하고, 이 그린시트상에 Pt나 Pd등의 귀금속으로 이루어지는 전극을 인쇄한 후, 이들 그린시트를 두께방향으로 적층하고 가압하여 적층체로 하고, 이 적층체를 대기중 1200∼1400℃의 온도에서 소성하여 얻을 수 있다.In addition, the multilayer ceramic capacitor is kneaded with the above-described material powder, an organic binder and an organic solvent to form a slurry. The slurry is formed on a sheet by a doctor blade method and degreased to form a green sheet. After printing an electrode made of a noble metal such as Pt or Pd on the green sheet, these green sheets are laminated in the thickness direction and pressurized to form a laminate, and the laminate is obtained by firing at a temperature of 1200 to 1400 캜 in the air. Can be.

그런데, 상술한 종래의 세라믹 커패시터에 있어서는 전기적 특성이 우수한 치밀한 소결체를 얻기 위해서는 1200∼1400℃라는 높은 온도에서의 소성이 필요하다.By the way, in the above-mentioned conventional ceramic capacitor, baking at the high temperature of 1200-1400 degreeC is needed in order to obtain the compact sintered compact which is excellent in electrical characteristics.

특히, 적층 세라믹 커패시터에서는 전극재료로 비금속을 이용하는 경우 이 비금속이 소성시에 산화하여 세라믹층의 사이에 고저항층을 형성해버려 높은 온도에서도 안정한 Pt나 Pd등의 귀금속재료를 이용할 필요가 있어 저코스트화가 어려운 문제점이 있었다.In particular, in the multilayer ceramic capacitor, when the base metal is used as the electrode material, the base metal is oxidized at the time of firing to form a high resistance layer between the ceramic layers. Therefore, it is necessary to use a precious metal material such as Pt or Pd that is stable even at high temperatures. There was a difficult problem.

또한, 마이크로파 등의 고주파수 영역에 적용하는 경우, 유전체 손실이 적은 것이 바람직하고, 온도특성, 품질계수(Q) 등의 전기적 특성에 대하여도 보다 고특성이면서 고신뢰성의 것이 요구되고 있다. 그러나, 현재의 유전체재료에서는 이들의 요구를 만족하지 못하고 있다.In addition, when applied to a high frequency region such as microwaves, it is desirable to have a low dielectric loss, and higher characteristics and higher reliability are required for electrical characteristics such as temperature characteristics and quality factor (Q). However, current dielectric materials do not satisfy these requirements.

본 발명은 상기의 사정을 감안한 것으로, 고주파수 대역에서 유전체손실이 적으면서 안정한 특성을 갖고, 더욱이 저온에서의 소성을 실현하여 비금속이나 탄소계 물질을 전극재료로 이용하는 것이 가능하고, 그 결과, 제조코스트의 대폭적인저하, 즉 제품의 코스트 다운을 도모할 수 있는 유전체 자기조성물과 이것을 이용한 자기커패시터 및 그 제조방법을 제공하는 것을 목적으로 한다.In view of the above circumstances, the present invention has a stable characteristic with low dielectric loss in the high frequency band, and furthermore, it is possible to realize firing at a low temperature and to use a nonmetal or a carbon-based material as an electrode material. It is an object of the present invention to provide a dielectric magnetic composition, a magnetic capacitor using the same, and a method of manufacturing the same, which can significantly reduce the cost of the product.

도 1은 본 발명의 제1의 실시형태인 단층 세라믹 커패시터를 나타내는 단면도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the single-layer ceramic capacitor which is 1st Embodiment of this invention.

도 2는 본 발명의 제2의 실시형태인 적층 세라믹 커패시터를 나타내는 단면도이다.It is sectional drawing which shows the multilayer ceramic capacitor which is 2nd Embodiment of this invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1..... 벌크상의 유전체 2..... 단자전극Bulk dielectric 2 ..... Terminal electrode

3..... 리드선 4..... 에폭시 수지3 ..... lead wire 4 ..... epoxy resin

11..... 유전체층 12..... 내부전극11 ..... Dielectric layer 12 ..... Internal electrode

13, 14..... 단자전극13, 14 ..... Terminal electrode

상기 과제를 해결하기 위하여, 본 발명은 다음과 같은 유전체 자기조성물과 이를 이용한 자기커패시터 및 그 제조방법을 제공하였다.In order to solve the above problems, the present invention provides a dielectric magnetic composition, a magnetic capacitor using the same, and a method of manufacturing the same.

즉, 본 발명에 따른 유전체 자기조성물은, SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)으로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가하여 이루어지는 것을 특징으로 한다.That is, the dielectric magnetic composition according to the present invention is MnO 2 in a casting formed of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 and 0.9 ≦ y ≦ 1). 0.05 to 15% by weight, one or two or more selected from Bi 2 O 3 , PbO, Sb 2 O 3 It is characterized by consisting of 0.001 to 5% by weight, 0.5-15% by weight of the glass composition.

이 유전체 자기조성물은, SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)으로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가함으로써, 높은 비유전율, 양호한 온도특성, 높은 품질계수가 실현가능하다. 그 결과, 마이크로파 등의 고주파수 영역에서 특성이 안정하고, 고주파수 영역에서 신뢰성이 향상된다.This dielectric magnetic composition is composed of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 and 0.9 ≦ y ≦ 1), with 0.05 to 15 weights of MnO 2 . High relative dielectric constant, good temperature characteristic and high quality factor by adding 0.001 to 5% by weight of one or two or more selected from%, Bi 2 O 3 , PbO, Sb 2 O 3 and 0.5-15% by weight of the glass composition Is feasible. As a result, the characteristics are stable in the high frequency region such as microwaves, and the reliability is improved in the high frequency region.

여기서, Sr의 몰비를 0.8이상(80mol%이상)으로 한 것은, 0.8미만(80mol%미만)에서는 925∼1080℃의 저온에서 소성한 경우, 소결성이 저하되어 양호한 소결체가 얻어질 수 없기 때문이다.Here, the molar ratio of Sr is 0.8 or more (80 mol% or more) because when it is baked at less than 0.8 (less than 80 mol%) at a low temperature of 925 to 1080 ° C, the sinterability is lowered and a good sintered body cannot be obtained.

또한, Ti의 몰비를 0.1이하(10mol%이하)로 한 것은, 0.1(10mol%)을 초과하면 품질계수(Q)가 저하하는 것과 함께 온도특성이 음으로 커지기 때문이다.The molar ratio of Ti is 0.1 or less (10 mol% or less) because when the temperature exceeds 0.1 (10 mol%), the quality factor Q decreases and the temperature characteristic becomes negative.

MnO2는 저온소성을 가능하게 하기 때문에 소결조제제로서 첨가하는 것으로, 그 첨가량은 0.05∼15중량%가 바람직하다. 그 이유는 첨가량이 0.05중량%미만에서는 첨가효과가 없고, 따라서 저온소성에서 치밀한 소결체를 얻을 수 없으며 또한, 15중량%을 초과하면 품질계수(Q)가 저하되기 때문이다.MnO 2 is added as a sintering agent because it enables the first low-temperature co-fired, the addition amount is preferably 0.05~15% by weight. The reason for this is that when the added amount is less than 0.05% by weight, there is no addition effect, and therefore, a compact sintered body cannot be obtained at low temperature firing, and when it exceeds 15% by weight, the quality factor Q is lowered.

Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상의 저융점 금속산화물은, 온도특성을 개선하기 위해 첨가하는 것으로, 그 첨가량은 0.001∼5중량%가 바람직하다. 그 이유는 첨가량이 0.001중량%미만에서는 온도특성의 개선효과가 얻어지지 않으며 또한, 5중량%을 초과하면 품질계수(Q)가 저하하기 때문이다.One or two or more low-melting metal oxides selected from Bi 2 O 3 , PbO, and Sb 2 O 3 are added to improve the temperature characteristics, and the amount thereof is preferably 0.001 to 5% by weight. The reason is that when the added amount is less than 0.001% by weight, the effect of improving the temperature characteristic is not obtained, and when the amount exceeds 5% by weight, the quality factor Q is lowered.

글라스 조성물은, 925∼1080℃의 저온소성을 가능하게 하기 때문에 소결조제로서 첨가하는 것으로, 그 첨가량은 0.5∼15중량%가 바람직하다. 그 이유는 첨가량이 0.5중량% 미만에서는 소결조제제로서의 효과가 없어 저온소성을 할 수 없으며, 그 결과 비유전율, 온도특성, 품질계수가 저하하기 때문이며, 또한, 15중량%을 초과하면 품질계수(Q)가 저하하기 때문이다.Since the glass composition enables low-temperature baking of 925-1080 degreeC, it is added as a sintering adjuvant, The addition amount is 0.5 to 15 weight% is preferable. The reason is that if the added amount is less than 0.5% by weight, it is not effective as a sintering aid, and therefore, it cannot be baked at low temperature. As a result, the relative dielectric constant, temperature characteristics, and quality coefficient are lowered. This is because Q) decreases.

글라스조성물로서는 첨가하여도 특성에 악영향을 미치지 않고, 주 조성물인 SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)와 젖음성이 양호하고, 더욱이 925∼1080℃의 온도에서 연화 및/또는 용융하는 글라스가 바람직하다. 구체적으로는, ZnO-SiO2계 글라스, Li2O-Al2O3-SiO2계 글라스 등이 바람직하다.The glass composition does not adversely affect properties even if added, and the wettability of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x ≦ 1 and 0.9 ≦ y1 ), which is a main composition, It is preferable that the glass soften and / or melt at a temperature of 925 to 1080 ° C. Specifically, ZnO-SiO 2 -based glass, Li 2 O-Al 2 O 3 -SiO 2 -based glass, and the like are preferable.

또한, 본 발명에 따른 유전체 자기조성물은, 상기한 유전체 자기조성물에서, 상기 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량% 첨가하여 이루어지는 것을 특징으로 한다.The dielectric magnetic composition according to the present invention is characterized in that the dielectric ceramic composition is prepared by adding 0.01-5% by weight of SiO 2 and 0.01-5% by weight of Al 2 O 3 to the cast product.

SiO2는 온도특성을 개선하기 위해 첨가하는 것으로, 그 첨가량은 0.01∼5중량%가 바람직하다. 그 이유는, 첨가량이 0.01중량% 미만에서는 온도특성의 개선효과가 얻어지지 않으며, 또한, 5중량%을 초과하면 품질계수(Q)가 저하하기 때문이다.SiO 2 is added to improve the temperature characteristic, and the amount thereof is preferably 0.01 to 5% by weight. The reason for this is that when the added amount is less than 0.01% by weight, the effect of improving the temperature characteristics is not obtained, and when the amount is more than 5% by weight, the quality factor Q decreases.

Al2O3는 품질계수(Q)을 개선하기 위해 첨가하는 것으로, 그 첨가량은 0.01-5중량%가 바람직하다. 첨가량이 0.01중량%미만에서는 품질계수(Q)의 개선효과가 얻어지지 않으며, 또한 5중량%을 초과하면 온도특성이 저하하기 때문이다.Al 2 O 3 is added to improve the quality factor (Q), and the amount thereof is preferably 0.01-5% by weight. This is because when the amount added is less than 0.01% by weight, the effect of improving the quality factor Q is not obtained, and when the amount is more than 5% by weight, the temperature characteristic is lowered.

또한, 본 발명에 따른 유전체 자기조성물은, 상기한 유전체 자기조성물에서, 상기 주조성물에 희토류 산화물을 0.001-2중량%첨가하여 이루어지는 것을 특징으로 한다.In addition, the dielectric ceramic composition according to the present invention is characterized in that the dielectric ceramic composition is obtained by adding 0.001-2% by weight of rare earth oxide to the cast product.

희토류 산화물은, 온도특성의 개선을 위해 첨가하는 것으로, 그 첨가량은 0.001∼2중량%가 바람직하다. 그 이유는 첨가량이 0.001중량% 미만에서는 온도특성의 개선효과가 얻어지지 않으며, 또한, 2중량%을 초과하면 품질계수(Q)가 저하하기 때문이다.The rare earth oxide is added to improve the temperature characteristics, and the amount thereof is preferably 0.001 to 2% by weight. The reason for this is that when the added amount is less than 0.001% by weight, the effect of improving the temperature characteristics is not obtained, and when the amount exceeds 2% by weight, the quality factor Q is lowered.

희토류 산화물로서는, 주조성물인 SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)과 젖음성이 양호하고, 더욱이 입계층에 존재하여 소결성을 높이는 것이 바람직하다. 구체적으로는, La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3에서 선택된 1종 또는 2종 이상을 조합하는 것이 바람직하다.As rare earth oxides, Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (0.8 ≤ x ≤ 1 , 0.9 ≤ y ≤ 1), which is a cast product, have good wettability and are present in the grain boundary layer. It is preferable to improve sinterability. Specifically, La 2 O 3 , CeO 2 , Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O It is preferable to combine one or two or more selected from three .

본 발명에 따른 자기커패시터는 상기한 유전체 자기조성물로 이루어지는 소자의 양면에 전극을 형성하여 이루어지는 것을 특징으로 한다.The magnetic capacitor according to the present invention is characterized in that the electrode is formed on both sides of the element made of the above-described dielectric magnetic composition.

또한, 본 발명에 따른 자기커패시터는, 상기한 유전체 자기조성물로 이루어지는 시트상의 유전체와, 전극를 교대로 적층하여 이루어지는 것을 특징으로 한다.The magnetic capacitor according to the present invention is characterized by alternately stacking a sheet-like dielectric composed of the above dielectric magnetic composition and an electrode.

또한, 본 발명에 따른 자기커패시터는 상기한 커패시터에서, 상기 전극이 비금속 또는 탄소계물질로 되는 것을 특징으로 한다.In addition, the magnetic capacitor according to the present invention is characterized in that in the above capacitor, the electrode is made of a non-metal or carbon-based material.

이 자기커패시터는, 상기한 유전체 자기조성물을 이용함으로써 고주파수 대역에서 유전체손실이 적으면서도 안정한 특성으로 된다. 이에 따라, 특히 고주파수 대역에서 신뢰성이 향상된다.This magnetic capacitor has a stable characteristic with low dielectric loss in the high frequency band by using the above dielectric magnetic composition. This improves the reliability, especially in the high frequency band.

또한, 상기 유전체 자기조성물을 이용함으로써 925∼1080℃의 저온에서 소성하는 것이 가능하다. 그 결과, 내부전극으로 저렴한 비금속 또는 탄소계 물질을 이용하여 제조코스트를 저감할 수 있다.In addition, by using the above dielectric ceramic composition, it is possible to bake at a low temperature of 925 to 1080 占 폚. As a result, manufacturing cost can be reduced by using an inexpensive nonmetal or carbon-based material as the internal electrode.

상기 비금속으로서는, 도체로서의 특성을 갖으면서도 신뢰성의 높은 금속, 예를 들어, 동(Cu), 니켈(Ni), 텅스텐(W), 몰리브덴(Mo) 등의 금속에서 선택된 1종 또는 2종이상을 함유하는 금속이 바람직하다.As the base metal, one or two or more selected from metals having high characteristics as conductors and high reliability, such as copper (Cu), nickel (Ni), tungsten (W), and molybdenum (Mo), may be used. Metal containing is preferable.

또한, 탄소계 물질로서는 카본(무정형탄소), 그라파이트(석묵, 흑연), 또는 이들의 혼합물이 바람직하다.As the carbonaceous substance, carbon (amorphous carbon), graphite (quartz, graphite), or a mixture thereof is preferable.

본 발명에 따른 유전체 자기조성물의 제조방법은, SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)으로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3,PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가한 분체를, 성형하여 벌크상 또는 시트상의 성형체로 하고, 이 성형체를 925∼1080℃의 온도에서 소성하는 것을 특징으로 한다.According to the present invention, there is provided a method for producing a dielectric magnetic composition comprising MnO in a casting formed of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 and 0.9 ≦ y ≦ 1). 2 to 0.05 to 15% by weight, one or two or more selected from Bi 2 O 3 , PbO, Sb 2 O 3 or 0.001 to 5% by weight of the powder composition, 0.5-15% by weight of the glass composition is molded and bulked It is set as a shaped object of sheet shape or a sheet, and this molded object is baked at the temperature of 925-1080 degreeC, It is characterized by the above-mentioned.

이 유전체자기조성물의 제조방법은, SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)으로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가한 분체를, 성형하여 벌크상 또는 시트상의 성형체로 하고, 이 성형체를 925∼1080℃의 온도에서 소성함으로써 소결조제인 MnO2및 글라스 조성물이 ∼1080℃의 저온소성과정에서 입계층의 젖음성을 향상시켜, 성형체중의 분말입자끼리를 결합시키는 것과 함께, 분말입자의 공극을 감소시키면서 소결을 진행시킨다. 이에 따라 925∼1080℃의 저온에서 소성한 경우에서도 치밀한 고강도의 소결체를 얻을 수 있다.In the method of manufacturing the dielectric magnetic composition, MnO 2 is 0.05 in a casting formed of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 and 0.9 ≦ y ≦ 1). 15-15% by weight, one or two or more selected from Bi 2 O 3 , PbO, Sb 2 O 3 , 0.001 to 5% by weight, and a glass composition added 0.5-15% by weight of the powder is molded into a bulk or sheet The molded article was formed into a phase, and the molded article was fired at a temperature of 925 to 1080 ° C. to improve the wettability of the grain boundary layer during the low temperature firing process of sintering aid of MnO 2 and the glass composition to bond powder particles in the molded body. In addition to sintering, the sintering is performed while reducing the voids of the powder particles. As a result, even when fired at a low temperature of 925 to 1080 ° C., a compact high strength sintered compact can be obtained.

또한, 본 발명에 따른 유전체자기조성물의 제조방법은, 상기한 유전체 자기조성물의 제조방법에서, 상기 시트상의 성형체에서 하나의 주된 면에 전극을 형성하고, 그 다음 성형체를 복수개 두께방향으로 적층하고 가압하여 적층체로 하고, 이 적층체를 상기 온도에서 소성하는 것을 특징으로 한다.Further, in the method of manufacturing the dielectric magnetic composition according to the present invention, in the method of manufacturing the dielectric magnetic composition, an electrode is formed on one main surface of the sheet-shaped molded body, and then the molded bodies are laminated in a plurality of thickness directions and pressed. To obtain a laminate, and the laminate is calcined at the above temperature.

이 유전체자기조성물의 제조방법에서는, 시트상의 성형체에서 하나의 주된 면에 전극을 형성하고, 이어서 이 성형체를 복수개 두께방향으로 적층하고 가압하여 적층체로 하고 이어서 이 적층체를 상기 온도에서 소성하는 것에 의해 내부전극재료에 Pt나 Pd의 귀금속과 비교하여 저렴한 Cu, Ni등의 비금속, 또는 무정형탄소, 그라파이트 등의 탄소계 물질을 이용할 수 있다. 이에 따라 특성을 저하시키지 않고 저코스트화를 도모할 수 있다.In the method for producing a dielectric self-composition, an electrode is formed on one main surface of a sheet-like molded article, and then the molded articles are laminated in a plurality of thickness directions, pressurized to form a laminate, and then the laminate is fired at the above temperature. As the internal electrode material, inexpensive non-metals such as Cu and Ni, or carbon-based materials such as amorphous carbon and graphite can be used as compared with precious metals of Pt and Pd. As a result, the cost can be reduced without lowering the characteristics.

본 발명의 유전체 자기조성물과 이를 이용한 자기커패시터 및 그 제조방법의 각실시형태에 대해서 도면을 기초로 설명한다.Embodiments of the dielectric magnetic composition of the present invention, a magnetic capacitor using the same, and a method of manufacturing the same will be described with reference to the drawings.

[제1의 실시형태][First Embodiment]

도 1은 본 발명의 제1의 실시형태인 세라믹 커패시터(자기커패시터)를 나타내는 단면도로서, 도면에서 부호1은 벌크상의 유전체, 2는 유전체(1)의 양면에 형성된 단자전극, 3은 단자전극(2)에 접속된 리드선, 4는 유전체(1) 및 단자전극(2)을 밀봉하는 에폭시수지이다.1 is a cross-sectional view showing a ceramic capacitor (magnetic capacitor) according to a first embodiment of the present invention, in which, reference numeral 1 denotes a bulk dielectric, 2 a terminal electrode formed on both sides of the dielectric 1, and 3 a terminal electrode ( The lead wire 4 connected to 2) is an epoxy resin for sealing the dielectric 1 and the terminal electrode 2.

유전체(1)은, SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)(이하, 단지 SBZT라 한다)로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 프릿트(glass frit, 글라스 조성물)을 0.5-15중량% 첨가한 재료조성으로 이루어지는 유전체 세라믹이다.The dielectric material 1 is formed of a casting formed of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 and 0.9 ≦ y ≦ 1) (hereinafter only referred to as SBZT). , 0.05-15% by weight of MnO 2 , 0.001-5% by weight of one or two or more selected from Bi 2 O 3 , PbO, Sb 2 O 3 , and 0.5-15 of glass frit (glass composition). A dielectric ceramic composed of a material composition added by weight%.

이 유전체(1)의 재료조성을, 상기 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량% 첨가한 재료조성, 또는 상기 주조성물에 희토류 산화물을 0.001∼2중량% 첨가한 재료조성, 또는 상기 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량%, 희토류 산화물을 0.001∼2중량%첨가한 재료조성중 어느것 하나로 해도 좋다.The material composition of the dielectric 1 is a material composition in which 0.01-5% by weight of SiO 2 and 0.01-5% by weight of Al 2 O 3 are added to the cast product, or 0.001-2% by weight of rare earth oxide in the cast product. The added material composition or the cast composition may be any one of 0.01-5% by weight SiO 2 , 0.01-5% by weight Al 2 O 3, and 0.001-2% by weight rare earth oxide.

단자전극(2)로서는, 도체로서의 특성을 갖으면서 신뢰성이 높은 전극재료 예를 들어 Ag 또는 Ag 합금으로 구성된다. Ag합금으로서는 예를 들어 90Ag-10Pd등이 적합하다.The terminal electrode 2 is composed of an electrode material having high characteristics as a conductor and having high reliability, for example, Ag or Ag alloy. As the Ag alloy, for example, 90Ag-10Pd is suitable.

이 Ag 또는 Ag합금 대신, 예를 들어 Cu, Ni, W 또는 Mo, 또는 이들중 2종이상을 함유한 합금 또는 카본, 그라파이트, 이들의 혼합물을 이용해도 좋다.Instead of Ag or Ag alloy, for example, Cu, Ni, W or Mo, or an alloy containing two or more thereof, or carbon, graphite, or a mixture thereof may be used.

이 세라믹 커패시터에서는 비유전율(ε), 품질계수(Q), 온도특성(Tc) 모두 고주파영역에서도 안정하다.In this ceramic capacitor, the relative dielectric constant (ε), quality factor (Q), and temperature characteristic (Tc) are all stable in the high frequency region.

다음, 이 세라믹 커패시터의 제조방법에 대해서 설명한다.Next, the manufacturing method of this ceramic capacitor is demonstrated.

먼저, 분말상의 SBZT, MnO2, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상, 글라스 프릿트, SiO2, Al2O3, 희토류 산화물을 각각 소정량 평량하였다.First, one or two or more selected from powdery SBZT, MnO 2 , Bi 2 O 3 , PbO, and Sb 2 O 3 , glass frit, SiO 2 , Al 2 O 3 , and a rare earth oxide were respectively weighed in a predetermined amount.

여기서는, 분말상의 Sr0.95Ba0.05(Zr0.95Ti0.05)O3, MnO2, PbO, 글라스 프릿트(ZnO-SiO2계 글라스 또는 Li2O-Al2O3-SiO2계 글라스), SiO2, Al2O3, La2O3을 표 1에 나타낸 재료조성과 같이 평량하였다.Here, Sr 0.95 Ba 0.05 (Zr 0.95 Ti 0.05 ) O 3 , MnO 2 , PbO, glass frit (ZnO-SiO 2 -based glass or Li 2 O-Al 2 O 3 -SiO 2 -based glass), SiO 2 , Al 2 O 3 and La 2 O 3 were basis weights as shown in Table 1.

시료번호Sample Number 주성분(몰비)SrxBa1-x(ZryTi1-y)O3 Main component (molar ratio) Sr x Ba 1-x (Zr y Ti 1-y ) O 3 첨가물A(중량%)Additive A (wt%) 첨가물B(중량%)Additive B (wt%) 소성온도(℃)Firing temperature (℃) SrSr BaBa ZrZr TiTi MnO2 MnO 2 Al2O3 Al 2 O 3 SiO2 SiO 2 글라스프릿트Glass frit Sb2O3 Sb 2 O 3 Dy2O3 Dy 2 O 3 1※One※ 1One 00 1One 00 00 00 00 00 00 00 10501050 22 1One 00 1One 00 0.30.3 00 00 0.50.5 1.01.0 00 10001000 33 1One 00 1One 00 0.30.3 00 00 3.03.0 1.01.0 00 950950 4※4※ 1One 00 1One 00 0.30.3 00 00 11.011.0 1.01.0 00 950950 55 1One 00 0.950.95 0.050.05 5.05.0 0.10.1 0.050.05 2.52.5 0.50.5 0.010.01 950950 6※6 * 1One 00 0.950.95 0.050.05 5.05.0 0.10.1 0.050.05 2.52.5 0.50.5 0.010.01 900900 77 1One 00 0.950.95 0.050.05 5.05.0 0.10.1 0.050.05 2.52.5 0.50.5 0.010.01 10001000 8※8※ 1One 00 0.950.95 0.050.05 5.05.0 0.10.1 0.050.05 2.52.5 6.06.0 0.010.01 950950 99 1One 00 0.950.95 0.050.05 5.05.0 0.10.1 0.050.05 2.52.5 0.50.5 0.010.01 950950 1010 0.980.98 0.020.02 0.950.95 0.050.05 5.05.0 0.050.05 0.050.05 2.52.5 0.50.5 0.010.01 950950 11※11 * 0.980.98 0.020.02 0.950.95 0.050.05 5.05.0 0.50.5 0.050.05 2.52.5 0.50.5 0.010.01 900900 1212 0.980.98 0.020.02 0.950.95 0.050.05 5.05.0 0.50.5 0.050.05 2.52.5 1.01.0 0.010.01 950950 13※13 * 0.980.98 0.020.02 0.950.95 0.050.05 5.05.0 0.50.5 0.050.05 11.011.0 1.01.0 0.010.01 950950 1414 0.980.98 0.020.02 0.950.95 0.050.05 5.05.0 5.05.0 0.050.05 2.52.5 0.50.5 0.010.01 950950 1515 0.980.98 0.020.02 0.950.95 0.050.05 5.05.0 0.10.1 0.050.05 2.52.5 0.50.5 0.010.01 950950 16※16 * 0.950.95 0.050.05 0.950.95 0.050.05 0.040.04 00 00 3.03.0 00 00 925925 17※17 * 0.950.95 0.050.05 0.950.95 0.050.05 1.51.5 00 00 0.30.3 00 00 925925 1818 0.950.95 0.050.05 0.950.95 0.050.05 1.51.5 00 00 3.03.0 00 00 925925 1919 0.950.95 0.050.05 0.950.95 0.050.05 33 0.20.2 0.30.3 3.53.5 0.50.5 0.0010.001 975975 20※20 * 0.950.95 0.050.05 0.950.95 0.050.05 33 0.20.2 0.30.3 3.53.5 0.50.5 2.12.1 975975 2121 0.950.95 0.050.05 0.950.95 0.050.05 33 0.20.2 0.30.3 7.07.0 0.50.5 0.030.03 975975 22※22 * 0.950.95 0.050.05 0.950.95 0.050.05 55 0.10.1 0.050.05 3.53.5 0.50.5 0.030.03 900900 2323 0.950.95 0.050.05 0.950.95 0.050.05 55 0.10.1 0.050.05 3.53.5 0.50.5 0.030.03 950950 2424 0.950.95 0.050.05 0.950.95 0.050.05 55 0.050.05 0.050.05 3.53.5 0.50.5 0.030.03 975975 2525 0.950.95 0.050.05 0.950.95 0.050.05 55 0.50.5 0.050.05 3.53.5 0.50.5 0.030.03 975975 2626 0.950.95 0.050.05 0.950.95 0.050.05 55 5.05.0 0.050.05 3.53.5 0.50.5 0.030.03 975975 2727 0.950.95 0.050.05 0.950.95 0.050.05 55 0.10.1 0.50.5 3.53.5 0.50.5 0.030.03 975975 2828 0.950.95 0.050.05 0.950.95 0.050.05 55 0.10.1 5.05.0 3.53.5 0.50.5 0.030.03 975975 2929 0.950.95 0.050.05 0.950.95 0.050.05 55 0.10.1 0.10.1 3.53.5 0.50.5 0.030.03 10501050 30※30 * 0.950.95 0.050.05 0.850.85 0.150.15 33 0.20.2 0.30.3 3.53.5 0.50.5 0.030.03 975975 3131 0.80.8 0.20.2 0.950.95 0.050.05 55 0.10.1 0.050.05 3.53.5 0.50.5 0.030.03 950950 32※32 * 0.80.8 0.20.2 0.950.95 0.050.05 55 0.10.1 0.050.05 55 0.50.5 0.030.03 900900 33※33 * 0.750.75 0.250.25 0.950.95 0.050.05 55 0.10.1 0.050.05 3.53.5 0.50.5 0.030.03 950950 ※본 발명의 범위외※ Out of the scope of the present invention

그 다음으로, 이들의 분체를 소정량의 물(또는 에탄올, 아세톤 등의 유기용매) 등의 분산매와 함께 볼밀에 넣고, 소정기간, 예를 들면 24시간 혼합·분쇄하고, 그 후 탈수(또는 탈에탄올, 탈 아세톤 등의 탈유기용매)·건조를 행하였다. 본 발명의 재료조성이외의 조성의 시료도 만들어 비교예로서 하였다(표 1중에서는 「※)로 표시하고 있다)Next, these powders are put into a ball mill together with a predetermined amount of a dispersion medium such as water (or an organic solvent such as ethanol or acetone), mixed and ground for a predetermined period of time, for example, for 24 hours, and then dehydrated (or dewatered). And an organic solvent such as ethanol and deacetone) and dried. Samples of compositions other than the material composition of the present invention were also made and used as comparative examples (in Table 1, indicated by "※)).

그 다음으로 얻어진 건조분말을 550∼750℃의 온도에서 0.5∼5.0시간, 하소한 다음, 라이카이기(또는 자동유발)을 이용하여 1∼24시간분쇄하고, 소정의 입도의 하소분으로 하였다.Subsequently, the obtained dried powder was calcined at a temperature of 550 to 750 ° C for 0.5 to 5.0 hours, and then pulverized for 1 to 24 hours using Leicaigi (or automatic induction) to obtain a calcined powder having a predetermined particle size.

다음으로, 이 하소분에 소정량의 유기바인더를 가한 후, 라이카이(大臼)기 등을 이용하여 균일하게 혼합·조립하고, 소정의 입도의 조립분(단립)으로 하였다. 유기바인더는 PVA(polyvinyl alchol) 수용액을 이용하였다. 유기바인더로는, 에틸셀룰로스 수용액, 아크릴수지용액(아크릴바인더) 등을 이용해도 좋다.Next, a predetermined amount of organic binder was added to the calcined powder, and then uniformly mixed and assembled using a Leica group or the like to obtain a granulated powder (single granule) having a predetermined particle size. The organic binder was PVA (polyvinyl alchol) aqueous solution. As the organic binder, an ethyl cellulose aqueous solution, an acrylic resin solution (acrylic binder), or the like may be used.

다음으로 성형기를 이용하여, 이 조립분을 직경 20mm, 두께 2mm의 펠릿으로 성형하고, 그후 대기중 925∼1080℃의 온도에서 0.5∼10.0시간 소성하고, 본 실시형태의 원판상의 유전체(1)를 얻었다. 본 발명의 재료조성의 시료를 본 발명의 소성온도범위 이외의 온도에서 소성하여 비교예로 하였다(표 1에서는 비교예를 「※」나타내고 있다).Next, using a molding machine, the granulated powder is molded into pellets having a diameter of 20 mm and a thickness of 2 mm, and then calcined for 0.5 to 10.0 hours at a temperature of 925 to 1080 ° C. in the air, and the disk-shaped dielectric 1 of the present embodiment is formed. Got it. The sample of the material composition of this invention was baked at the temperature other than the baking temperature range of this invention, and it was set as the comparative example (in Table 1, a comparative example is shown with "*").

표 2는 각 시료에서 전기적 특성을 나타낸 것이다. 역시 표 2에서 비교예를 「※」로 나타내고 있다.Table 2 shows the electrical properties in each sample. In addition, the comparative example is shown by "※" in Table 2.

시료번호Sample Number 비유전율εRelative permittivity ε 품질계수QQuality factor Q 비저항R(Ω·cm)Specific resistance R (Ωcm) 온도특성Tc(ppm/℃)Temperature characteristic Tc (ppm / ℃) 1※One※ 1313 230230 1.6×1011 1.6 × 10 11 9696 22 1717 680680 1.7×1012 1.7 × 10 12 8989 33 2323 23002300 1.9×1012 1.9 × 10 12 6060 4※4※ 2222 380380 1.5×1012 1.5 × 10 12 180180 55 2626 21702170 2.0×1012 2.0 × 10 12 4545 6※6 * 2020 410410 1.8×1012 1.8 × 10 12 5757 77 2424 30603060 2.1×1012 2.1 × 10 12 4343 8※8※ 2222 290290 1.3×1011 1.3 × 10 11 6262 99 2525 47404740 2.0×1012 2.0 × 10 12 3939 1010 2323 23102310 1.8×1012 1.8 × 10 12 2929 11※11 * 1414 220220 1.5×1012 1.5 × 10 12 1919 1212 2121 17601760 1.9×1012 1.9 × 10 12 2121 13※13 * 2222 360360 1.1×1012 1.1 × 10 12 4343 1414 2020 12301230 1.8×1012 1.8 × 10 12 3636 1515 2222 21202120 1.9×1012 1.9 × 10 12 3434 16※16 * 2121 380380 1.7×1012 1.7 × 10 12 4747 17※17 * 1616 270270 2.1×1012 2.1 × 10 12 3131 1818 2222 26702670 3.2×1012 3.2 × 10 12 5656 1919 2929 23502350 2.6×1012 2.6 × 10 12 4141 20※20 * 2525 640640 1.9×1011 1.9 × 10 11 1010 2121 2929 18001800 2.1×1012 2.1 × 10 12 3232 22※22 * 1717 230230 1.6×1011 1.6 × 10 11 8585 2323 3131 24502450 2.2×1012 2.2 × 10 12 7575 2424 2525 30503050 1.5×1012 1.5 × 10 12 6161 2525 3030 35003500 1.8×1012 1.8 × 10 12 8282 2626 3434 27002700 1.2×1012 1.2 × 10 12 9797 2727 3030 23002300 1.9×1012 1.9 × 10 12 7474 2828 2929 19701970 1.5×1012 1.5 × 10 12 2323 2929 3131 48904890 2.1×1012 2.1 × 10 12 3535 30※30 * 4141 470470 1.2×1011 1.2 × 10 11 -67-67 3131 3333 21202120 1.9×1012 1.9 × 10 12 3939 32※32 * 1818 310310 2.0×1012 2.0 × 10 12 1919 33※33 * 4242 150150 1.9×1012 1.9 × 10 12 125125 ※본 발명의 범위외※ Out of the scope of the present invention

여기에서, 비유전율(ε)은 25℃에서 1MHz, 1Vrms의 조건하에서 측정을 하였다.Here, the relative dielectric constant? Was measured under the conditions of 1 MHz and 1 V rms at 25 ° C.

품질계수(Q)는, 1MHz, 25℃의 조건하에서 측정하였다. 온도특성(Tc)는 25℃의 정전용량C1 및 125℃에서의 정전용량C2을 각각 측정하고, 이들의 측정치를 다음식에 대입하여 온도특성(Tc)을 산출하였다.The quality factor (Q) was measured under the conditions of 1 MHz and 25 ° C. The temperature characteristic T c measured the capacitance C 1 at 25 ° C. and the capacitance C 2 at 125 ° C., respectively, and substituted these measurements with the following equation to calculate the temperature characteristic T c.

Tc(ppmm/℃)Tc (ppmm / ℃)

=((C2-C1)×106)/(C1×(125-25))= ((C2-C1) × 10 6 ) / (C1 × (125-25))

비저항(R(Ω·cm))은 25℃에서 1000V의 직류전압을 인가할 때의 1분후의 전류치를 측정하고, 이들 전압치 및 전류치에서 비저항을 산출하였다.The specific resistance (R (Ωcm)) measured the current value 1 minute after applying a DC voltage of 1000V at 25 ° C, and calculated the specific resistance from these voltage values and the current value.

이들 표 2에서 밝혀진 바와 같이, 본 실시형태의 시료에 의하면, 비유전율(ε), 품질계수(Q), 온도특성(Tc) 모두, 고주파영역에서도 안정한 것을 알 수 있다As shown in these Table 2, according to the sample of this embodiment, it turns out that both the dielectric constant (epsilon), the quality coefficient (Q), and the temperature characteristic (Tc) are stable also in a high frequency range.

한편, 비교예의 시료에서는 본 실시형태의 시료와 비교하여, 비유전율(ε), 온도특성(Tc), 품질계수(Q)중 어느 하나가 저하한 것을 알 수 있다.On the other hand, in the sample of the comparative example, compared with the sample of this embodiment, it turns out that any one of the dielectric constant (epsilon), the temperature characteristic (Tc), and the quality coefficient (Q) fell.

더욱이, 금속현미경을 이용하여, 본 실시형태의 시료의 표면상태를 관찰한 바, 입계에 공극 등이 인지되지 않고 치밀한 소결체로 되는 것이 확인되었다.Moreover, when the surface state of the sample of this embodiment was observed using the metal microscope, it turned out that a space | gap etc. are not recognized at a grain boundary, and it became a compact sintered compact.

이상 설명과 같이, 본 실시형태의 세라믹 커패시터에 의하면, 유전체(1)를 SBZT로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 프릿트를 0.5-15중량% 첨가하고, 필요에 따라 상기 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량%, 희토류 산화물을 0.001-2중량% 첨가한 재료조성으로 했기 때문에 높은 비유전율, 양호한 온도특성, 높은 품질계수를 실현할 수 있다. 따라서, 마이크로파 등의 고주파수 대역에서 특성을 안정화시킬 수 있고, 고주파수대역에서 신뢰성을 향상시킬 수 있다.As described above, according to the ceramic capacitor of the present embodiment, the dielectric material 1 is made of SBZT, and is selected from 0.05 to 15% by weight of MnO 2 and selected from Bi 2 O 3 , PbO, and Sb 2 O 3 . Or 0.001 to 5% by weight of two or more, 0.5-15% by weight of glass frit, 0.01-5% by weight of SiO 2 , 0.01-5% by weight of Al 2 O 3 , to the cast product, if necessary, Since a material composition containing 0.001-2% by weight of rare earth oxide is used, high relative dielectric constant, good temperature characteristics, and high quality coefficient can be realized. Therefore, the characteristic can be stabilized in a high frequency band such as a microwave, and the reliability can be improved in the high frequency band.

본 실시형태의 세라믹 커패시터의 제조방법에 의하면, SBZT로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가하고, 필요에 따라 상기 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량%, 희토류 산화물을 0.001-2중량% 첨가한 분체를 성형하여 벌크상의 성형체로 하고, 이 성형체를 925∼1080℃의 온도에서 소성하기 때문에, 치밀하면서 고강도의 소결체를 저온소성에 의해 만들 수 있다.According to the production process of the ceramic capacitor of this embodiment, the primary composition comprising the SBZT, the 0.05~15% by weight of MnO 2, Bi 2 O 3, PbO, Sb 2 O 3 alone or in combination of two or more selected from the 0.001~ 5% by weight, adding 0.5-15 wt% of the glass composition, and 0.01-5% by weight of SiO 2 in the main composition, as needed, from 0.01 to 5% by weight of Al 2 O 3, 0.001-2% by weight of the rare earth oxide Since the added powder is shape | molded and it is made into a bulk molded object, and this molded object is baked at the temperature of 925-1080 degreeC, a compact and high strength sintered compact can be made by low temperature baking.

[제2의 실시형태]Second Embodiment

도 2는 본 발명의 제2의 실시형태인 적층 세라믹 커패시터를 나타낸 도면으로, 도면에서 부호11은 시트상의 유전체층, 12는 박두께의 내부전극, 13, 14는 단자전극이다.Fig. 2 is a diagram showing a multilayer ceramic capacitor according to a second embodiment of the present invention, wherein reference numeral 11 is a sheet-like dielectric layer, 12 is a thin internal electrode, and 13 and 14 are terminal electrodes.

이 적층 세라믹 커패시터에서는 유전체층(11)을 8층, 내부전극(12)을 7층, 교대로 적층하고 있다.In this multilayer ceramic capacitor, eight dielectric layers 11 and seven internal electrodes 12 are alternately stacked.

유전체층(11)은 SBZT로 이루어지는 주조성물에, MnO2을 0.05∼15중량%,Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 프릿트(글라스 조성물)을 0.5∼15중량% 첨가한 재료조성으로 이루어진 시트상의 유전체 세라믹 커패시터이다.The dielectric layer 11 is a cast product made of SBZT, and 0.05 to 15% by weight of MnO 2 , 0.001 to 5% by weight of one or two or more selected from Bi 2 O 3 , PbO, and Sb 2 O 3 , and glass frit. A sheet-like dielectric ceramic capacitor composed of a material composition to which 0.5 to 15% by weight of (glass composition) is added.

이 유전체층(11)의 재료조성을, 상기 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량% 첨가한 재료조성 또는 상기 주조성물에 희토류 산화물을 0.001∼2중량% 첨가한 재료조성, 또는 상기 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량%, 희토류 산화물을 0.001∼2중량% 첨가한 재료조성중 어느 것 하나로 해도 좋다.The material composition of the dielectric layer 11 is a material composition in which 0.01-5% by weight of SiO 2 and 0.01-5% by weight of Al 2 O 3 are added to the cast product, or 0.001-2% by weight of rare earth oxide is added to the cast product. One of the material compositions or the material composition containing 0.01-5% by weight of SiO 2 , 0.01-5% by weight of Al 2 O 3, and 0.001-2% by weight of rare earth oxides may be used.

내부전극(12) 및 단자전극(13)(14)는, 도체로서의 특성을 갖으면서 신뢰성이 높은 전극재료 예를 들어, Cu, Ni, W 또는 Mo 또는, 이들중 어느 2종이상을 함유한 합금, 또는 카본, 그라파이트, 이들의 혼합물이 적합하다.The internal electrodes 12 and the terminal electrodes 13 and 14 have characteristics as conductors and have a highly reliable electrode material such as Cu, Ni, W or Mo, or an alloy containing any two or more thereof. Or carbon, graphite, or mixtures thereof.

이 적층 세라믹 커패시터에서는 비유전율(ε), 품질계수(Q), 온도특성(Tc) 모두고주파영역에서도 안정하다.In this multilayer ceramic capacitor, the relative dielectric constant?, The quality factor Q, and the temperature characteristic Tc are all stable in the high frequency range.

다음으로, 이 적층 세라믹 커패시터의 제조방법에 대해서 설명한다.Next, the manufacturing method of this multilayer ceramic capacitor is demonstrated.

먼저, 본 실시형태의 재료조성으로 되도록 분말상의 SBZT, MnO2, Bi2O3, PbO,Sb2O3에서 선택된 1종 또는 2종이상, 글라스 조성물, 필요에 따라 SiO2, Al2O3, 희토류 산화물을 각각 소정량 평량하고, 이들의 분말을 소정량의 물(또는 에탄올, 아세톤 등의 유기용매) 등의 분산매와 함께 볼밀에 넣고, 소정시간 예를 들어 24시간 혼합·분쇄하고, 그 후 탈수(또는 탈에탄올, 탈아세톤 등의 탈유기용매)·건조를 행하였다.First, one or two or more selected from powdery SBZT, MnO 2 , Bi 2 O 3 , PbO, Sb 2 O 3 to form a material composition of the present embodiment, a glass composition, SiO 2 , Al 2 O 3 , if necessary And a predetermined amount of rare earth oxide, respectively, these powders are put into a ball mill with a predetermined amount of a dispersion medium such as water (or an organic solvent such as ethanol or acetone), mixed and pulverized for a predetermined time, for example, for 24 hours. Then, dehydration (or deorganization solvent such as deethanol and deacetone) and drying were performed.

다음으로, 이 건조분을 소정량의 유기바인더 및 유기용제를 가한 후, 라이카이기, 혼련기 등을 이용하여 혼련하고, 소정의 점도를 갖는 슬러리로 만들었다. 여기서, 유기바인더로서는 PVA(polyvinyl alcohol) 수용액을 이용하였다. 유기바인더는 에틸셀룰로스 수용액, 아크릴수지용액(아크릴바인더) 등을 이용해도 좋다.Next, after adding the organic binder and the organic solvent of predetermined amount to this dry powder, it knead | mixed using the Leicaigi, a kneading machine, etc., and made it the slurry which has a predetermined viscosity. Here, PVA (polyvinyl alcohol) aqueous solution was used as an organic binder. The organic binder may be an ethyl cellulose aqueous solution, an acrylic resin solution (acrylic binder), or the like.

다음으로 닥터브레이드법에 의해 이 슬러리를 시트상으로 성형하고 탈지하여 그린시트로 하고, 이 그린시트상에 Cu, Ni, W 또는 MO, 또는 이들중 어느 2종이상을 함유한 합금, 또는 카본, 그라파이트, 카본과 그라파이트의 혼합물을 도전재료로 한 도전 페이스트(paste)를 소정의 패턴으로 인쇄한 내부전극층으로 만들었다.Next, the slurry is molded into a sheet by a doctor blade method and degreased to form a green sheet, and an alloy or carbon containing Cu, Ni, W or MO, or any two or more thereof on the green sheet, A conductive paste made of a mixture of graphite, carbon and graphite as a conductive material was made into an internal electrode layer printed in a predetermined pattern.

이 도전 페이스트로는 Cu분말에 유기바인더, 분산제, 유기용제, 필요에 따라 환원제 등을 소정량 가한 후에 혼련하고, 소정의 점도로 한 Cu 페이스트 이외에 Ni 페이스트, W 페이스트, Mo 페이스트, 카본분과 그라파이트분의 혼합 분체를 이용한카본 페이스트 등이 적절히 이용할 수 있다.As the conductive paste, a predetermined amount of an organic binder, a dispersant, an organic solvent, a reducing agent or the like is added to the Cu powder, and then kneaded. Carbon paste etc. using the mixed powder of can be used suitably.

다음으로, 이들의 그린시트를 두께방향으로 적층하여 그 두께방향으로 가압하여 적층체로 만든다.Next, these green sheets are laminated in the thickness direction and pressed in the thickness direction to form a laminate.

다음으로, 이 적층체를 N2가스 등의 불활성가스분위기에서 또는 N2-H2환원성 가스분위기에서, 925∼1080℃온도로 소성하고, 그 후 양측면에 단자전극(13)(14)를 성형하였다.Next, the laminate is fired in an inert gas atmosphere such as N 2 gas or in an N 2 -H 2 reducing gas atmosphere at a temperature of 925 to 1080 ° C., and then terminal electrodes 13 and 14 are formed on both sides. It was.

이상과 같이, 유전체층(11)과 내부전극(12)를 교대로 적층한 적층 세라믹 커패시터를 만들 수 있다.As described above, a multilayer ceramic capacitor in which the dielectric layers 11 and the internal electrodes 12 are alternately stacked may be manufactured.

이상 설명한 바와 같이, 본 실시형태의 적층 세라믹 커패시터에 의하면, 유전체층(11)를 SBZT로 이루어진 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가하고, 필요에 따라 상기 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량%, 희토류 산화물을 0.001∼2중량% 첨가한 재료조성으로 했기 때문에 높은 비유전율, 양호한 온도특성, 높은 품질계수를 실현하는 것이 가능하고, 그 결과, 마이크로파 등의 고주파수영역에서 특성을 안정화시킬 수 있고, 고주파수 영역에서 신뢰성을 향상시킬 수 있다.As described above, according to the multilayer ceramic capacitor according to the present embodiment, the dielectric layer 11 is formed of SBZT in a cast product containing 0.05 to 15% by weight of MnO 2 , 1 selected from Bi 2 O 3 , PbO, and Sb 2 O 3 . 0.001 to 5% by weight of species or two or more, 0.5-15% by weight of glass composition, 0.01-5% by weight of SiO 2 , 0.01-5% by weight of Al 2 O 3 to the cast product, if necessary, Since a material composition containing 0.001 to 2% by weight of rare earth oxide is used, it is possible to realize a high dielectric constant, good temperature characteristics and high quality coefficients. As a result, characteristics can be stabilized in a high frequency region such as microwaves. It is possible to improve the reliability in the area.

본 실시형태의 적층 세라믹 커패시터의 제조방법에 의하면, SBZT로 이루어지는 주조성물에 MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가하고, 필요에 따라 주조성물에 SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량%, 희토류 산화물을 0.001-2중량% 첨가한 그린시크상에 내부전극층을 형성하고 이 그린시트를 두께방향으로 적층하여 적층체로 만들고, 이 적층체를 불활성가스 분위기에서, 또는 환원성 가스분위기에서, 925-1080℃온도로 소성하기 때문에 내부전극(12)의 재료에 Pt나 Pd 등의 귀금속과 비교하여 저렴한 비금속이나 탄소계 물질을 이용하는 것이 가능하다. 따라서, 특성을 저하시키지 않고 저코스트화를 도모할 수 있다.According to the manufacturing method of the multilayer ceramic capacitor of the present embodiment, 0.001 to 1 or 2 or more selected from 0.05 to 15% by weight of MnO 2 , Bi 2 O 3 , PbO, and Sb 2 O 3 , in a cast product made of SBZT. 5% by weight, the glass composition is added 0.5-15% by weight, 0.01-5 the SiO 2 in the main composition as needed, by weight%, 0.01 to 5% by weight of Al 2 O 3, a rare earth oxide 0.001-2% by weight of added An internal electrode layer is formed on one green sheet and the green sheet is laminated in the thickness direction to form a laminate, and the laminate is baked at an inert gas atmosphere or in a reducing gas atmosphere at a temperature of 925-1080 ° C. It is possible to use inexpensive base metals or carbonaceous materials as the material of 12) compared with precious metals such as Pt and Pd. Therefore, the cost reduction can be achieved without degrading a characteristic.

이상 본 발명의 유전체 자기조성물과 이를 이용한 자기커패시터 및 그 제조방법의 각 실시형태에 대해서 도면을 기초로 설명하지만 구체적인 구성은 상술한 각 실시형태에 한정되는 것이 아니고, 본 발명의 요지를 벗어나지 않는 범위에서 설계의 변경 등이 가능하다.As mentioned above, although each embodiment of the dielectric magnetic composition of the present invention, the magnetic capacitor using the same, and the manufacturing method thereof is explained based on the drawings, the specific configuration is not limited to the above-described embodiments, and the scope does not depart from the gist of the present invention. Design changes are possible.

예를 들어 제2의 실시형태인 적층 세라믹 커패시터에서는 유전체층(11)를 8층, 내부전극(12)을 7층, 교대로 적층한 구성으로 하지만 유전체층(11) 및 내부전극(12) 각각의 크기나 층수는 필요로 하는 용량이나 특성에 의해 적절히 변경가능하다.For example, in the multilayer ceramic capacitor according to the second embodiment, eight dielectric layers 11 and seven internal electrodes 12 are alternately stacked, but the size of each of the dielectric layers 11 and 12 is increased. The number of floors can be appropriately changed depending on the required capacity and characteristics.

이상 설명한 형태에서 본 발명의 유전체 자기조성물에 의하면, SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)으로 이루어진 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가 했기 때문에, 높은 비유전율, 양호한 온도특성, 높은 품질계수를 실현하는 것이 가능하고, 그 결과, 마이크로파 등의 고주파수영역에서 특성을 안정시킬 수 있고 고주파수영역에서 신뢰성을 향상시킬 수 있다.According to the dielectric self-composition of the present invention in the form described above, in the casting formed of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 , 0.9 ≦ y ≦ 1), High relative dielectric constant because 0.05-15 wt% of MnO 2 , 0.001-5 wt% of one or more selected from Bi 2 O 3 , PbO, Sb 2 O 3 , and 0.5-15 wt% of the glass composition were added. It is possible to realize good temperature characteristics and high quality coefficients. As a result, the characteristics can be stabilized in the high frequency region such as microwaves and the reliability can be improved in the high frequency region.

본 발명의 자기커패시터에 의하면, 본 발명의 유전체 자기조성물로 이루어지는 소자의 양면에 전극을 형성했기 때문에, 고주파수대역에서 유전체손실을 적게 할 수 있다. 그 결과, 마이크로파 등의 고주파수대역에서 특성을 안정화시킬 수 있고 고주파수 대역에서 신뢰성을 향상시킬 수 있다.According to the magnetic capacitor of the present invention, since electrodes are formed on both surfaces of the element made of the dielectric magnetic composition of the present invention, the dielectric loss can be reduced in the high frequency band. As a result, the characteristic can be stabilized in a high frequency band such as a microwave and the reliability can be improved in the high frequency band.

또한, 전극으로 저렴한 비금속 또는 탄소계 물질을 이용하면 특성을 저하시키지 않고 제조코스트를 저감할 수 있다.In addition, using an inexpensive nonmetal or carbon-based material as the electrode can reduce the manufacturing cost without deteriorating the characteristics.

본 발명의 다른 자기커패시터에 의하면, 본 발명의 유전체 자기조성물로 이루어지는 시트상의 유전체와, 전극를 교대로 적층했기 때문에, 고주파수 대역에서 유전체손실을 적게할 수 있다. 그 결과, 마이크로파 등의 고주파수 대역에서 특성을 안정화시키는 것이 가능하고, 고주파수대역에서 신뢰성을 향상시키지 않고 제조코스트를 저감할 수 있다.According to another magnetic capacitor of the present invention, since the sheet-like dielectric made of the dielectric magnetic composition of the present invention and the electrodes are alternately stacked, the dielectric loss can be reduced in the high frequency band. As a result, the characteristic can be stabilized in a high frequency band such as microwaves, and the manufacturing cost can be reduced without improving reliability in the high frequency band.

또한, 925∼1080℃의 온도에서 소성할 수 있으므로 내부전극에 저렴한 비금속 또는 탄소계 물질을 이용하는 것이 가능하고, 특성을 저하시키지 않고 제조코스트를 저감할 수 있다.In addition, since it can be fired at a temperature of 925 to 1080 ° C, it is possible to use an inexpensive nonmetal or carbon-based material for the internal electrode, and the manufacturing cost can be reduced without degrading the characteristics.

본 발명의 유전체자기조성물의 제조방법에 의하면, SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)으로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가한 분체를 성형한 벌크상 또는 시트상의 성형체로 하고, 이 성형체를 925∼1080℃의 온도에서 소성하기 때문에 치밀하면서 고강도의 소결체를 저온에서 저코스트로 얻을 수 있다.According to the method for producing a dielectric magnetic composition of the present invention, MnO is used in a casting formed of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 and 0.9 ≦ y ≦ 1). 2 to 0.05 to 15% by weight, one or two or more selected from Bi 2 O 3 , PbO, Sb 2 O 3 , 0.001 to 5% by weight, the bulk of the powder to form a powder comprising 0.5-15% by weight of the glass composition Alternatively, the molded article is formed into a sheet, and the molded article is fired at a temperature of 925 to 1080 ° C., so that a compact and high-strength sintered compact can be obtained at low temperature at low temperatures.

본 발명의 다른 유전체 자기조성물의 제조방법에 의하면, 시트상의 성형체의 하나의 주된 면에 전극을 형성하고, 이 성형체를 복수개 두께 방향으로 적층하고 가압하여 적층체로한 다음, 이 적층체를 상기 온도에서 소성하기 때문에 내부전극재료에 Pt나 Pd 등의 귀금속과 비교하여 저렴한 Cu, Ni등의 비금속, 또는 무정형 탄소, 그라파이트 등의 탄소계 물질을 이용할 수 있고, 치밀하고 고강도의 적층체를 저온에서 저코스트로 얻을 수 있다.According to another method for producing a dielectric ceramic composition of the present invention, an electrode is formed on one main surface of a sheet-shaped molded article, the molded articles are laminated in a plurality of thickness directions and pressed to form a laminate, and the laminate is then heated at the above temperature. Because of the sintering, inexpensive non-metals such as Cu and Ni, or carbon-based materials such as amorphous carbon and graphite can be used for the internal electrode material, compared to precious metals such as Pt and Pd. Can be obtained.

Claims (20)

SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)으로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가하여 이루어지는 것을 특징으로 하는 유전체 자기조성물.0.05 to 15% by weight of MnO 2 and Bi 2 O 3 in a cast product consisting of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 and 0.9 ≦ y ≦ 1) , PbO, Sb 2 O 3 One or two or more selected from 0.001 to 5% by weight of the dielectric composition, characterized in that the glass composition by adding 0.5-15% by weight. 제 1항에 있어서, 상기 주조성물에, SiO2을 0.01-5중량%, Al2O3을 0.01∼5중량% 첨가하여 이루어지는 것을 특징으로 하는 유전체 자기조성물.The dielectric ceramic composition according to claim 1, wherein 0.01-5% by weight of SiO 2 and 0.01-5% by weight of Al 2 O 3 are added to the cast product. 제 1항에 있어서, 상기 주성물에, 희토류 산화물을 0.001-2중량%첨가하여 이루어지는 것을 특징으로 하는 유전체 자기조성물.The dielectric ceramic composition according to claim 1, wherein the main component is added with 0.001-2% by weight of a rare earth oxide. 제 2항에 있어서, 상기 주성물에, 희토류 산화물을 0.001-2중량%첨가하여 이루어지는 것을 특징으로 하는 유전체 자기조성물3. The dielectric ceramic composition according to claim 2, wherein the main composition is obtained by adding 0.001-2% by weight of a rare earth oxide. 제 1항에 있어서, 상기 글라스 조성물은, ZnO-SiO2계 글라스 또는 Li2O-Al2O3-SiO2계 글라스인 것을 특징으로 하는 유전체 자기조성물.The dielectric ceramic composition of claim 1, wherein the glass composition is a ZnO—SiO 2 based glass or a Li 2 O—Al 2 O 3 —SiO 2 based glass. 제 2항에 있어서, 상기 글라스 조성물은, ZnO-SiO2계 글라스 또는 Li2O-Al2O3-SiO2계 글라스인 것을 특징으로 하는 유전체 자기조성물The dielectric ceramic composition of claim 2, wherein the glass composition is a ZnO—SiO 2 based glass or a Li 2 O—Al 2 O 3 —SiO 2 based glass. 제 3항에 있어서, 상기 글라스 조성물은, ZnO-SiO2계 글라스 또는 Li2O-Al2O3-SiO2계 글라스인 것을 특징으로 하는 유전체 자기조성물4. The dielectric magnetic composition of claim 3, wherein the glass composition is a ZnO-SiO 2 -based glass or a Li 2 O-Al 2 O 3 -SiO 2 -based glass. 제 4항에 있어서, 상기 글라스 조성물은, ZnO-SiO2계 글라스 또는 Li2O-Al2O3-SiO2계 글라스인 것을 특징으로 하는 유전체 자기조성물The dielectric ceramic composition of claim 4, wherein the glass composition is a ZnO—SiO 2 based glass or a Li 2 O—Al 2 O 3 —SiO 2 based glass. 제 3항에 있어서, 상기 희토류 산화물은, La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 유전체 자기조성물The method of claim 3, wherein the rare earth oxide, La 2 O 3 , CeO 2 , Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm Dielectric self-composition, characterized in that one or two or more selected from 2 O 3 , Yb 2 O 3 제 4항에 있어서, 상기 희토류 산화물은, La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 유전체 자기조성물.The method of claim 4, wherein the rare earth oxide, La 2 O 3 , CeO 2 , Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm Dielectric magnetic composition, characterized in that one or two or more selected from 2 O 3 , Yb 2 O 3 . 제 1항에 기재된 유전체 자기조성물로 이루어지는 소자의 양면에 전극을 형성하여 이루어지는 것을 특징으로 하는 자기커패시터.A magnetic capacitor formed by forming electrodes on both surfaces of an element made of the dielectric magnetic composition according to claim 1. 제 2항에 기재된 유전체 자기조성물로 이루어지는 소자의 양면에 전극을 형성하여 이루어지는 것을 특징으로 하는 자기커패시터A magnetic capacitor formed by forming electrodes on both surfaces of an element comprising the dielectric ceramic composition according to claim 2. 제 3항에 기재된 유전체 자기조성물로 이루어지는 소자의 양면에 전극을 형성하여 이루어지는 것을 특징으로 하는 자기커패시터A magnetic capacitor formed by forming electrodes on both surfaces of an element made of the dielectric magnetic composition according to claim 3. 제 4항에 기재된 유전체 자기조성물로 이루어지는 소자의 양면에 전극을 형성하여 이루어지는 것을 특징으로 하는 자기커패시터A magnetic capacitor formed by forming electrodes on both sides of an element made of the dielectric magnetic composition according to claim 4. 제 5항에 기재된 유전체 자기조성물로 이루어지는 소자의 양면에 전극을 형성하여 이루어지는 것을 특징으로 하는 자기커패시터A magnetic capacitor formed by forming electrodes on both surfaces of an element made of the dielectric magnetic composition according to claim 5. 제 11항에 기재된 유전체 자기조성물로 이루어지는 시트상의 유전체와, 전극를 교대로 적층하여 이루어지는 것을 특징으로 하는 자기커패시터.A magnetic capacitor formed by alternately stacking a sheet-like dielectric composed of the dielectric magnetic composition according to claim 11 and an electrode. 제 11항에 있어서, 상기 전극은, 비금속 또는 탄소계 물질로 이루어지는것을 특징으로 하는 자기커패시터The magnetic capacitor of claim 11, wherein the electrode is made of a nonmetal or a carbon-based material. 제 12항에 있어서, 상기 전극은, 비금속 또는 탄소계 물질로 이루어지는 것을 특징으로 하는 자기커패시터.The magnetic capacitor of claim 12, wherein the electrode is made of a nonmetal or a carbon-based material. SrxBa1-x(ZryTi1-y)O3(단, 0.8≤x≤1, 0.9≤y≤1)으로 이루어지는 주조성물에, MnO2을 0.05∼15중량%, Bi2O3, PbO, Sb2O3에서 선택된 1종 또는 2종이상을 0.001∼5중량%, 글라스 조성물을 0.5-15중량% 첨가한 분체를, 성형하여 벌크상 또는 시트상의 성형체로 하고, 이 성형체를 925∼1080℃의 온도에서 소성하는 것을 특징으로 하는 유전체자기조성물의 제조방법.0.05 to 15% by weight of MnO 2 and Bi 2 O 3 in a cast product consisting of Sr x Ba 1-x (Zr y Ti 1-y ) O 3 (where 0.8 ≦ x1 and 0.9 ≦ y ≦ 1) , PbO, Sb 2 O 3 One or two or more selected from 0.001 to 5% by weight of the powder, 0.5-15% by weight of the glass composition is molded to form a bulk or sheet-like molded article, this molded article is 925 A method of producing a dielectric magnetic composition comprising firing at a temperature of ˜1080 ° C. 제 19항에 있어서, 상기 시트상의 성형체의 하나의 주된 면에 전극을 형성한 다음 이 성형체를 복수개 두께방향으로 적층하고 가압하여 적층체로 하고, 이 적층체를 상기 온도에서 소성하는 것을 특징으로 하는 유전체자기조성물의 제조방법.20. The dielectric according to claim 19, wherein an electrode is formed on one main surface of the sheet-shaped molded body, and then the molded bodies are laminated and pressed in a plurality of thickness directions to form a laminated body, and the laminated body is fired at the above temperature. Method of producing a magnetic composition.
KR10-2001-0016265A 2000-03-31 2001-03-28 Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same KR100415560B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000098271A JP3698953B2 (en) 2000-03-31 2000-03-31 Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
JP2000-98271 2000-03-31

Publications (2)

Publication Number Publication Date
KR20010095050A true KR20010095050A (en) 2001-11-03
KR100415560B1 KR100415560B1 (en) 2004-01-24

Family

ID=18612774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0016265A KR100415560B1 (en) 2000-03-31 2001-03-28 Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same

Country Status (3)

Country Link
US (1) US6429163B2 (en)
JP (1) JP3698953B2 (en)
KR (1) KR100415560B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI223817B (en) * 2002-11-08 2004-11-11 Ind Tech Res Inst Dielectric material compositions with high dielectric constant and low dielectric loss
US7858548B2 (en) * 2006-09-13 2010-12-28 Ferro Corporation COG dielectric composition for use with nickel electrodes
JP5153118B2 (en) * 2005-10-27 2013-02-27 京セラ株式会社 Dielectric paste, glass ceramic multilayer wiring board, electronic device, and method for manufacturing glass ceramic multilayer wiring board
WO2008018408A1 (en) 2006-08-09 2008-02-14 Murata Manufacturing Co., Ltd. Glass-ceramic composition, sintered galss-ceramic, and laminated ceramic electronic components
JP5278682B2 (en) * 2009-02-09 2013-09-04 Tdk株式会社 Dielectric porcelain composition and electronic component
CN104520950B (en) * 2012-08-09 2017-03-29 株式会社村田制作所 Laminated ceramic capacitor and its manufacture method
JP6635126B2 (en) * 2016-01-13 2020-01-22 株式会社村田製作所 Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2641701C3 (en) * 1976-09-16 1980-04-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen Method of manufacturing a capacitor dielectric with internal barrier layers
JPS58143513A (en) * 1982-02-19 1983-08-26 ニチコン株式会社 Laminated ceramic condenser
JPH03201503A (en) * 1989-12-28 1991-09-03 Tdk Corp Porcelain composition for voltage dependent nonlinear resistor
JP3046436B2 (en) * 1990-12-17 2000-05-29 株式会社東芝 Ceramic capacitors
SG50701A1 (en) * 1991-09-25 1998-07-20 Murata Manufacturing Co Non-reducible dielectric ceramic composition
JP2872513B2 (en) * 1992-12-29 1999-03-17 太陽誘電株式会社 Dielectric porcelain and porcelain capacitor
JPH06199570A (en) * 1992-12-29 1994-07-19 Tdk Corp Composite perovskite type ceramic body
JP2870512B2 (en) * 1996-12-09 1999-03-17 松下電器産業株式会社 Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same

Also Published As

Publication number Publication date
KR100415560B1 (en) 2004-01-24
US20020016246A1 (en) 2002-02-07
JP2001278664A (en) 2001-10-10
JP3698953B2 (en) 2005-09-21
US6429163B2 (en) 2002-08-06

Similar Documents

Publication Publication Date Title
KR100376085B1 (en) Dielectric Ceramic Composition and Monolithic Ceramic Capacitor
US6310761B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor
US20010039239A1 (en) Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic
KR100415560B1 (en) Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
KR100415559B1 (en) Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
KR100444225B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
KR100444221B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
KR100415558B1 (en) Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
KR100444220B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
KR100452817B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100406351B1 (en) Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
KR100406350B1 (en) Dielectric ceramic composition, ceramic capacitor using the composition and a process of producing same
JP3575294B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP4253652B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT PRODUCED BY USING SAME, AND METHOD FOR PRODUCING MULTILAYER CERAMIC CAPACITOR
JP3746398B2 (en) Dielectric porcelain composition and ceramic electronic component
JP4114503B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP2012148919A (en) Ceramic composition and electronic component
JPH08325055A (en) Porcelain composition fired at low temperature, compact and laminated body
JP2005187236A (en) Dielectric porcelain composition, porcelain capacitor, and production method of dielectric porcelain composition
KR20000011821A (en) Dielectric ceramic composition and ceramic electric part

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090105

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee