KR20010091721A - Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods - Google Patents

Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods Download PDF

Info

Publication number
KR20010091721A
KR20010091721A KR1020000013700A KR20000013700A KR20010091721A KR 20010091721 A KR20010091721 A KR 20010091721A KR 1020000013700 A KR1020000013700 A KR 1020000013700A KR 20000013700 A KR20000013700 A KR 20000013700A KR 20010091721 A KR20010091721 A KR 20010091721A
Authority
KR
South Korea
Prior art keywords
growth factor
biodegradable
factor
porous
organs
Prior art date
Application number
KR1020000013700A
Other languages
Korean (ko)
Other versions
KR100358080B1 (en
Inventor
이해방
강길선
이상진
최명규
전은경
Original Assignee
김충섭
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구원 filed Critical 김충섭
Priority to KR1020000013700A priority Critical patent/KR100358080B1/en
Publication of KR20010091721A publication Critical patent/KR20010091721A/en
Application granted granted Critical
Publication of KR100358080B1 publication Critical patent/KR100358080B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/225Fibrin; Fibrinogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE: Provided is a method for producing multiporous and biodegradable artificial organs which release bioactive materials slowly, thereby transferring the material effectively through the artificial organs because the organs have the appropriate sized multiporous and releasing the bioactive materials slowly from the organs during growth of cells within organs. CONSTITUTION: The multiporous and biodegradable artificial organs are produced by adding 1.5 to 18% of biodegradable polymer and 0.0001 to 80% of bioactive materials selected from the group consisting of cytokines, antibiotics and the mixture thereof to emulsion solution consisting of water and organic solvent; adding the mixture into a mold with organ shape; and drying the artificial organs by emulsifying freeze drying method.

Description

생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법{Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods}Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods}

본 발명은 생리활성물질을 서방화하는 다공성·생분해성 인공장기와 이의 제조방법에 관한 것으로서, 더욱 상세하게는 사이토카인류, 항생제 등의 생리활성물질과 함께 다공성·생분해성 고분자가 일정 함량비로 요구되는 장기 형태의 몰드내에서 유화동결건조시킴으로써 제조된 균일 구경분포를 가지는 다공질체는 그 내부에 상기한 생리활성물질이 포접되어 있어 세포성장 중에 서방화됨은 물론이고 각종 감염에 대한 방지가 우수하고 인체내의 여러 특정 조직세포 등의 부착 및 성장이 용이하도록 하며, 세포의 성장이 완결된 후에는 다공질체가 자연적으로 생분해되어 인체에 흡수되는 특성을 가지고 있는 생리활성물질을 서방화하는 다공성·생분해성 인공장기와 이의 제조방법에 관한 것이다.The present invention relates to a porous and biodegradable artificial organs for sustaining the release of physiologically active substances and a method for preparing the same. More specifically, the porous and biodegradable polymers are required in a certain content ratio together with physiologically active substances such as cytokines and antibiotics. The porous body having a uniform diameter distribution prepared by emulsifying and freezing drying in a mold of a long-term form is embedded with the above-mentioned physiologically active substance so that it is sustained during cell growth as well as excellent prevention against various infections. Porous and biodegradable artificial organs that facilitate the attachment and growth of various specific tissue cells in the body, and after the growth of the cells is completed, release the bioactive substances that have the property of being naturally biodegraded and absorbed by the human body. It relates to a method for producing the same.

섬세하고 정교하며 높은 수준에 이른 의료공학 기술이 급속한 성장을 보이고 있음에도 불구하고 인체장기나 조직이 손상되는 질병은 각종 사고, 보건의료 수준의 고도화에 동반하여 자연적인 수명의 고령화와 함께 치료에 막대한 경비가 소요되며, 비교적 높은 빈도수로, 그리고 심각한 문제로 사회전반적으로 걸쳐 대두되고 있다.Despite the rapid growth of delicate, sophisticated and high-level medical engineering technology, diseases that damage human organs and tissues are accompanied by various accidents and advancement of health care levels, and with the aging of natural lifespan, enormous expenses for treatment. It is becoming more common throughout the society with relatively high frequency and serious problems.

인체 중의 일부 장기 또는 신체의 일부분이 질병이나 사고에 의해서 손상을 입었을 경우에는 인공장기를 이용하여 환자들의 질병을 치료하고 있다. 1890년경 레인이 뼈의 골절에 대한 고정으로 금속제 나사와 뼈 고정용판 등이 사용된 이래로 약 100 여년이 지난 이들 인공장기의 개발역사를 살펴보면 다음과 같이 크게 4세대로 나뉠 수 있다.When some organs or parts of the body are damaged by diseases or accidents, artificial organs are used to treat patients' diseases. The development history of these artificial organs, which have been around 100 years since Lane was used to fix bone fractures around 1890, can be divided into four generations.

제1세대는 1940년도 이전의 아주 초창기 이식으로서 원시적인 금속, 요업재료를 인체에 일부를 지지 또는 보철하는 것을 일컫는다. 이러한 연구 또는 시술 등은 의학, 화학, 재료학 등의 학문간의 큰 구별 없이 실용성이나 효과보다는 초보적인 호기심에서 시작하였다.The first generation was a very early transplant prior to 1940 that supported or prostheted some of the primitive metals and ceramics in the human body. These studies or procedures began with a basic curiosity rather than practicality or effects without much distinction between disciplines such as medicine, chemistry and materials.

제2세대는 일반 연구자들이 고안한 일반화학재료를 의사들이 고장나고 손상된 장기의 일부분을 대체하는 것으로부터 시작되는데, 인체와 접촉하는 조직 등과의 이상현상 즉, 생체적합성이라는 정확한 정의 없이 우연적으로 그리고 돌발적으로 적용되었던 시기였다. 그 대표적인 예로는 챤리경이 폴리메틸메타아크릴레이트 뼈시멘트를 인공고관절로 이용, 부어리스가 한국전쟁시 나일론과 폴리아크릴로니트릴계 공중합체를 인공혈관으로 이용, 디에틸헥실프탈레이트로 가소화한 폴리염화비닐을 혈액백으로 이용, 베트남 전쟁시 폴리비닐피롤리돈을 인공혈액으로 이용한 예 등이다. 이러한 예들은 본격적으로 수술이 시행된 1950년 후반부터 수많은 사례들이 임상적으로 성공을 보임으로써 현재에도 많이 사용되고 있다.The second generation begins with doctors replacing a part of a broken or damaged organ with a generic chemical material devised by researchers, accidentally and unexpectedly without an exact definition of abnormality, ie biocompatibility with tissues that come into contact with the human body. It was a time when it was applied. For example, Chanley uses polymethyl methacrylate bone cement as artificial hip joint, and Boris Lee uses nylon and polyacrylonitrile-based copolymer as artificial blood vessel in Korean war, plasticizing with diethylhexyl phthalate. This is an example of using vinyl chloride as a blood bag and using polyvinylpyrrolidone as an artificial blood during the Vietnam War. These examples have been widely used since the late 1950, when the operation was performed in earnest, with numerous clinical successes.

제3세대는 상기한 제1세대 및 제2세대에서 강조되었던 생체와의 어떤 작용이 없는 "비활성" 상태보다는 인체와 "생체활성" 상태 즉, 아주 정교하게 디자인되고 응용된 고분자, 요업, 금속재료가 주위의 조직세포를 자극하여 이식이 더 빨리, 효과적으로 되게 하는 생체재료의 개발세대이다. 대표적인 것으로는 수산화아파타이트가 도포된 인공고관절, 알긴 및 콜라겐이 도포된 인공혈관 등을 예로 들 수있다.The third generation is the body and the "bioactive" state, i.e. very precisely designed and applied polymers, ceramics and metal materials, rather than the "inactive" state without any interaction with the living body highlighted in the first and second generations described above. Is a developmental generation of biomaterials that stimulate surrounding tissue cells to make transplantation faster and more effective. Typical examples include artificial hip joints coated with hydroxyapatite, artificial blood vessels coated with algin and collagen, and the like.

제4세대는 조직공학을 응용한 즉, 인체에서 추출된 조직세포와 합성재료가 동시에 사용되는 혼합형 인공장기의 개발이다. 이들은 인체의 장기를 재시술과 완전교체하여 생체조직을 시술하기보다는 손상된 조직의 개선과 회복하는 데에 초점이 맞춰지고 있다. 이러한 제4세대의 조직공학이 가미된 인공장기 개발의 근본적인 원인은 일반 범용합성 고분자가 갖고 있는 근본적인 한계 즉, 생체적합성 및 어느 특정 부분의 손상된 장기나 조직의 생체기능성이 결국에는 결여되어 있기 때문이다. 이에 따라서 장기의 특정기능을 담당하는 세포 또는 단백질 등을 분해 또는 비분해성 고분자 재료에 결합, 고정화 및 배양하여 원하는 조직 또는 장기의 성능을 좀 더 고급화 및 기능화하여 생체요소를 흉내내는 하이브리드를 추구하고 있다.The fourth generation is the development of mixed artificial organs using tissue engineering, that is, tissue cells extracted from the human body and synthetic materials are used simultaneously. They focus on improving and restoring damaged tissues, rather than completely replacing organs of the human body with reoperations. The fundamental reason for the development of artificial organs with the fourth generation of tissue engineering is that the general limitations of general synthetic polymers, namely, biocompatibility and the biofunctionality of damaged organs or tissues of a certain part, are eventually lacked. . Accordingly, the company is pursuing a hybrid that mimics biological elements by binding, immobilizing, and cultivating cells or proteins, which are responsible for specific functions of organs, to non-degradable polymer materials to further enhance and functionalize desired tissues or organs. .

이러한 조직공학적 연구의 대표적인 예로서 인공연골을 예로하여 개략적으로 설명하면 다음과 같다. 우선 인체내의 특정한 장기모양을 석고 등으로 조각한 후 동판과 실리콘을 이용하여 장기형 몰드(mold)를 제조한다. 이 장기형태의 몰드에 연골세포가 지지하고 성장해야할 담체를 제조해야 되는데, 이러한 담체로서는 통상 미세다공성·생분해성 고분자가 사용된다. 최근 합성고분자로서의 생분해성 고분자는 락타이드와 글리콜라이드의 에스터류 공중합체가 사용되는데, 이들의 생분해기구는 가수분해작용인 것으로 기인된다.As a representative example of such a histological study, the artificial cartilage is schematically described as follows. First, a specific organ shape in the human body is sculpted with gypsum and the like, and then a long-term mold is manufactured using copper plate and silicon. A carrier to be supported and grown by chondrocytes in the mold of the organ form must be prepared. As such a carrier, microporous and biodegradable polymers are usually used. Recently, as biopolymers of synthetic polymers, ester copolymers of lactide and glycolide are used, and their biodegradation mechanism is due to hydrolysis.

폴리락타이드(PLA)는 부러진 뼈를 고정하는 뼈고정용판과 나사를 제조하는데 쓰이고 있고, 폴리글리콜라이드(PGA)는 흡수성 봉합사로 널리 쓰이고 있다. 이들 단일중합체의 생분해기간은 분자량에 따라 다소 차이가 있지만 통상 1년 이상인데 반하여, 이들의 공중합체인 폴리글리콜라이드-락타이드(PLGA)는 분자량에 따라서 수주 ∼ 수십주에 걸쳐 생분해가 일어난다.Polylactide (PLA) is used to manufacture bone fixation plates and screws to fix broken bones, and polyglycolide (PGA) is widely used as an absorbent suture. Although the biodegradation period of these homopolymers is somewhat different depending on the molecular weight, it is usually 1 year or more, whereas their copolymer, polyglycolide-lactide (PLGA), undergoes biodegradation over several weeks to several tens of weeks depending on the molecular weight.

PLGA 생분해성 고분자를 이용하여 미세다공성·생분해성 담체(예를들면 스폰지와 같은 구조임)로 제조하기 위한 방법으로서는 PLGA를 용해하고 있는 용액에 일정한 크기의 단결정 소금과 혼합하여 건조한 후 소금을 물에 용해시켜내는 염추출법, 이산화탄소를 이용하여 PLGA를 팽창시키는 법, PGA섬유를 부직포로 만들어 PGA 메쉬로 제조하는 법, PLGA 용액에 함유하고 있는 용매를 증발시키는 방법, PLGA 용액에 함유하고 있는 용매를 비용매속에 담구어 상분리시키는 상분리법 등이 적용되고 있다. 그런 다음, 토끼의 귀에서 분리되어 대량배양된 연골세포를 일련의 작업을 통하여 채취하고 이를 귀 및 코모양의 생분해성 담체에 파종한다. 그리고, 이를 실험용 동물에 이식하면 생분해성 고분자는 동물체내에 자연히 흡수되고 최종적으로 연골만이 남게되어 손실된 장기의 역활을 대신하게 된다. 이때, 분리되고 파종되는 조직세포로서 간세포, 소장세포, 요로세포, 혈관내피세포, 골수세포, 신경세포 등이 적용됨에 따라서 인공간(肝), 인공장, 인공요로, 인공혈관, 인공골수, 인공신경 및 여타 장기에 응용될 수 있다.As a method for producing a microporous and biodegradable carrier (for example, a sponge-like structure) using a PLGA biodegradable polymer, it is mixed with a monocrystalline salt of a certain size in a solution in which PLGA is dissolved, and the salt is dried in water. Salt extraction method to dissolve, expansion of PLGA using carbon dioxide, production of PGA mesh from nonwoven fabric of PGA fiber, evaporation of solvent in PLGA solution, solvent in PLGA solution Phase separation methods, such as immersion in phases, are applied. Then, cartilage cells isolated and mass cultured from rabbit ears are harvested through a series of operations and seeded in ear and nose biodegradable carriers. And, when transplanted into the laboratory animals, the biodegradable polymer is naturally absorbed into the animal body, and finally only cartilage is left to replace the role of the lost organs. At this time, hepatocytes, small intestine cells, urinary tract cells, vascular endothelial cells, bone marrow cells, nerve cells, etc. are applied as tissue cells to be separated and seeded, and thus, space, artificial field, artificial urinary tract, artificial blood vessel, artificial bone marrow, artificial It can be applied to nerves and other organs.

한편, 본 발명자들에 의하여 타 단점을 해결하는 고분자 용액과 물로 이루어진 유화동결건조방법에 의한 다공성·생분해성 인공장기 및 이의 제조방법이 제안된바 있다[대한민국특허 제201,874호]. 그러나, 대한민국특허 제201,874호에 따른 제조방법의 경우, 사용된 합성 생분해성 고분자의 표면 성질이 소수성이어서생분해성 고분자 담체에 배양액과 세포들이 스며들지 않고 성장이 되지 않는 단점이 있었다. 또한, 상기한 생분해성 고분자 담체에 여러 가지 성장인자들의 사이토카인류를 함유시키게 되면 혈관형성, 신경세포형성 등의 제반 성질이 현저히 상승되는 효과는 얻을 수 있었으나 생리활성물질들이 변성하고 제조과정 중에 물 및 여타 용매가 미리 흘러나와 본연의 기능이 없어지는 등의 단점이 있었다.On the other hand, the present inventors have proposed a porous and biodegradable artificial organs and a method for producing the same by the emulsion freeze drying method consisting of a polymer solution and water to solve the other disadvantages (Korea Patent No. 201,874). However, the preparation method according to Korean Patent No. 201,874 has a disadvantage in that the surface properties of the synthetic biodegradable polymer used are hydrophobic so that the culture medium and the cells do not penetrate into the biodegradable polymer carrier and do not grow. In addition, when the biodegradable polymer carrier contains cytokines of various growth factors, various properties such as angiogenesis and neuronal cell formation can be remarkably increased, but bioactive substances are denatured and water is produced during the manufacturing process. And other solvents pre-flowed out and lost their original function.

이에, 본 발명자들은 상기한 대한민국특허 제201,874호에서 발견되는 문제점들을 해결하고, 보다 개선된 인공장기를 개발하고자 연구 노력하였다. 그 결과, 인체에 이식되어서 일정기간 동안에 생분해가 일어나는 생분해성 고분자 재료를 선택 사용하고, 선택된 생분해성 고분자 용액과 함께 비상용성의 액체에 여러 가지 생리활성물질을 혼합한 유화용액을 장기형태의 몰드에 채워 동결시킨 후 이를 건조하는 이른바, 유화동결건조법을 이용하여 다공성·생분해성 인공장기를 제작하므로써 본 발명을 완성하였다.Accordingly, the present inventors have tried to solve the problems found in the above-mentioned Korean Patent No. 201,874, and to develop an improved artificial organ. As a result, the biodegradable polymer material that is implanted into the human body and biodegradable for a certain period of time is selected and used, and the long-term mold is filled with an emulsion solution in which various bioactive substances are mixed in an incompatible liquid with the selected biodegradable polymer solution. The present invention was completed by preparing a porous and biodegradable artificial organ using a so-called emulsification freeze drying method of drying after freezing.

즉, 본 발명은 선택된 생분해성 고분자의 표면 성질이 소수성임에도 불구하고 친수성의 생리활성물질이 포접되어 있음으로써 배양액과 세포들이 쉽게 스며들어 그 세포 성장이 빠르게 이루어지고, 또한 그 제조과정이 동결건조되는 간단한 작업으로 이루어지기 때문에 생리활성물질들이 변성하거나 또는 제조과정 중에 물 및 여타 용매가 흘러나오는 문제를 한꺼번에 해소할 수 있었으며, 또한 포접되어 있는 생리활성물질이 생분해성 고분자가 분해되면서 동시에 생리활성물질이 세포성장 과정중에 서방화되므로 세포성장속도가 일정하게 유지될 수 있다.That is, in the present invention, even though the surface property of the selected biodegradable polymer is hydrophobic, the hydrophilic physiologically active substance is entrapped, so that the culture medium and the cells are easily permeated, and the cell growth is rapid, and the manufacturing process is lyophilized. Because of the simple operation, it was possible to solve the problem of degeneration of bioactive substances or the flow of water and other solvents during the manufacturing process, and the inclusion of bioactive substances decomposed into biodegradable polymers at the same time. Since the cells are sustained during the cell growth process, the cell growth rate can be kept constant.

따라서, 본 발명은 생체활성력 및 여타 기능성이 우수하고 일정기간이 경과하면서 자연적으로 생분해되어 인체에 흡수되는 인공장기와 이의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide an artificial organ and a method for producing the same which are excellent in bioactivity and other functionalities and naturally biodegraded and absorbed by the human body after a certain period of time.

도 1은 본 발명에 따른 제조방법으로 제작된 신경성장인자(NGF)가 함유되어 있는 다공성·생분해성 인공장기에 대한 전자현미경사진( ×200)이고,1 is an electron micrograph (× 200) of a porous biodegradable artificial organ containing a nerve growth factor (NGF) produced by the manufacturing method according to the present invention.

도 2은 시간에 따른 신경성장인자(NGF)의 용출그래프이고,2 is an elution graph of nerve growth factor (NGF) over time,

도 3은 본 발명에 따른 제조방법으로 제작된 겐타마이신 설페이트가 함유된 다공성·생분해성 인공장기에 대한 적심성 시험 결과를 나타낸 사진이고,3 is a photograph showing the results of the wetting test for the porous, biodegradable artificial organs containing gentamicin sulfate prepared by the manufacturing method according to the present invention,

도 4은 시간에 따른 항생제(겐타마이신 설페이트)의 용출그래프이다.4 is an elution graph of antibiotics (gentamicin sulfate) over time.

본 발명은 물과 유기용매로 이루어진 유화용액에 생리활성물질과 생분해성 고분자를 혼합시킨 혼합용액을 몰드에 투입하여 유화동결건조하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법을 그 특징으로 한다.The present invention is a method for producing a porous and biodegradable artificial organs for sustained release of a bioactive material to emulsify and freeze-dried by injecting a mixed solution of a bioactive material and a biodegradable polymer into an emulsion of water and an organic solvent. It is characterized by.

또한, 본 발명은 상기와 같은 제조방법에 의해 제조된 생리활성물질을 서방화하는 다공성·생분해성 인공장기를 포함하며, 이러한 인공장기로는 인공혈관, 인공연골, 인공뼈, 인공간 등 세포조직이 회복될 수 있는 신체장기라면 모두 적용될 수 있다.In addition, the present invention includes a porous, biodegradable artificial organs for sustained release of the physiologically active substance prepared by the above-described manufacturing method, such artificial organs include artificial blood vessels, artificial cartilage, artificial bones, human space, such as tissues Any of these recoverable body organs can be applied.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 생분해성 고분자를 재료로 하는 유화동결건조에 의해 제조된 생리활성물질이 서방화하는 인공장기와 이의 제조방법에 관한 것이다. 본 발명에 따른 인공장기는 일정크기분포의 다공도를 가지고 있는 스폰지 형태의 생분해성 고분자로 이루어진 것으로 인체내에 이식되어 배양액과 세포들이 생분해성 담체에로 쉽게 스며들어 조직세포의 성장 및 회복이 가능하고, 또한 인공장기는 일정기간이 경과하면 가수분해에 의해 서서히 생분해되면서 인체에 흡수되어 인체에 축적될 우려가 전혀 없으며, 인공장기중에 포함된 생리활성물질들이 변성된다거나 또는 제조과정 중에 물 및 여타 용매가 흘러나올 염려가 전혀 없으며, 생리활성물질은 원하는 기간동안 서서히 방출시키는 즉 서방화할 수 있는 기능이 부여되어 있어 세포성장속도가 일정하게 유지되는 우수성을 가지고 있다.The present invention relates to an artificial organ and a method for producing the sustained release of a bioactive material produced by emulsification freeze drying of a biodegradable polymer material. The artificial organ according to the present invention is composed of a sponge-type biodegradable polymer having a pore size distribution and implanted in the human body so that culture medium and cells can easily penetrate into the biodegradable carrier, thereby allowing the growth and recovery of tissue cells. In addition, artificial organs are slowly biodegraded by hydrolysis after a certain period of time, and are not absorbed by the human body and accumulated in the human body, and bioactive substances contained in the artificial organs are denatured or water and other solvents are There is no fear of bleeding out, and the bioactive substance is given a function of slowly releasing, ie, sustained release for a desired period, and has excellent excellence in maintaining a constant cell growth rate.

본 발명에 따른 인공장기의 제조과정을 보다 구체적으로 설명하면 다음과 같다.Hereinafter, the manufacturing process of the artificial organ according to the present invention will be described in detail.

본 발명에서 사용하는 생분해성 고분자는 인체에 무해하고 원하는 일정기간내에 생분해 될 수 있는 특성을 가져야한다. 상기와 같은 특성을 지닌 생분해성 고분자로는 알부민(albumin), 콜라겐(collagen), 젤라틴(gelatin), 피브리노겐(fibrinogen), 카제인(case-in), 피브린(fibrin), 헤모글로빈(hemoglobin), 트란스페린(transferrin), 키틴(chitin), 키토산(chitosan), 하이아루로닉산(hyaluronic acid), 헤파린(heparin), 콘드로이틴(chondroitin), 케라틴 설페이트(keratin sulfate), 알긴산(alginic acid), 전분, 덱스트린, 덱스트란, 구연산, 폴리락트산, 폴리글리콜산, 젖산-글리콜산 공중합체, 폴리히드록시뷰티르산(polyhydroxybutyric acid), 폴리카프로락톤(polycaprolactone), 폴리안하이드라이드(polyanhydride) 및 폴리알킬시아노 아크릴레이트(polyalkylcyano acrylate) 중에서 선택된 1종 이상의 것을 사용한다. 이들 생분해성 고분자는 가수분해 및 인체내의 여러 효소에 의해 인체내에서 일정기간이 경과하면 자연 생분하는 것으로 밝혀져 있다[Langer. R & Vacanti J. P.,Science 260, 920, 1993].The biodegradable polymer used in the present invention should be harmless to the human body and have properties that can be biodegraded within a desired period of time. Biodegradable polymers having such characteristics include albumin, collagen, gelatin, fibrinogen, casein, fibrin, hemoglobin, and transferrin. (transferrin), chitin, chitosan, hyaluronic acid, heparin, chondroitin, keratin sulfate, alginic acid, starch, dextrin, Dextran, citric acid, polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polyhydroxybutyric acid, polycaprolactone, polyanhydride and polyalkylcyano acrylate At least one selected from polyalkylcyano acrylate is used. These biodegradable polymers have been found to naturally biodegrade after a certain period of time in the human body by hydrolysis and various enzymes in the human body [Langer. R & Vacanti JP, Science 260 , 920, 1993].

또한, 본 발명에서는 인체조직세포의 성장, 혈관성장, 감염방지 등의 여러 가지 신기능성을 부여할 목적으로 생리활성물질인 사이토카인류, 항생제 또는 이들의 혼합물을 사용한다.In addition, the present invention uses cytokines, antibiotics, or mixtures thereof, which are bioactive substances, for the purpose of imparting various renal functions such as growth of human tissue cells, growth of blood vessels, and prevention of infection.

본 발명이 생리활성물질로 사용하게 되는 사이토카인류로는 성장인자(growth factor), 뼈성장인자속(bone morphogenic protein), 인터류킨 1 ∼ 17, 인터페론 등을 들 수 있다. 성장인자로는 혈소판추출성장인자(platelet derived growth factor, PDGF), 전환성장인자(transforming growth factor, TGF), 상피성장인자(epidermal growth factor, EGF), 인슐린성성장인자(insulin-like growth factor, IGF), 섬유아세모성장인자(acidic and basic fibroblast growth factor, aFGF, bFGF), 혈관내피세포 성장인자(vascular endothelial growth factor, VEGF), 신경성장인자(nerve growth factor, NGF), 6 CKINE, 액티빈 A(activin A), 암피레귤린(amphiregulin), 안지오제인(angiogenin), 베타셀룰린(betacellulin), 뇌추출신경형성인자(brain-derived neurotropic factor, BNDF), 모양체성장인자(ciliary neurotrophin factor, CNTF), 사이토카인유도 뇌형성인자-1(cytokine-induced neutrophil chemoattractant-1), β-혈관내피세포형성인자(β-endothelial cell growth factor, β-ECGF), 상피세포활성인자-78(epithelial neutrophil activating peptide-78, ENA-78), 헤파린부착상피세포성장인자(heparin-binding epidermal growth factor-like growth factor, HB-EGF), 섬유아세포성장인자 4 ∼ 9(fibroblast growth factor 4 ∼ 9, FGF 4 ∼ 9), 교아세포뇌형성인자(glial cell line-devived neutrotrophic factor, GDNF), GLY-HIS-LYS, 육아세포자수인자(granulocyte colony stimulating factor, G-CSF), 간세포성장인자(hepaocyte growth factor, HGF), 각질세포성장인자(keratinocyte growth factor, KGF), 뉴트로트로핀(neutrotrophin, NT), 태반추출성장인자(placenta growth factor, PIGF), 줄기세포인자(stem cell factor, SCF), 종양괴사인자(tumor necrosis factor, TNF) 중에서 선택된 1 종 이상의 것을 사용한다. 상기한 사이토카인류는 인체특정세포, 조직 및 장기의 성장, 부착, 이동 등의 활성력을 제공하는 것으로 밝혀져 있다.Cytokines used in the present invention as physiologically active substances include growth factors, bone morphogenic proteins, interleukins 1-17, interferons, and the like. Growth factors include platelet derived growth factor (PDGF), transforming growth factor (TGF), epidermal growth factor (EGF), insulin-like growth factor, IGF), acidic and basic fibroblast growth factor (aFGF, bFGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), 6 CKINE, fluid Activin A, amphiregulin, angiogenin, betacellulin, brain-derived neurotropic factor (BNDF), ciliary neurotrophin factor , CNTF), cytokine-induced neutrophil chemoattractant-1, β-endothelial cell growth factor β-ECGF, epithelial cell activator-78 neutrophil activating peptide-78, ENA-78), heparin attached epidermal growth factor (heparin) -binding epidermal growth factor-like growth factor (HB-EGF), fibroblast growth factor 4-9 (FGF 4-9), glia cell line-devived neutrotrophic factor, GDNF), GLY-HIS-LYS, granulocyte colony stimulating factor (G-CSF), hepaocyte growth factor (HGF), keratinocyte growth factor (KGF), Neutrotropin (neutrotrophin, NT), placenta growth factor (PIN), stem cell factor (stem cell factor (SCF), tumor necrosis factor (TNF) is selected from one or more. Said cytokines have been found to provide activity, such as growth, adhesion, migration, etc. of human specific cells, tissues and organs.

본 발명이 또다른 생리활성물질로 사용하게 되는 항생제는 수용성 항생제로서 베타-락탐(beta-lactam), 아미노글리코시드(aminoglycoside), 페니실린, 겐타마이신, 카나야신, 암피실린, 폴리믹신-B(polymyxin-B), 암포테리신-B(amphotericin-B), 아제트레오남(aztreonam), 세팔로스포린(cephalospo-rins), 클로로암페니콜(chloramphenicol), 퓨지단스(fusidans), 린코사미드(lincosamides), 마크로리드(macrolides), 메트로니다졸(metronidazole), 니트로-휴란토인(nitro-furantoin), 임페넴/실라스틴(imipenem/cilastin), 퀴놀론계(quinolones), 리팜핀(rifampin), 폴리엔(polyenes), 테트라사이클(teracycline), 설포나미드(sulfonamides), 트리메토프림(trimethoprim), 반코마이신(vancomycin), 테이코플라닌(teicoplanin), 이미다졸(imidazoles) 및 에리스로마이신 (erythro -mycin) 중에서 선택된 1 종 이상의 것이다.The antibiotic used in the present invention as another bioactive substance is a water-soluble antibiotic, beta-lactam, aminoglycoside, penicillin, gentamycin, canayacin, ampicillin, polymyxin-B (polymyxin-B). B), amphotericin-B (amphotericin-B), aztreonam, cephalospo-rins, chloroamphenicol, fusidans, lincosamides ), Macrolides, metronidazole, nitro-furantoin, impenem / cilastin, quinolones, rifampin, polyenes 1 selected from tetracycline, sulfonamides, trimethoprim, vancomycin, teicoplanin, imidazoles and erythro-mycin More than a species.

본 발명에 따른 제조방법에서는 상기한 생리활성물질로서 사이토카인류를 필수성분으로 함유하고 여기에 항생제를 필요에 따라 선택 사용하는 것이 바람직하다.In the production method according to the present invention, it is preferable to contain cytokines as an essential ingredient as the physiologically active substance and to use antibiotics as necessary.

또한, 본 발명의 주안점인 유화동결건조법(Emulsifying Freeze Drying Method)을 수행하기 위해서는 인체특정 부위의 장기 형태의 몰드가 필요하다. 몰드는 테프론(teflon), 폴리에틸렌, 초고분자량 폴리에틸렌 등의 재질로 제작되어지며, 인공장기의 형태에 따라 다양한 변화도 가능하다. 다만 이때 유의할 점은 유화상태 생분해성 고분자가 부착되지 않아야 한다는 점이다. 일례로, 몰드의 재질을 스테인레스스틸, 구리, 알루미늄, 폴리메틸아크릴레이트, 폴리카보네이트 등의 것으로 제작하였을 때에는 이들이 생분해성 고분자와 부착되는 성질 때문에 다공성 형태의 생분해성 고분자가 강하게 접착되어 몰드로부터 쉽게 분리가 되지 않는다.In addition, in order to perform the emulsifying freeze drying method (Emulsifying Freeze Drying Method) which is the main point of the present invention, a mold of an organ form of a specific body part is required. The mold is made of materials such as teflon, polyethylene, ultra high molecular weight polyethylene, and various changes are possible depending on the shape of the artificial organ. It should be noted, however, that no emulsified biodegradable polymer should be attached. For example, when the material of the mold is made of stainless steel, copper, aluminum, polymethyl acrylate, polycarbonate, etc., the biodegradable polymer in the porous form is strongly adhered due to the property of attaching to the biodegradable polymer and is easily separated from the mold. Does not become.

물 10 ∼ 70 중량%와 유기용매 30 ∼ 90 중량%로 이루어진 유화용액에 생분해성 고분자 1.5 ∼ 18 % 및 생리활성물질 0.0001 ∼ 80 % 함유시킨 혼합용액을 초음파 또는 균질기 등을 이용하여 완전유화용액으로 만든다. 이 완전유화용액을 곧바로 일정 형태의 몰드에 넣어 동결건조시켜 다공성·생분해성 인공장기를 제조한다.Complete emulsion solution using ultrasonic or homogenizer in a mixed solution containing 1.5 to 18% of biodegradable polymer and 0.0001 to 80% of biodegradable polymer in an emulsion solution composed of 10 to 70% by weight of water and 30 to 90% by weight of organic solvent. Make it. The complete emulsified solution is immediately put into a mold of a certain type and lyophilized to prepare a porous and biodegradable artificial organ.

상기와 같은 조성으로 구성된 유화용액에 상기한 생분해성 고분자를 용해시키는데 있어, 생분해성 고분자를 유기용매와 생체활성물질이 용해된 물이 혼합되어 있는 유화용액에 용해시키거나, 유기용매에 용해시킨 후 생체활성 물질이 용해된 물을 첨가하거나, 또는 생체활성물질이 용해된 물에 용해시킨 후 유기용매를 첨가시킬 수도 있다. 생분해성 고분자의 용해방법이나 유기용매의 선택은 그 특성 및 상황에 따라 이 분야에서 잘 알려져 있는 통상의 방법에 의해 다양화할 수 있다. 예를 들면 젖산-글리콜산 공중합체의 경우에는 유기용매로서 아세토니트릴, 디클로로메탄, 클로로포름, 테트라히드로퓨란, 디옥산, 메틸렌클로라이드 중에서 선택된 것을 사용하는 것이 특히 바람직하다. 상기 유화용액 중에 생분해성 고분자를 0.003 ∼ 27 % 농도로 용해시키며, 더욱 바람직하기로는 1.5 ∼ 18 % 농도로 용해시키는 것이다. 만약, 그 농도가 1.5 % 농도 미만이면 생분해성 고분자의 농도가 너무 낮아 다공성의 조직상태가 너무 약하며, 18 % 농도를 초과하면 다공성의 조직상태가 너무 치밀하여 조직세포의 성장이 방해될 수 있기 때문이다. 생분해성 고분자가 함유된 유화용액을 초음파 또는 균질기 등으로 완전히 유화용액으로 제조한다. 유화용액에 물의 첨가시에는 이 물상에 상기의 생리활성물질을 각 선택된 화합물의 특성에 따라 0.0001 ∼ 80 %(W/V)의 농도로 용해시킨 것을 사용한다. 이때, 제조하고자 하는 인공장기의 종류에 따라 세공의 크기, 세공 크기분포도, 공극률 등은 다양하게 변화시킬 수 있으며, 이는 사용된 생분해성 고분자 유기용매 및 물의 조성비율 등을 조절함으로써 가능하다.In dissolving the biodegradable polymer in an emulsion solution having the composition described above, the biodegradable polymer is dissolved in an emulsion solution in which an organic solvent and water in which a bioactive substance is dissolved are mixed or dissolved in an organic solvent. Water in which the bioactive material is dissolved may be added, or after dissolving in water in which the bioactive material is dissolved, an organic solvent may be added. The method of dissolving the biodegradable polymer or the selection of the organic solvent can be varied by conventional methods well known in the art depending on the characteristics and circumstances. For example, in the case of lactic acid-glycolic acid copolymer, it is particularly preferable to use one selected from acetonitrile, dichloromethane, chloroform, tetrahydrofuran, dioxane and methylene chloride as an organic solvent. The biodegradable polymer is dissolved in the concentration of 0.003-27% in the emulsion, and more preferably in the concentration of 1.5-18%. If the concentration is less than 1.5%, the biodegradable polymer concentration is too low, so the porous tissue state is too weak. If the concentration exceeds 18%, the porous tissue state is too dense, which may hinder the growth of tissue cells. to be. The emulsion solution containing the biodegradable polymer is completely prepared as an emulsion solution by ultrasonic or homogenizer. When water is added to the emulsification solution, a solution obtained by dissolving the physiologically active substance in the water phase in a concentration of 0.0001 to 80% (W / V) according to the characteristics of each selected compound is used. At this time, the pore size, pore size distribution, porosity, etc. can be variously changed according to the type of artificial organ to be prepared, which is possible by controlling the composition ratio of the biodegradable polymer organic solvent and water used.

이와 같이 제조되어진 생분해성 고분자 및 생리활성물질이 함유된 유화용액을 몰드에 재빨리 부은 다음, 액체질소내에 0.5 ∼ 1 시간, -35 ℃ 미만의 온도까지 냉동시킨 후, 동결건조기로 건조시킨다. 마지막으로, 건조된 다공질체를 몰드로부터 분리하게되면 본 발명이 목적으로하고 있는 생리활성물질을 서방화하는 다공성·생분해성 인공장기가 얻어진다.The emulsified solution containing the biodegradable polymer and physiologically active material thus prepared is quickly poured into a mold, and then frozen in liquid nitrogen to a temperature of less than 0.5 to 1 hour and lower than −35 ° C., followed by drying with a lyophilizer. Finally, when the dried porous body is separated from the mold, a porous, biodegradable artificial organ which sustains the physiologically active substance of the present invention is obtained.

또한, 본 발명에서 제조되는 인공장기는 인공혈관, 인공요도관, 인공소장, 인공기관지, 인공간, 인공신장, 인공연골 등 조직세포의 성장 및 회복이 가능한 신체장기라면 모두 적용된다.In addition, the artificial organs produced in the present invention are applicable to any organs capable of growth and recovery of tissue cells such as artificial blood vessels, artificial urethra, artificial small intestine, artificial bronchus, human space, artificial kidney, artificial cartilage, and the like.

이상에서와 같이 제조된 다공성·생분해성 인공장기는 인체장기를 이루고 있는 각 형태의 몰드를 이용하였기 때문에 원하는 형태를 자유자재로 얻을 수 있고 세공크기, 세공 크기분포도 및 공극률 등은 생분해성 고분자를 포함하는 용액과 물의 비율을 조절함으로써 적절히 조절할 수 있는 장점이 있다. 또한, 인체내에 이식된 다공성·생분해성 인공장기의 생분해 기간은 사용된 생분해성 고분자의 분자량이 클수록 그리고 락타이드(lactide) 및 글리콜라이드(glycolide) 중 어느 한 성분의 분율이 많을 수록 길어질 수 있기 때문에 임의로 조절가능하다. 또한 각 생리활성물질이 흘로나오는 이른바 서방성 기간은 각 생리활성물질 및 항생제의 약효 기간에 따라 가해지는 약물의 양에 따라 조절 가능하다.Since the porous and biodegradable artificial organs prepared as described above use each type of mold forming the human organs, the desired shape can be freely obtained, and the pore size, pore size distribution, and porosity include biodegradable polymers. There is an advantage that can be properly adjusted by adjusting the ratio of the solution and water to. In addition, since the biodegradation period of the porous biodegradable artificial organ implanted in the human body may be longer as the molecular weight of the biodegradable polymer used and the fraction of any one of lactide and glycolide are higher. Arbitrarily adjustable. In addition, the so-called sustained-release period in which each bioactive substance flows out can be adjusted according to the amount of drug applied according to the pharmacological duration of each bioactive substance and antibiotic.

이하, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, the present invention is not limited by the Examples.

실시예 1Example 1

젖산(lactic acid)과 글리콜산(glycolic acid)을 75 : 25 중량%의 비율로 혼합한 후, 스테노오스옥토에이트 촉매(150 ppm) 존재하에 170 ℃, 100 rpm에서 4 시간동안 열중합하여 공중합체를 제조하였다. 제조된 공중합체(이하, 'PLGA 75'라함)에 대하여 겔투과 크로마토그라피(Gel Permeation Chromatography)를 이용하여 분자량을 분석한 결과 110 kg/mol 이었다.Lactic acid and glycolic acid (glycolic acid) is mixed at a ratio of 75: 25% by weight, and then copolymerized by thermal polymerization at 170 ° C and 100 rpm for 4 hours in the presence of a stenoose octoate catalyst (150 ppm). Was prepared. The molecular weight of the prepared copolymer (hereinafter referred to as "PLGA 75") was analyzed by gel permeation chromatography (Gel Permeation Chromatography) was 110 kg / mol.

제조된 PLGA 75 0.8 g을 8 ㎖의 메틸렌클로라이드에 골고루 용해시키고, 이 용액을 1 ㎍ 및 500 ng의 신경성장인자(NGF)가 용해된 물과 60 : 40의 비율로 혼합한 후 40 W 세기인 초음파 혼합기를 사용하여 30초동안 유화용액을 제조하였다. 이 유화용액을 외경 8 mm, 내경 4 mm 크기의 테프론(teflon) 재질의 튜브형 몰드에 재빨리 붓고, -196 ℃의 액체질소에 담구어 순간적으로 동결시켰다. 이 속에서 하루 방치한 후 동결건조기를 사용하여 -78 ℃, 0.1 torr의 압력하에서 건조시켰다.0.8 g of the prepared PLGA 75 was evenly dissolved in 8 ml of methylene chloride, and the solution was mixed with water in which 1 µg and 500 ng of NGF were dissolved at a ratio of 60:40, followed by 40 W strength. Emulsion solution was prepared for 30 seconds using an ultrasonic mixer. The emulsion solution was quickly poured into a teflon tubular mold having an outer diameter of 8 mm and an inner diameter of 4 mm, immersed in liquid nitrogen at -196 ° C, and frozen immediately. After leaving for one day in this, it was dried using a freeze dryer under a pressure of -78 ℃, 0.1 torr.

이상의 방법으로 제작된 신경성장인자(NGF)가 함유되어 있는 다공성·생분해성 인공장기에 대한 전자현미경사진(×200)은 첨부도면 도 1에 나타내었다.Electron micrographs (× 200) of porous and biodegradable artificial organs containing nerve growth factor (NGF) prepared by the above method are shown in FIG. 1.

또한, 이들의 세공크기, 세공크기분포도 및 총 세공면적 등의 물리적 물성을 측정하기 위하여 수은 포로시미터(porosimeter, AutoPoreII, Microme-ritrics)를 사용하여 측정하였고, ELISA로 검출된 NGF가 서방화되는 그래프는 도 2에 나타내었다.In addition, in order to measure physical properties such as pore size, pore size distribution and total pore area, mercury porosimeters (Porosimeter, AutoPoreII, Microme-ritrics) were measured, and NGF detected by ELISA was sustained. The graph is shown in FIG.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 PLGA 75를 중합하였는데, 이때 30 ppm의 스테노오스옥토에이트 촉매를 첨가하였다. GPC 측정결과 분자량은 370 kg/mol 이었다. 이 PLGA 75 0.8 g을 메틸렌클로라이드에 골고루 용해시키고, 이 용액을 겐타마이신 설페이트가 0.4, 0.8 및 6 ㎎/㎖의 농도로 용해되어 있는 물과 70 :30의 비율로 혼합한 후, 초음파 혼합기를 사용하여 유화용액을 제조하였다. 이하 상기 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 다음 표 1에 나타내었다.PLGA 75 was polymerized in the same manner as in Example 1, where 30 ppm of stenosoctoate catalyst was added. The molecular weight of the GPC was 370 kg / mol. 0.8 g of the PLGA 75 was evenly dissolved in methylene chloride, and the solution was mixed with water in which the gentamicin sulfate was dissolved at concentrations of 0.4, 0.8 and 6 mg / ml at a ratio of 70:30, and then using an ultrasonic mixer. To prepare an emulsion solution. It was carried out in the same manner as in Example 1 below. As a result, their physical properties are shown in Table 1 below.

또한, 적심성 상승효과를 알아보기 위하여, 파란색 염료가 녹아 있는 용액에 넣어 6 시간 후에 용액이 스며드는 현상을 관찰하였으며, 이에 대한 사진을 도 3에 나타내었다. 또한, HPLC로 검출된 겐타마이신 셀페이트가 PLGA 담체로부터 방출 그래프는 도 4에 나타내었다.In addition, in order to determine the synergistic effect, the solution was penetrated into the blue dye dissolved solution 6 hours after the phenomenon was observed, the photo is shown in FIG. In addition, the release graph of gentamicin cellulose detected from the PLGA carrier by HPLC is shown in FIG. 4.

실시예 3Example 3

분자량 15 ㎏/㏖의 폴리히드록시뷰티르산(PHB) 0.8 g을 8 ㎖의 클로로포름에 용해하고, 이 용액을 0.03 %의 TGF가 용해된 물과 50 : 50의 비율로 혼한한 후 초음파 혼합기를 사용하여 유화용액을 제조하였다. 이하 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 다음 표 1에 나타내었다.0.8 g of polyhydroxybutyric acid (PHB) having a molecular weight of 15 kg / mol was dissolved in 8 ml of chloroform, and the solution was mixed with 0.03% of TGF-dissolved water at a ratio of 50:50 and then used with an ultrasonic mixer. To prepare an emulsion solution. It was carried out in the same manner as in Example 1 below. As a result, their physical properties are shown in Table 1 below.

실시예 4Example 4

분자량 37 ㎏/㏖의 폴리카프로락토(PCL) 1.2 g을 8 ㎖의 디옥산에 용해하고, 이 용액을 0.002 %의 뇌추출 신경형성인자가 함유되어 있는 증류수와 40 : 60의 비율로 혼합한 후, 초음파 혼합기를 사용하여 유화용액을 제조하였다. 이하 상기 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성은 다음 표 1에 나타내었다.After dissolving 1.2 g of polycaprolacto (PCL) having a molecular weight of 37 kg / mol in 8 ml of dioxane, the solution was mixed with distilled water containing 0.002% brain extract neuronal factor in a ratio of 40:60. , Using an ultrasonic mixer to prepare an emulsion solution. It was carried out in the same manner as in Example 1 below. As a result, their physical properties are shown in Table 1 below.

실시예 5Example 5

저점도(low viscosity)의 알긴산 1 g과 0.02 g의 테트라사이클린을 10 ㎖의 증류수에 용해하고, 이 용액을 디클로로메탄과 50 : 50의 비율로 혼합한 후, 초음파 혼합기를 사용하여 유화용액을 제조하였다. 이하 상기 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 다음 표 1에 나타내었다.1 g of low viscosity alginic acid and 0.02 g of tetracycline are dissolved in 10 ml of distilled water, and the solution is mixed with dichloromethane at a ratio of 50:50, and then an emulsion solution is prepared using an ultrasonic mixer. It was. It was carried out in the same manner as in Example 1 below. As a result, their physical properties are shown in Table 1 below.

실시예 6Example 6

글루코오스 6 %, 텍스트란 70 %, 500 ng의 줄기세포인자 및 구연산 0.06 %의 농도를 함유한 수용액을 아세토니트릴과 90 : 10의 비율로 혼합한 다음, 초음파 혼합기를 사용하여 유화용액을 제조하였다. 이하 상기 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 다음 표 1에 나타내었다.An aqueous solution containing 6% glucose, 70% textan, 500 ng stem cell factor and 0.06% citric acid was mixed with acetonitrile at a ratio of 90:10, and an emulsion solution was prepared using an ultrasonic mixer. It was carried out in the same manner as in Example 1 below. As a result, their physical properties are shown in Table 1 below.

비교예Comparative example

상기 실시예 1과 동일한 방법으로 튜브형 다공성 인공장기 형태를 제조하되, 다만 생분해성 고분자 유기용액과 물의 비율을 10 : 90의 중량비율로 혼합하였다.A tubular porous artificial organ was prepared in the same manner as in Example 1, except that the biodegradable polymer organic solution and water were mixed in a weight ratio of 10:90.

상기 결과에 의하면, 본 발명에 따른 다공성·생분해성 인공장기는 평균 세공 크기가 15 ㎛의 전후의 것이 얻어지나, 비교예에서와 같이 유화용액내 물의 비율이 과량이면 인공장기가 제조되지 않는 바, 이는 공극상태가 이루어져야 할 임계 농도이하이기 때문이다. 또한 NGF, 겐타마이신 설페이트 및 타생리활성인자가 투여된 농도에 따라서 원하는 기간내에 원하는 만큼의 생리활성물질과 항생제의 서방화를 꾀할 수 있으며, 겐타마이신을 함유하는 경우에는 적심성이 향상되어 물이 빨리 스며들을 수 있어 본 방법에 의한 담체의 친수성화가 증가되어 본 발명의 목적이 훌륭히 달성됨을 알 수 있었다.According to the above results, the porous / biodegradable artificial organ according to the present invention has an average pore size of about 15 μm, but if the ratio of water in the emulsion solution is excessive, as in the comparative example, the artificial organ is not manufactured. This is because it is below the critical concentration at which the void must be made. In addition, depending on the concentration of NGF, gentamicin sulfate and other physiological activators, the desired amount of sustained release of bioactive substances and antibiotics can be achieved within a desired period. It can be seen that it can be quickly penetrated to increase the hydrophilization of the carrier by the present method to achieve the object of the present invention excellently.

상기한 바와 같이, 본 발명에 따른 제조방법으로 제조된 인공장기는 적당한세공크기를 갖고 있어서 혈액과 피부간에 영양액, 산소, 이산화탄소 등의 물질전달이 효과적으로 이루어지고, 또한 이 세공간의 연결이 생분해성 고분자로 되어 있어서 인체내의 혈관내피세포 또는 피부조직세포 등의 부착 및 성장이 용이하며, 이러한 세포의 성장이 완결된 후에는 자연적으로 생분해되어 몸에 흡수되기 때문에 기존의 인공장기 재료보다 월등히 우수한 장점을 가지고 있다.As described above, the artificial organ produced by the manufacturing method according to the present invention has an appropriate pore size, so that the material transfer such as nutrient solution, oxygen, carbon dioxide, etc. between the blood and the skin is effective, and the connection between the pores is biodegradable Because it is made of polymer, it is easy to attach and grow vascular endothelial cells or skin tissue cells in the human body, and after the growth of these cells is completed, they are naturally biodegradable and absorbed by the body. Have.

또한 첨가된 생리활성물질로서 사이토카인류와 항생제는 생분해성 고분자가 분해되면서 원하는 대로 원하는 양만큼 서방화시킬 수 있다는 점에서 종래의 조직공학적 인공장기 개발에서 필수불가결한 생분해성 고분자 담체의 기능화를 할 수 있으며 종래의 방법보다는 훨씬 쉽고 경제적으로도 용이하다는 장점을 가지고 있다.In addition, cytokines and antibiotics as added bioactive substances can functionalize biodegradable polymer carriers, which are indispensable in the development of conventional tissue engineering organs in that they can be sustained as desired as biodegradable polymers are decomposed. It has the advantage of being much easier and more economical than conventional methods.

Claims (9)

물과 유기용매로 이루어진 유화용액에 생분해성 고분자 1.5 ∼ 18 %와 사이토카인류, 항생제 및 이들의 혼합물 중에서 선택된 생리활성물질 0.0001 ∼ 80 %가 혼합되어 있는 혼합용액을 몰드(mold)에 투입하여 유화동결건조하는 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법.The emulsification solution of water and organic solvent is emulsified by adding a mixed solution containing 1.5-18% of biodegradable polymer and 0.0001-80% of bioactive substances selected from cytokines, antibiotics and mixtures thereof into a mold. A method for producing a porous, biodegradable artificial organ that sustains releasing physiologically active substances, characterized by lyophilization. 제 1 항에 있어서, 상기 생분해성 고분자는 폴리락트산, 폴리글리콜산, 젖산-글리콜산 공중합체, 알부민, 콜라겐, 젤라틴, 피브리노오겐, 카제인, 피브린, 헤모글로빈, 트란스페린, 키틴, 키토산, 하이아루로닉산, 헤파린, 콘드로이틴, 케라틴 서페이트, 알긴산, 전분, 데스트린, 덱스트란, 구연산, 폴리히드록시뷰티르산, 폴리카프로락톤, 폴리안하드라이드 및 폴리알킬시아노아크릴레이트 중에서 선택된 1 종 이상인 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법.According to claim 1, wherein the biodegradable polymer is polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, albumin, collagen, gelatin, fibrinogen, casein, fibrin, hemoglobin, transferrin, chitin, chitosan, high At least one selected from aruronic acid, heparin, chondroitin, keratin sulfate, alginic acid, starch, destrin, dextran, citric acid, polyhydroxybutyric acid, polycaprolactone, polyanhydride and polyalkylcyanoacrylate A method for producing a porous, biodegradable artificial organ that sustains releasing a physiologically active substance. 제 1 항에 있어서, 상기 유화용액은 유기용매 30 ∼ 90 중량%와 물 10 ∼ 70 중량%로 구성된 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the emulsion solution comprises 30 to 90% by weight of an organic solvent and 10 to 70% by weight of water. 제 1 항 또는 제 3 항에 있어서, 상기 유기용매는 아세토니트릴, 디클로로메탄, 클로로포름, 테트라히드로퓨란, 디옥산 및 메틸렌클로라이드 중에서 선택된 1 종 이상인 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1 or 3, wherein the organic solvent is at least one selected from acetonitrile, dichloromethane, chloroform, tetrahydrofuran, dioxane and methylene chloride, porous and biodegradable to sustain the bioactive substance Method of manufacturing sex artificial organs. 제 1 항에 있어서, 상기 유화동결건조는 -35 ℃ 이하로 동결하고 건조하는 공정인 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the emulsification freeze drying is a process of freezing and drying at −35 ° C. or lower. 제 1 항에 있어서, 상기 몰드(mold)는 테프론, 폴리에틸렌 및 초고분자량 폴리에틸렌 중에서 선택된 1종 이상의 재질인 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the mold is one or more materials selected from Teflon, polyethylene, and ultrahigh molecular weight polyethylene. 제 1 항에 있어서, 상기 사이토카인류는 혈소판추출성장인자(platelet derived growth factor, PDGF), 전환성장인자(transforming growth factor, TGF),상피성장인자(epidermal growth factor, EGF), 인슐린성성장인자(insulin-like growth factor, IGF), 섬유아세모성장인자(acidic and basic fibroblast growth factor, aFGF, bFGF), 혈관내피세포 성장인자(vascular endothelial growth factor, VEGF), 신경성장인자(nerve growth factor, NGF), 6 CKINE, 액티빈 A(activin A), 암피레귤린(amphiregulin), 안지오제인(angiogenin), 베타셀룰린(betacellul-in), 뇌추출신경형성인자(brain-derived neurotropic factor, BNDF), 모양체성장인자(ciliary neurotrophin factor, CNTF), 사이토카인유도뇌형성인자-1(cytokine-induced neutrophil chemoattractant-1), β-혈관내피세포형성인자(β-endothelial cell growth factor, β-ECGF), 상피세포활성인자-78(epithelial neutrophil activating peptide-78, ENA-78), 헤파린부착상피세포성장인자(heparin-binding epidermal growth factor-like growth factor, HB-EGF), 섬유아세포성장인자 4 ∼ 9(fibroblast growth factor 4 ∼ 9, FGF 4 ∼ 9), 교아세포뇌형성인자(glial cell line-devived neutrotrophic factor, GDNF), GLY-HIS-LYS, 육아세포자수인자(granulocyte colony stimulating factor, G-CSF), 간세포성장인자(hepaocyte growth factor, HGF), 각질세포성장인자(keratinocy-te growth factor, KGF), 뉴트로트로핀(neutrotrophin, NT), 태반추출성장인자(placenta growth fact-or, PIGF), 줄기세포인자(stem cell factor, SCF), 종양괴사인자(tumor necrosis factor, TNF) 중에서 선택된 1 종 이상인 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the cytokines are platelet derived growth factor (PDGF), transforming growth factor (TGF), epidermal growth factor (EGF), insulin growth factor (insulin-like growth factor, IGF), acidic and basic fibroblast growth factor (aFGF, bFGF), vascular endothelial growth factor (VEGF), nerve growth factor (nerve growth factor, NGF), 6 CKINE, activin A, amphiregulin, angiogenin, betacellul-in, brain-derived neurotropic factor, BNDF ), Ciliary neurotrophin factor (CNTF), cytokine-induced neutrophil chemoattractant-1, and β-endothelial cell growth factor (β-ECGF) , Epithelial cell activator-78 (epithelial neutrophil activating peptide-78, ENA-78), heparin Heparin-binding epidermal growth factor-like growth factor (HB-EGF), fibroblast growth factor 4-9 (FGF 4-9), glioblastoma cell growth factor (glial cell) line-devived neutrotrophic factor (GDNF), GLY-HIS-LYS, granulocyte colony stimulating factor (G-CSF), hepaocyte growth factor (HGF), keratinocyte growth factor (keratinocy-te growth) factor, KGF), neutrotrophin (NT), placenta growth fact-or (PIGF), stem cell factor (SCF), tumor necrosis factor (TNF) Method for producing a porous, biodegradable artificial organs for sustained release of the bioactive material, characterized in that at least one selected. 제 1 항에 있어서, 상기 항생제는 베타-락탐(beta-lactam), 아미노글리코시드(aminoglycoside), 페니실린, 겐타마이신, 카나야신, 암피실린, 폴리믹신-B(polymyxin-B), 암포테리신-B(amphotericin-B), 아제트레오남(aztreonam), 세팔로스포린(cephalospo-rins), 클로로암페니콜(chloramphenicol), 퓨지단스(fusidans), 린코사미드(lincosamides), 마크로리드(macrolides), 메트로니다졸(metronidazole), 니트로-휴란토인(nitro-furantoin), 임페넴/실라스틴(imipenem/cilastin), 퀴놀론계(quinolones), 리팜핀(rifampin), 폴리엔(polyenes), 테트라사이클린(teracycline), 설포나미드(sulfonamides), 트리메토프림(trimethoprim), 반코마이신(vancomycin), 테이코플라닌(teicoplanin), 이미다졸(imidazol-es) 및 에리스로마이신(erythromycin) 중에서 선택된 1 종 이상인 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the antibiotic is beta-lactam, aminoglycoside, penicillin, gentamycin, kanayacin, ampicillin, polymyxin-B (polymyxin-B), amphotericin-B (amphotericin-B), aztreonam, cephalospo-rins, chloroamphenicol, fusidans, lincosamides, macrolides, Metronidazole, nitro-furantoin, impenem / cilastin, quinolones, rifampin, polyenes, tetracycline, snow Biological activity characterized in that at least one selected from sulfonamides, trimethoprim, tricomopin (vancomycin), teicoplanin (teicoplanin), imidazole (imidazol-es) and erythromycin (erythromycin) Method for producing porous, biodegradable artificial organs that sustain the release of substances. 제 1 항의 제조방법에 의해 제조된 것을 특징으로 하는 생리활성물질을 서방화하는 다공성·생분해성 인공장기.A porous, biodegradable artificial organ which sustains physiologically active substances, which is prepared by the method of claim 1.
KR1020000013700A 2000-03-17 2000-03-17 Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods KR100358080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000013700A KR100358080B1 (en) 2000-03-17 2000-03-17 Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000013700A KR100358080B1 (en) 2000-03-17 2000-03-17 Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods

Publications (2)

Publication Number Publication Date
KR20010091721A true KR20010091721A (en) 2001-10-23
KR100358080B1 KR100358080B1 (en) 2002-10-25

Family

ID=19656291

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000013700A KR100358080B1 (en) 2000-03-17 2000-03-17 Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods

Country Status (1)

Country Link
KR (1) KR100358080B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392140B1 (en) * 2000-08-16 2003-07-22 성열보 Antibiotic-loaded cement spacer manufacturing method
KR101132732B1 (en) * 2008-11-26 2012-04-06 한국과학기술연구원 Intelligent porous biodegradable polymer scaffolds for in situ tissue regeneration and method for the preparation thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795221B1 (en) 2006-05-19 2008-01-17 한국화학연구원 Heparin coated liposomes containing Amphotericin B and preparation method of the same
KR101451011B1 (en) 2012-04-24 2014-10-14 서울대학교산학협력단 A breast implant for controlled drug release and a preparation method thereof
KR102002075B1 (en) * 2017-07-06 2019-07-22 (주)큐라움 A method for fabricating a bioactive membrane using spin coating technology and freeze-drying technology, and bioactive membranes fabricated by the method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE202971T1 (en) * 1994-09-23 2001-07-15 Impra Inc CARBON VASCULAR TRANSPLANT AND PRODUCTION METHOD
KR100201874B1 (en) * 1997-04-21 1999-06-15 이서봉 An artificial organ having a porous and biodegradable character and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392140B1 (en) * 2000-08-16 2003-07-22 성열보 Antibiotic-loaded cement spacer manufacturing method
KR101132732B1 (en) * 2008-11-26 2012-04-06 한국과학기술연구원 Intelligent porous biodegradable polymer scaffolds for in situ tissue regeneration and method for the preparation thereof

Also Published As

Publication number Publication date
KR100358080B1 (en) 2002-10-25

Similar Documents

Publication Publication Date Title
CN109913400B (en) Artificial tissue precursors and methods for making same
Fornasari et al. Natural-based biomaterials for peripheral nerve injury repair
KR100260672B1 (en) Polymeric compositions useful as controlled release implants
Arpornmaeklong et al. Growth and differentiation of mouse osteoblasts on chitosan–collagen sponges
Jansen et al. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering
AU704943B2 (en) Device for delivery of substances and methods of use thereof
US7101857B2 (en) Crosslinkable biological material and medical uses
CN105641753B (en) A kind of 3D printing biodegradable stent of the achievable blood vessel transfer of compound rhBMP-2
US20040126405A1 (en) Engineered scaffolds for promoting growth of cells
DK2793962T3 (en) PROCEDURE FOR MODIFYING THE SURFACE MORPHOLOGY OF A MEDICAL DEVICE
US20130177623A1 (en) Preparation Rich in Growth Factor-Based Fibrous Matrices for Tissue Engeering, Growth Factor Delivery, and Wound Healling
KR20190009834A (en) Injectable, pore-forming hydrogels for materials-based cell therapies
JP2008517660A (en) Hollow and porous orthopedic or dental implants for delivering biological agents
JP6118905B2 (en) New scaffold for cardiac repair patches
Rao et al. A multi-walled silk fibroin/silk sericin nerve conduit coated with poly (lactic-co-glycolic acid) sheath for peripheral nerve regeneration
US20090136553A1 (en) Triggerably dissolvable hollow fibers for controlled delivery
Chang The effect of pulse-released nerve growth factor from genipin-crosslinked gelatin in Schwann cell–seeded polycaprolactone conduits on large-gap peripheral nerve regeneration
EP3205349A1 (en) A method of producing native components, such as growth factors or extracellular matrix proteins, through cell culturing of tissue samples for tissue repair
KR20090075503A (en) A method for manufacturing biodegradable porous hybrid scaffolds and artificial organ
KR100358080B1 (en) Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods
KR100482651B1 (en) Tissue Engineered Natural/Synthetic Hybrid Scaffolds and its Manufactory Methods
KR0165642B1 (en) Biodegradable membranes for implanting and process for the preparation thereof
JP2005211477A (en) Support for regenerative medicine
Madigan et al. Spinal cord injury
WO2001038428A1 (en) Microporous polymer matrices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee