KR100201874B1 - An artificial organ having a porous and biodegradable character and its manufacturing method - Google Patents

An artificial organ having a porous and biodegradable character and its manufacturing method Download PDF

Info

Publication number
KR100201874B1
KR100201874B1 KR1019970014691A KR19970014691A KR100201874B1 KR 100201874 B1 KR100201874 B1 KR 100201874B1 KR 1019970014691 A KR1019970014691 A KR 1019970014691A KR 19970014691 A KR19970014691 A KR 19970014691A KR 100201874 B1 KR100201874 B1 KR 100201874B1
Authority
KR
South Korea
Prior art keywords
porous
biodegradable
acid
biodegradable polymer
mold
Prior art date
Application number
KR1019970014691A
Other languages
Korean (ko)
Other versions
KR19980077531A (en
Inventor
이해방
강길선
이진환
전주형
조진철
Original Assignee
이서봉
재단법인한국화학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이서봉, 재단법인한국화학연구소 filed Critical 이서봉
Priority to KR1019970014691A priority Critical patent/KR100201874B1/en
Publication of KR19980077531A publication Critical patent/KR19980077531A/en
Application granted granted Critical
Publication of KR100201874B1 publication Critical patent/KR100201874B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/225Fibrin; Fibrinogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive

Abstract

본 발명은 다공성·생분해성 인공장기와 이의 제조방법에 관한 것으로서, 더욱 상세하게는 생분해성 고분자를 요구되는 형태의 몰드내에서 유화동결건조시켜 제조한 균일 구경분포를 가지는 다공질체가 인체내의 혈관내피세포 또는 피부 조직 세포 등의 부착 및 성장에 용이하고, 세포의 성장이 완결된 후에는 자연적으로 생분해되어 인체에 흡수되는 특성이 있어 인공장기에의 응용 등 산업적으로 유용한 다공성·생분해성 인공장기와 이의 제조방법에 관한 것이다.The present invention relates to a porous and biodegradable artificial organs and a method of manufacturing the same, and more particularly, a porous body having a uniform diameter distribution prepared by emulsion freeze-drying a biodegradable polymer in a mold of the required form, vascular endothelial cells in the human body Or, it is easy to attach and grow skin tissue cells, and after the growth of cells is completed, it is naturally biodegradable and absorbed by the human body. It is about a method.

Description

다공성·생분해성 인공장기와 이의 제조방법Porous and biodegradable artificial organs and preparation method thereof

본 발명은 다공성·생분해성 인공장기와 이의 제조방법에 관한 것으로서, 더욱 상세하게는 생분해성 고분자를 요구되는 형태의 몰드내에서 유화동결건조시켜 제조한 균일 구경분포를 가지는 다공질체가 인체내의 혈관내피세포 또는 피부 조직 세포 등의 부착 및 성장에 용이하고, 세포의 성장이 완결된 후에는 자연적으로 생분해되어 인체에 흡수되는 특성이 있어 인공장기에의 응용 등 산업적으로 유용한 다공성·생분해성 인공장기와 이의 제조방법에 관한 것이다.The present invention relates to a porous and biodegradable artificial organs and a method of manufacturing the same, and more particularly, a porous body having a uniform diameter distribution prepared by emulsion freeze-drying a biodegradable polymer in a mold of the required form, vascular endothelial cells in the human body Or, it is easy to attach and grow skin tissue cells, and after the growth of cells is completed, it is naturally biodegradable and absorbed by the human body. It is about a method.

인공장기중 인공혈관 개발에 특히 연구가 활발히 진행되고 있는데, 일반적으로 동맥경화, 협심증 및 맥류와 같은 혈관순환기에 발병되는 질병은 대체적으로 수술이나 약리적 치유가 불가능한 경우가 대부분으로 이러한 경우 인공혈관으로 대체하는 시술이 널리 행해지고 있다. 이러한 인공혈관의 재료로는 초창기에는 금, 백금 등의 금속이 응용되었으나, 고분자재료가 개발됨에 따라서 보다 손쉽게 응용이 가능하게 되었다. 1950년도 한국전쟁에서 부터 초창기에 시술이 시도된 인공혈관 재료로는 나일론 또는 아크릴로니트릴 계통의 공합체가 응요되었고, 현재에는 폴리에틸렌테레프탈레이트(PET, Dacron)와 폴리테트라플루오르에틸렌(PTFE, Gore Tex)의 두가지 고분자재료가 주로 쓰여 왔다.In particular, research is being actively conducted on the development of artificial blood vessels in artificial organs. In general, diseases caused by vascular circulatory diseases such as arteriosclerosis, angina pectoris, and varicose veins are generally impossible to perform surgery or pharmacological healing. The procedure to do is widely performed. As an artificial blood vessel material, metals such as gold and platinum were used in the early stages, but as polymer materials were developed, the application of the artificial blood vessels became easier. In the early 1950s, the artificial blood vessels that had been attempted were coagulated with nylon or acrylonitrile. Currently, polyethylene terephthalate (PET, Dacron) and polytetrafluoroethylene (PTFE, Gore Tex) were applied. ) Two polymer materials have been mainly used.

이러한 고분자재료가 인공혈관을 비롯한 인공장기에 응용되기 위해서는 인체내 이식되어 생체거부 반응이 없어야 한다. 그리고, 인공혈관으로 사용되기 위해서는 혈관내벽에서 혈전, 색전이 생성되지 않아야 하며, 끊임없는 수축·팽창작용을 통한 혈관내로부터의 상당한 압력이 견딜 수 있어야 함은 물론이고 흐르는 혈류에도 견딜 수 있는 유연성과 기계적·물리적 특성을 지녀야 한다.In order to be applied to artificial organs such as artificial blood vessels, such polymer materials should be implanted in the human body and there should be no bio-rejection reaction. In addition, in order to be used as an artificial blood vessel, blood clots and embolisms must not be generated in the inner wall of blood vessels, and enduring contraction / expansion must be able to withstand considerable pressure from the blood vessels as well as flexibility to withstand the flowing blood flow. It must have mechanical and physical properties.

현재 상용화 되어있는 PET와 PTFE 재료의 인공혈관은 직경 6㎜이상의 대구경일 수 밖에 없는데, 그 이유는 PET와 PTFE 재료 그 자체가 혈전 및 색전을 쉽게 유발하기 때문이다. 또한, PET와 PTFE는 비생분해성이기 때문에 생체내에서 계속 남아 축적되는 문제점이 있다.The artificial blood vessels of PET and PTFE materials that are currently commercialized can only be large diameters of 6 mm or more because PET and PTFE materials themselves easily cause blood clots and embolism. In addition, since PET and PTFE are non-biodegradable, there is a problem of remaining and accumulating in vivo.

이에, 생체내에 축적되지 않고 일정기간이 지나면 생분해 될 수 있는 생분해성 고분자를 이용한 다공성 튜브를 제작하게 되었는 바[D. J. Mooney, C. Breuer, K. McNamara, J. P. Vacanti, and R. Langer, Tissue Engineering, 1(2), 107~118 (1995)], 이들의 방법을 개략적으로 설명하면 다음과 같다.As a result, a porous tube using a biodegradable polymer that can be biodegraded after a certain period of time without accumulating in vivo has been manufactured [D. J. Mooney, C. Breuer, K. McNamara, J. P. Vacanti, and R. Langer, Tissue Engineering, 1 (2), 107-118 (1995)], and their methods are outlined as follows.

우선 생분해성 고분자를 다공성사이트로 만들기 위해 250㎛ 크기의 소금단결정과 생분해성 고분자 용액을 혼합하여 원하는 두께로 성형한 후, 물속에서 소금을 녹여내어 고분자 시이트 중에 세공(細孔)이 생성되게 한다. 이렇게 제조된 다공성 시이트를 건조한 후에 원하는 구경의 원통형으로 말아서 양말단을 접착제로 접착하여 다공성 튜브형태로 제작한다.First, in order to make the biodegradable polymer into a porous site, a 250 µm salt single crystal and a biodegradable polymer solution are mixed and molded to a desired thickness, and then salt is dissolved in water to form pores in the polymer sheet. The porous sheet thus prepared is dried and then rolled into a cylindrical shape having a desired diameter to bond the sock end with an adhesive to produce a porous tube.

이러한 제조방법에 의해 제작된 튜브형의 다공성·생분해성 인공혈관은 소금 단결정의 크기분포가 일정치 못하기 때문에 생성된 세공의 크기분포가 아주 넓고, 물로 소금을 녹여내어 건조시키는 과정에서 세공(細孔)구조가 많이 분리되는 문제가 있으며, 특히 다공성 시이트를 말아서 양말단을 접착제로 접착하여 튜브형태로 제작하기 때문에 접착면의 기계적·화학적 물성이 변화되는 문제가 있다.The tubular porous and biodegradable artificial blood vessels produced by this manufacturing method have a very large size distribution of the pore size due to the non-uniform size distribution of the salt single crystal, and the pores in the process of dissolving salt with water and drying. There is a problem that the structure is separated a lot, especially the rolled porous sheet is bonded to the end of the socks with an adhesive to produce a tube form, there is a problem that the mechanical and chemical properties of the adhesive surface is changed.

이상에서 살펴본 바와 같이 종래의 비생분해성 고분자로 만든 인공혈관의 경우, 이식 후 영원히 물속에 남을 뿐만 아니라 대구경이어서 인공혈관으로의 응용에 한계가 있다. 그리고 종래의 생분해성 고분자로 만든 인공혈관의 경우, 튜브형태로 제작시 편평한 스폰지 형태의 것을 말아 제조하였기 때문에 양 말단에 이음새가 생기고 세공의 제조시 이들의 크기 또는 분포의 조절이 용이하지 않은 문제가 있었다.As described above, in the case of artificial blood vessels made of conventional non-biodegradable polymers, there are limitations in the application to artificial blood vessels because they are large diameters and remain in the water forever after transplantation. In the case of artificial blood vessels made of conventional biodegradable polymers, the flat sponges are rolled up when manufactured in the form of tubes, so that seams are formed at both ends, and the size or distribution of pores is not easily controlled. there was.

본 발명에서는 인체에 이식되면 일정기간 동안에 생분해가 일어나는 생분해성 고분자재료를 이용하고, 요구되는 형태의 몰드에 생분해성 고분자를 용해시킨 용액과 이들의 비상용성인 액체를 혼합한 유화용액을 채워 동결시킨 후 이를 건조 하는 이른바, 유화동결건조법을 이용하여 다공성·생분해성 인공장기를 제작하므로써 본 발명을 완성하였다.In the present invention, using a biodegradable polymer material that biodegradation occurs for a certain period of time when implanted in the human body, and filled with an emulsion solution containing a solution in which the biodegradable polymer is dissolved in a mold of the required form and their incompatible liquid and frozen The present invention has been completed by fabricating a porous and biodegradable artificial organ using a so-called emulsification freeze drying method of drying this.

따라서, 본 발명은 생체 적응력이 우수하고 일정기간이 경과하면 자연적으로 생분해되어 인체에 흡수되는 인공장기와 이를 제작하는 방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide an artificial organ that is excellent in bioadaptability and is naturally biodegraded and absorbed by the human body after a certain period of time, and a method of manufacturing the same.

제1도는 튜브형태의 인공혈관을 제작하기 위한 몰드의 사진이고,1 is a photograph of a mold for producing an artificial blood vessel in the form of a tube,

제2도는 본 발명의 제조방법에 의해 제작된 다공성·생분해성 인공혈관의 사진이고,2 is a photograph of a porous biodegradable artificial blood vessel produced by the manufacturing method of the present invention,

제3도는 본 발명에서 제작된 다공성·생분해성 인공혈관의 전자현미경자신(×600)이다.3 is an electron microscope (× 600) of a porous biodegradable artificial blood vessel manufactured in the present invention.

본 발명은 몰드(mold)에 생분해성 고분자, 유기용매 및 물로 이루어진 유화 용액을 투입하여 유화동결건조하는 다공성·생분해성 인공장기의 제조방법을 그 특징으로 한다.The present invention is characterized by a method for producing a porous, biodegradable artificial organ which is emulsified and freeze-dried by putting an emulsion solution composed of a biodegradable polymer, an organic solvent and water into a mold.

또한, 상기와 같은 제조방법에 의해 제조된 다공성·생분해성 인공장기를 포함하며, 이러한 인공장기로는 인공혈관, 인공간 등 세포조직이 회복될 수 있는 신체장기라면 모두 적용될 수 있다.In addition, it includes a porous, biodegradable artificial organs prepared by the manufacturing method as described above, any artificial organs can be applied as long as the organs, such as artificial blood vessels, phosphorus space can be recovered.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 생분해성 고분자를 재료로 하는 유화동결건조에 의해 제조된 인공장기와 이의 제조방법에 관한 것으로서 인공장기는 일정크기분포의 다공도를 가지고 있어 조직세포의 성장 및 회복이 가능하고, 또한 일정기간이 경과하면 생체내에서 자연적으로 분해 흡수되어 인체에 축적될 우려가 전혀 없다.The present invention relates to an artificial organ prepared by emulsification freeze drying of a biodegradable polymer and a method of manufacturing the same. The artificial organ has a certain size distribution porosity, which enables the growth and recovery of tissue cells, and also for a certain period of time. When this elapses, there is no fear of being naturally decomposed and absorbed in vivo and accumulating in the human body.

본 발명에 따른 인공장기의 제조과정을 보다 구체적으로 설명하면 다음과 같다. 즉, 유기용매 30~90 중량%와 물 10~70 중량%를 섞은 유화용액에 생분해성 고분자를 1.5~18%농도로 함유시킨 혼합용액을 초음파 또는 균질기 등을 이용하여 완전유화용액으로 만든다. 이 완전유화용액을 곧바로 일정 형태의 몰드에 넣어 동결건조시켜 다공성·생분해성 인공장기를 제조한다.Hereinafter, the manufacturing process of the artificial organ according to the present invention will be described in detail. That is, a mixed solution containing 1.5 to 18% of a biodegradable polymer in an emulsion solution containing 30 to 90% by weight of an organic solvent and 10 to 70% by weight of water is made into a fully emulsified solution using an ultrasonic or homogenizer. The complete emulsified solution is immediately put into a mold of a certain type and lyophilized to prepare a porous and biodegradable artificial organ.

본 발명에 따른 다공성·생분해성 인공장기는 스폰지 형태의 생분해성 고분자로 이루어진 것으로서, 이는 인체내에 이식되면 가수분해에 의해 서서히 생분해되면서 인체에 흡수된다. 따라서, 본 발명의 특징은 생분해성 고분자의 선택에 있으며, 본 발명에서 사용할 수 있는 생분해성 고분자는 인체에 무해하고 원하는 일정기간내에 생분해 될 수 있는 특성을 가져야한다.The porous biodegradable artificial organ according to the present invention is composed of a biodegradable polymer in the form of a sponge, which is slowly biodegraded by hydrolysis and absorbed into the human body when implanted into the human body. Therefore, a feature of the present invention is in the selection of biodegradable polymers, the biodegradable polymers that can be used in the present invention should be harmless to the human body and have properties that can be biodegraded within a desired period of time.

상기와 같은 특성을 지닌 생분해성 고분자로는 알부민(albumin), 콜라겐(collagen), 젤라틴(gelatin), 피브리노겐(fibrinogen), 카제인(casein), 피브린(fibrin), 헤모글로빈(hemoglobin), 트란스페린(transferrin), 키틴(chitin), 키토산(chitosan), 하이아루로닉산(hyaluronic acid), 헤파린(heparin), 콘드로이틴(chondroitin), 케라틴 설페이트(keratin sulfate), 알긴산(alginic acid), 전분, 덱스트린, 덱스트란, 구연산, 폴리락트산, 폴리글리콜산, 젖산-글리콜산 공중합체, 폴리히드록시뷰티릭산(polyhydrozybutyric acid),폴리카프로락톤(polycaprolactone),폴리안하이드라이드(polyanhydride) 및 폴리알킬시아노 아크릴레이트(polyalkylcyano acrylate) 중에서 선택된 1종 이상의 것을 사용한다. 이들 생분해성 고분자는 가수분해 및 인체내의 여러효소에 의해 인체내에서 일정기간이 경과하면 자연 생분해하는 것으로 밝혀져 있다[Langer. R Vacanti J. P., Science 260, 920, 1993].Biodegradable polymers having such characteristics include albumin, collagen, gelatin, fibrinogen, casein, fibrin, hemoglobin, and transferrin. ), Chitin, chitosan, hyaluronic acid, heparin, chondroitin, keratin sulfate, alginic acid, starch, dextrin, dextran , Citric acid, polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polyhydroxyzybutyric acid, polycaprolactone, polyanhydride and polyalkylcyano acrylate acrylate) at least one selected from. These biodegradable polymers have been found to be naturally biodegradable after a certain period of time in the human body by hydrolysis and various enzymes in the human body [Langer. R Vacanti J. P., Science 260, 920, 1993].

또한, 본 발명의 주안점인 유화동결건조법(Emulsifying Freeze Drying Method)을 수행하기 위해서는 도 1과 같은 튜브형의 인공혈관 형태의 몰드가 필요하다. 몰드는 테프론(teflon), 폴리에틸렌, 초고분자량 폴리에틸렌 등의 재질로 제작되어지며, 인공장기의 형태에 따라 다양한 변화도 가능하다. 다만 이때 유의할 점은 유화상태의 생분해성 고분자가 부착되지 않아야 한다는 점이다. 일례로, 몰드의 재질을 스테일레스스틸, 구리, 알루미늄, 폴리메틸메타아크릴레이트, 폴리카보네이트 등의 것으로 제작하였을 때에는 이들이 생분해성 고분자와 부착되는 성질 때문에 다공성형태의 생분해성 고분자가 강하게 접착되어 몰드로부터 쉽게 분리가 되지 않는다.In addition, in order to perform the emulsifying freeze drying method (Emulsifying Freeze Drying Method) which is the main point of the present invention, a tubular artificial blood vessel type mold as shown in FIG. 1 is required. The mold is made of materials such as teflon, polyethylene, ultra high molecular weight polyethylene, and various changes are possible depending on the shape of the artificial organ. It should be noted, however, that the biodegradable polymer in the emulsified state should not be attached. For example, when the material of the mold is made of stainless steel, copper, aluminum, polymethyl methacrylate, polycarbonate, etc., the biodegradable polymer in the porous form is strongly adhered from the mold due to the property of attaching to the biodegradable polymer. It is not easily separated.

본 발명에서 사용되는 유화용액은 유기용매와 물로 구성되어 있고, 바람직하기로는 유기용매 30~90 중량%와 물 10~70 중량%로 이루어지는 것이다.The emulsion solution used in the present invention is composed of an organic solvent and water, preferably consisting of 30 to 90% by weight of the organic solvent and 10 to 70% by weight of water.

상기와 같은 조성으로 구성된 유화용액에 상기한 생분해성 고분자를 용해시키는데, 생분해성 고분자를 유기용매와 물이 혼합되어 있는 유화용액에 용해시키거나, 유기용매에 용해시킨 후 물을 첨가하거나, 또는 물에 용해시킨 후 유기용매를 첨가시킬 수도 있다. 생분해성 고분자의 용해방법이나 유기용매의 선택은 그 특성 및 상황에 따라 이 분야에서 잘알려져 있는 통상의 방법에 의해 다양화할 수 있다. 예를 들면 젖산-글리콜산 공중합체의 경우에는 유기용매로서 아세토니트릴, 디클로로메탄, 클로로포름, 테트라히드로퓨란, 디옥산, 메틸렌클로라이드 중에서 선택된 것을 사용하는 것이 특히 바람직하다. 상기 유화용액 중에 생분해성 고분자를 0.003~27%농도로 용해시키며, 더욱 바람직하기로는 1.5~18%농도로 용해시킨 것이다. 만약, 그 농도가 1.5%농도 미만이면 생분해성 고분자의 농도가 너무 낮아 다공성의 조직상태가 너무 약하며, 18%농도를 초과하면 다공성의 조직상태가 너무 치밀하여 조직세포의 성장이 방해될 수 있기 때문이다. 생분해성 고분자가 함유된 유화용액을 초음파 또는 균질기 등으로 완전히 유화용액으로 제조한다. 이때, 제조하고자하는 인공장기의 종류에 따라 세공의 크기, 세공 크기분포도, 공극률 등은 다양하게 변화시킬 수 있으며, 이는 사용된 생분해성 고분자, 유기용매 및 물의 조성비율 등을 조절함으로써 가능하다.The biodegradable polymer is dissolved in an emulsion solution having the composition described above, and the biodegradable polymer is dissolved in an emulsion solution in which an organic solvent and water are mixed, or dissolved in an organic solvent and water is added thereto, or water After dissolving in, an organic solvent may be added. The method of dissolving the biodegradable polymer or the selection of the organic solvent can be varied by conventional methods well known in the art depending on the characteristics and circumstances. For example, in the case of lactic acid-glycolic acid copolymer, it is particularly preferable to use one selected from acetonitrile, dichloromethane, chloroform, tetrahydrofuran, dioxane and methylene chloride as an organic solvent. The biodegradable polymer is dissolved in the concentration of 0.003 to 27% in the emulsion solution, and more preferably in the concentration of 1.5 to 18%. If the concentration is less than 1.5%, the biodegradable polymer concentration is too low, so the porous tissue state is too weak. If the concentration exceeds 18%, the porous tissue state is too dense, which may hinder the growth of tissue cells. to be. The emulsion solution containing the biodegradable polymer is completely prepared as an emulsion solution by ultrasonic or homogenizer. In this case, the pore size, pore size distribution, porosity, etc. may be variously changed according to the type of artificial organ to be manufactured, which is possible by controlling the composition ratio of the biodegradable polymer, organic solvent and water used.

이와 같이 제조되어진 생분해성 고분자가 함유된 몰드에 재빨리 부은 다음, 액체질소내에 0.5~1사간, -35℃ 미만의 온도까지 냉동시킨 후, 동결건조기로 건조시킨다. 마지막으로, 건조된 다공질체를 몰드로부터 분리함으로써, 본 발명의 목적인 다공성·생분해성 인공장기가 얻어진다. 또한 본 발명에서 제조되는 인공장기는 인공혈관, 인공요도관, 인공소장, 인공기관지, 인공간, 인공신장, 인공연골 등 조직세포의 성장 및 회복시 가능한 신체장기라면 모두 적용된다.Poured quickly into a mold containing a biodegradable polymer prepared as described above, and then frozen in liquid nitrogen for 0.5 ~ 1 company, to a temperature of less than -35 ℃, and dried by a lyophilizer. Finally, by separating the dried porous body from the mold, a porous biodegradable artificial organ, which is the object of the present invention, is obtained. In addition, the artificial organs manufactured in the present invention are applicable to any organs capable of growing and restoring tissue cells such as artificial blood vessels, artificial urethra, artificial small intestine, artificial bronchus, human space, artificial kidney, and artificial cartilage.

이상에서와 같이 제조된 다공성·생분해성 인공장기는 몰드를 이용하였기 때문에 양옆의 이음새가 없고, 외경 및 내경의 구경, 세공크기, 세공 크기분포도 및 공극률 등은 생분해성 고분자를 포함하는 용액과 물의 비율을 조절함으로써 적절히 조절할 수 있는 장점이 있다. 또한, 인체내에 이식된 다공성·생분해성 인공장기의 생분해 기간은 사용된 생분해성 고분자의 분자량이 클수록 그리고 락타이드(lactide) 및 글리콜라이드(glycolide) 중 어느 한 성분의 분율이 많을수록 길어질 수 있기 때문에 임의로 조절가능하다.The porous and biodegradable artificial organs prepared as described above have no seams on both sides because of the use of molds, and the diameter and diameter of the outer and inner diameters, the pore size, the pore size distribution, and the porosity are the ratios of the solution and water containing the biodegradable polymer. There is an advantage that can be adjusted appropriately by adjusting. In addition, the biodegradation period of the porous and biodegradable artificial organs implanted in the human body may be longer because the larger the molecular weight of the biodegradable polymer used and the larger the fraction of either component of lactide or glycolide, It is adjustable.

이하, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, the present invention is not limited by the Examples.

실시예1Example 1

젖산(lactic acid)과 글리콜산(glycolic acid)을 75 : 25 중량%의 비율로 혼합한 후 170℃, 100rpm에서 4시간동안 촉매(150 ppm, stanous octoate) 존재하에 열중합하여 공중합체를 제조하였다. 제조된 공중합체(이하, PLGA 75라함)에 대하여 겔투과 크로마토그라피(Gel Permeation Chromatography)를 이용하여 분자량을 분석한 결과 110㎏/mol이었다.The copolymer was prepared by mixing lactic acid and glycolic acid (glycolic acid) at a ratio of 75: 25% by weight and thermally polymerizing in the presence of a catalyst (150 ppm, stanous octoate) at 170 ° C. and 100 rpm for 4 hours. The molecular weight of the prepared copolymer (hereinafter referred to as PLGA 75) using gel permeation chromatography (Gel Permeation Chromatography) was 110 kg / mol.

제조된 PLGA 75 0.8g을 8㎖의 메틸렌클로라이드에 골고루 용해시키고, 이 용액을 물과 60 : 40의 비율로 혼합함 후 40w세기인 초음파 혼합기를 사용하여 30초동안 유화용액을 제조하였다. 이 유화용액을 외경 8㎜, 내경 4㎜ 크기와 테프론(teflon)재질의 튜브형 몰드에 재빨리 붓고, -196℃의 액체질소에 담구어 순간적으로 동결시켰다.0.8 g of the prepared PLGA 75 was evenly dissolved in 8 ml of methylene chloride, and this solution was mixed with water in a ratio of 60:40, and then an emulsion solution was prepared for 30 seconds using an ultrasonic mixer of 40w intensity. The emulsion solution was quickly poured into a tubular mold of an outer diameter of 8 mm, an inner diameter of 4 mm and a teflon material, and immersed in liquid nitrogen at -196 ° C to freeze instantly.

이 속에서 하루 방치한 후 동결건조기를 사용하여 -78℃, 0.1 torr의 압력하에서 건조시켰다. 건조된 튜브형의 인공혈관을 몰드에서 분리하면 도 2와 같은 형태의 것이 얻어졌다.After leaving for one day in this, using a lyophilizer was dried under a pressure of -78 ℃, 0.1 torr. Separation of the dried tubular artificial blood vessel from the mold yielded the form as shown in FIG. 2.

이들의 세공크기, 세공크기분포도 및 총 세공면적 등의 물리적 물성을 측정하기 위하여 수은 포로시미터[porosimeter(AutoPoreII, Micromeritrics)]를 사용하여 측정하였고, 이들 다공성의 전자현미경 사진은 도 3에 나타내었다. 본 실시예 1에 의하여 제조되어진 튜브형 다공성 인공혈관의 물성은 표 1에 나타내었다.In order to measure the physical properties such as pore size, pore size distribution and total pore area, a mercury porosimeter (AutoPore II, Micromeritrics) was used to measure the physical properties of these pore electron micrographs. . Physical properties of the tubular porous artificial blood vessel manufactured by Example 1 are shown in Table 1.

[실시예 2]Example 2

실시예 1과 동일한 방법으로 PLGA 75를 중합하였는데, 이 때 30 ppm의 촉매를 첨가하였다. GPC 측정결과 분자령은 370 ㎏/mol이었다. 이 PLGA 75 0.8g을 80㎖의 메틸렌클로라이드에 골고루 용해시키고, 이 용액을 물과 70 : 30의 비율로 혼합후, 초음파혼합기를 사용하여 유화용액을 제조하였다. 이하 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 표 1에 나타내었다.PLGA 75 was polymerized in the same manner as in Example 1, at which time 30 ppm of catalyst was added. As a result of GPC measurement, the molecular age was 370 kg / mol. 0.8 g of PLGA 75 was evenly dissolved in 80 ml of methylene chloride, and the solution was mixed with water in a ratio of 70:30, and an emulsion solution was prepared using an ultrasonic mixer. It was carried out in the same manner as in Example 1 below. As a result, these physical properties are shown in Table 1.

[실시예 3]Example 3

분자량 15㎏/mol의 폴리히드록시뷰티르산(PHB) 0.8g을 8㎖의 클로로포름에 용해하고, 이 용액을 물과 50 : 50의 비율로 혼합한 후 초음파 혼합기를 사용하여 유화용액을 제조하였다. 이하 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 표 1에 나타내었다.0.8 g of polyhydroxybutyric acid (PHB) having a molecular weight of 15 kg / mol was dissolved in 8 ml of chloroform, and the solution was mixed with water in a ratio of 50:50, and an emulsion solution was prepared using an ultrasonic mixer. It was carried out in the same manner as in Example 1 below. As a result, these physical properties are shown in Table 1.

[실시예 4]Example 4

분자량 37㎏/mol의 폴리카프로락톤(PCL) 1.2g을 8㎖의 디옥산에 용해하고, 이 용액을 증류수와 40 : 60의 비율로 혼합한 후, 초음파혼합기를 사용하여 유화용액을 제조하였다. 이하 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 표 1에 나타내었다.1.2 g of polycaprolactone (PCL) having a molecular weight of 37 kg / mol was dissolved in 8 ml of dioxane, the solution was mixed with distilled water at a ratio of 40:60, and an emulsion solution was prepared using an ultrasonic mixer. It was carried out in the same manner as in Example 1 below. As a result, these physical properties are shown in Table 1.

[실시예 5]Example 5

저점도(low viscosity)의 알긴산 1g을 10㎖의 증류수에 용해하고, 이 용액을 디클로로메탄과 50 : 50의 비율로 혼합한 후, 초음파혼합기를 사용하여 유화용액을 제조하였다. 이하 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 표 1에 나타내었다.1 g of low viscosity alginic acid was dissolved in 10 ml of distilled water, the solution was mixed with dichloromethane in a ratio of 50:50, and an emulsion solution was prepared using an ultrasonic mixer. It was carried out in the same manner as in Example 1 below. As a result, these physical properties are shown in Table 1.

[실시예 6]Example 6

글루코오스 6%, 텍스트란 70% 및 구연산 0.06%의 농도를 함유한 수용액을 아세토니트릴과 90 : 10의 비율로 혼합한 다음, 초음파혼합기를 사용하여 유화용액을 제조하였다. 이하 실시예 1과 동일한 방법으로 실시하였다. 그 결과 이들의 물성을 표 1에 나타내었다.An aqueous solution containing 6% glucose, 70% textran, and 0.06% citric acid was mixed with acetonitrile in a ratio of 90:10, and an emulsion solution was prepared using an ultrasonic mixer. It was carried out in the same manner as in Example 1 below. As a result, these physical properties are shown in Table 1.

[비교예][Comparative Example]

상기 실시예 1과 동일한 방법으로 튜브형 다공성 인공혈관을 제조하되, 다만 생분해성 고분자 유기용액과 물의 비율을 10 : 90의 중량비율로 혼합하였다.A tubular porous artificial blood vessel was prepared in the same manner as in Example 1, except that the ratio of the biodegradable polymer organic solution and water was mixed at a weight ratio of 10:90.

Figure kpo00002
Figure kpo00002

상기 결과에 의하면, 본 발명에 따른 다공성·생분해성 인공장기는 평균 세공 크기가 15㎛의 전후의 것이 얻어지나, 비교예에서와 같이 유화용액내 물의 비율이 과량이면 인공장기가 제조되지 않는 바, 이는 공극상태가 이루어져야 할 임계농도이하이기 때문이다.According to the above results, the porous and biodegradable artificial organs according to the present invention have an average pore size of about 15 μm, but when the ratio of water in the emulsion solution is excessive, as in the comparative example, the artificial organs are not manufactured. This is because it is below the critical concentration at which voids must be achieved.

상기한 바와 같이 본 발명의 생분해성 고분자로 이루어진 다공성 인공장기는 적당한 세공크기를 갖고 있어서 혈액과 피부간에 영양액, 산소, 이산화탄소 등의 물질전달이 효과적으로 이루어지고, 또한 이 세공 간의 연결이 생분해성 고분자로되어 있어서 인체내의 혈관내피세포 또는 피부조직세포 등의 부착 및 성장이 용이하며, 이러한 세표의 성장이 완결된 후에는 자연적으로 생분해되어 몸에 흡수되기 때문에 기존의 인공혈관 재료보다 월등히 우수한 장점을 가지고 있다.As described above, the porous artificial organ made of the biodegradable polymer of the present invention has an appropriate pore size, so that material transfer such as nutrient solution, oxygen, and carbon dioxide is effectively carried out between the blood and the skin, and the connection between the pores is a biodegradable polymer. It is easy to attach and grow vascular endothelial cells or skin tissue cells in the human body, and since the growth of these washes is completed, they are naturally biodegradable and absorbed by the body. .

Claims (8)

유기용매 와 물로 이루어진 유화용액과 생분해성 고분자를 몰드(mold)에 투입하여 유화동결건조하는 것을 특징으로 하는 다공성·생분해성 인공장기의 제조방법.A method of producing a porous, biodegradable artificial organ, characterized in that the emulsion freeze-dried by putting an emulsion solution and a biodegradable polymer consisting of an organic solvent and water into a mold (mold). 제1항에 있어서, 상기 생분해성 고분자는 폴리락트산, 폴리글리콜산, 젖산-글리콜산 공중합체, 알부민, 콜라겐, 젤라틴, 피브리노오겐, 카제인, 피브린, 헤모글로빈, 트란스페린, 키틴, 키토산, 하이아루로닉산, 헤파린, 콘드로이틴, 케라틴 설페이트, 알긴산, 전분, 덱스트린, 덱스트란, 구연산, 폴리히드록시뷰티릭산, 폴리카프로락톤, 폴리안하이드라이드 및 폴리알킬시아노아크릴레이트 중에서 선택된 1종 이상의 것임을 특징으로 하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the biodegradable polymer is polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, albumin, collagen, gelatin, fibrinogen, casein, fibrin, hemoglobin, transferrin, chitin, chitosan, high At least one selected from aruronic acid, heparin, chondroitin, keratin sulfate, alginic acid, starch, dextrin, dextran, citric acid, polyhydroxybutyric acid, polycaprolactone, polyanhydride and polyalkylcyanoacrylate Method for producing porous, biodegradable artificial organs. 제1항 또는 제2항에 있어서, 상기 생분해성 고분자는 유화용액중 1.5~18%농도로 함유되어 있는 것을 특징으로 하는 다공성·생분해성 인공장기의 제조방법.The method according to claim 1 or 2, wherein the biodegradable polymer is contained in an emulsion solution at a concentration of 1.5 to 18%. 제1항에 있어서, 상기 유화용액은 유기용매 30~90 중량%와 물 10~70 중량%로 구성된 것을 특징으로 하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the emulsion solution comprises 30 to 90% by weight of an organic solvent and 10 to 70% by weight of water. 제1항 또는 제4항에 있어서, 상기 유기용매는 아세토니트릴, 디클로로메탄, 클로로포름, 테트라히드로퓨란, 디옥산 및 메틸렌클로라이드 중에서 선택된 1종 이상의 것임을 특징으로 하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1 or 4, wherein the organic solvent is at least one selected from acetonitrile, dichloromethane, chloroform, tetrahydrofuran, dioxane, and methylene chloride. 제1항에 있어서, 상기 유화동결건조는 -35℃ 이하로 동결하고 건조하는 공정인 것을 특징으로 하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the freeze-dried emulsion is a process for freezing and drying to less than -35 ° C and dried. 제1항에 있어서, 상기 몰드(mold)는 테프론, 폴리에틸렌 및 초고분자량 폴리에틸렌 중에서 선택된 1종 이상의 재질을 특징으로 하는 다공성·생분해성 인공장기의 제조방법.The method of claim 1, wherein the mold is a method for producing a porous biodegradable artificial organ, characterized in that at least one material selected from Teflon, polyethylene and ultra high molecular weight polyethylene. 제1항의 제조방법에 의해 제조된 것을 특징으로 하는 다공성·생분해성 인공장기.A porous, biodegradable artificial organ, which is prepared by the method of claim 1.
KR1019970014691A 1997-04-21 1997-04-21 An artificial organ having a porous and biodegradable character and its manufacturing method KR100201874B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970014691A KR100201874B1 (en) 1997-04-21 1997-04-21 An artificial organ having a porous and biodegradable character and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970014691A KR100201874B1 (en) 1997-04-21 1997-04-21 An artificial organ having a porous and biodegradable character and its manufacturing method

Publications (2)

Publication Number Publication Date
KR19980077531A KR19980077531A (en) 1998-11-16
KR100201874B1 true KR100201874B1 (en) 1999-06-15

Family

ID=19503403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970014691A KR100201874B1 (en) 1997-04-21 1997-04-21 An artificial organ having a porous and biodegradable character and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100201874B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358080B1 (en) * 2000-03-17 2002-10-25 한국화학연구원 Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods
KR100846311B1 (en) 2006-02-28 2008-07-15 박정극 Porous collagen-hyaluronic acid complex material and method for the preparation thereof
KR20210030617A (en) * 2019-09-10 2021-03-18 주식회사 제네웰 Mold for freeze-drying and method for manufacturing water-soluble polymer ball by using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308549B1 (en) * 1999-04-08 2001-09-24 이진호 Preparation of biodegradable polymer scaffold with uniform 3-dimensional porosity for tissue engineering
KR20010044624A (en) * 2001-03-12 2001-06-05 정재호 A process for preparing the scaffold and tissue engineered cartilage made from the scaffold
KR100932688B1 (en) * 2007-07-06 2009-12-21 한국과학기술연구원 Tubular porous scaffold with double membrane structure for artificial blood vessel and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358080B1 (en) * 2000-03-17 2002-10-25 한국화학연구원 Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods
KR100846311B1 (en) 2006-02-28 2008-07-15 박정극 Porous collagen-hyaluronic acid complex material and method for the preparation thereof
KR20210030617A (en) * 2019-09-10 2021-03-18 주식회사 제네웰 Mold for freeze-drying and method for manufacturing water-soluble polymer ball by using the same
KR102281776B1 (en) * 2019-09-10 2021-07-27 주식회사 제네웰 Mold for freeze-drying and method for manufacturing water-soluble polymer ball by using the same

Also Published As

Publication number Publication date
KR19980077531A (en) 1998-11-16

Similar Documents

Publication Publication Date Title
US6146892A (en) Fibrillar matrices
Ma et al. Synthetic nano‐scale fibrous extracellular matrix
EP1443982B1 (en) Porous polymeric prostheses and methods for making same
KR100932688B1 (en) Tubular porous scaffold with double membrane structure for artificial blood vessel and its manufacturing method
US6712850B2 (en) Porous tissue scaffolds for the repair and regeneration of dermal tissue
Widmer et al. Fabrication of biodegradable polymer scaffolds for tissue engineering
JPS63255068A (en) Implant piece
WO1998024385A1 (en) Artificial blood vessel
EP0195012A1 (en) Implant article and it's use
KR100408458B1 (en) Porous Scaffolds for Tissue Engineering made from the Biodegradable Glycolide/ε-Caprolactone Copolymer
US11896488B2 (en) Reinforced bone scaffold
CN105617459A (en) Preparation method for nano polypyrrole chitin nerve conduit
KR100201874B1 (en) An artificial organ having a porous and biodegradable character and its manufacturing method
KR100942822B1 (en) Scaffolds for tissue regeneration comprising poly-paradioxanone-caprolactone copolymer
KR100288488B1 (en) Fabrication Method of Porous Polymer Scaffolds for Tissue Engneering by Using a Gas Foaming Salt
KR100517097B1 (en) Porous Scaffolds for Tissue Engineering Made from the Biodegradable Lactide/ε-Caprolactone Copolymer
JP3113108B2 (en) Hemostat
KR100358080B1 (en) Microporous and Biodegradable Artificial Organ with Controlled Released Bioactive Molecules and Its Manufacturing Methods
JPH0584292A (en) Artificial blood vessel and production thereof
JP4716092B2 (en) Method for producing protein porous matrix
JP2007007416A (en) Active embolization device
CN108514658A (en) A kind of bionical tubular material
CN116942908B (en) Absorbable biological isolation composite membrane material and preparation method thereof
Budyanto et al. Fabrication and characterization of porous poly (L-lactide)(PLLA) scaffolds using liquid-liquid phase separation
JPH0262264B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130319

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140317

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20150317

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160317

Year of fee payment: 18

EXPY Expiration of term