KR20010091269A - Preparing method of an absorbent for formaldehyde - Google Patents

Preparing method of an absorbent for formaldehyde Download PDF

Info

Publication number
KR20010091269A
KR20010091269A KR1020000012783A KR20000012783A KR20010091269A KR 20010091269 A KR20010091269 A KR 20010091269A KR 1020000012783 A KR1020000012783 A KR 1020000012783A KR 20000012783 A KR20000012783 A KR 20000012783A KR 20010091269 A KR20010091269 A KR 20010091269A
Authority
KR
South Korea
Prior art keywords
formaldehyde
adsorbent
acetylacetone
raw material
ratio
Prior art date
Application number
KR1020000012783A
Other languages
Korean (ko)
Other versions
KR100357344B1 (en
Inventor
임성규
권용목
송주석
Original Assignee
이호경
태경산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이호경, 태경산업 주식회사 filed Critical 이호경
Priority to KR1020000012783A priority Critical patent/KR20010091269A/en
Publication of KR20010091269A publication Critical patent/KR20010091269A/en
Application granted granted Critical
Publication of KR100357344B1 publication Critical patent/KR100357344B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602

Abstract

PURPOSE: A method for manufacturing an adsorbent for selectively adsorbing formaldehyde from flue gas bearing gaseous formaldehyde is provided to effectively meet with international environmental regulations. CONSTITUTION: The adsorbent is manufactured by (i) blending 70-95wt.% of activated white clay, 5-25wt.% of stone powder, 0-5wt.% of activated carbon; (ii) preparing a solution comprising 5-10wt.% of ammonium acetate, 0.1-0.5wt.% of acetylacetone, 0.1wt.% of acetic acid; (iii) mixing above solid material with prepared solution in a ratio of 6:4; (iv) press-forming above mixture into pellet; and then (v) drying the pellet to be moisture content of 10 to 30wt.%.

Description

포름알데히드 흡착제의 제조방법{Preparing method of an absorbent for formaldehyde}Preparation method of formaldehyde adsorbent {Preparing method of an absorbent for formaldehyde}

본 발명은 활성백토와 석분 등의 산성 또는 중성 물질을 주원료로 하고 여기에 활성탄과 소량의 반응물을 첨가하여 포름알데히드를 함유하는 배기가스 중에서 포름알데히드를 선택적으로 화학 및 물리 흡착 제거하는 건식 흡착제의 제조방법에 관한 것이다.The present invention provides a dry adsorbent which selectively forms and removes formaldehyde chemically and physically in an exhaust gas containing formaldehyde by adding activated carbon and a small amount of reactants thereon as an active material and an acidic or neutral substance such as activated clay and stone powder. It is about a method.

고도의 산업화에 의해 발생되는 각종 대기오염물질이 우리의 생활환경에 미치는 피해는 거듭 언급하지 않더라도 잘 인식하고 있는 현실이다. 1992년 리우에서 개최된 유엔환경개발회의(UNCED)에서는 Agenda 21을 채택하여 무역과 환경을 연계시키기 시작하였다. 현재는 각종 생산제품의 생산과정과 제품의 사용 후 처분까지 환경 친화적인 요소가 결여될 경우 업체의 경영에 심각한 어려움에 직면할 수도 있다. 이러한 추세로 볼 때 포름알데히드 가스는 제품의 생산과정에서 많이 발생하여 대기오염은 물론 작업자의 건강에도 심각한 우려가 예상되므로 이에 대한 규제가 필요하게 되었다. 포름알데히드 가스는 페놀수지 등 합성수지제조공업, 염료공업, 섬유공업, 피혁공업, 합판제조공업, 포르말린 제조분야 등 다양한 산업활동에서 발생되고 있다. 이 기체는 무색의 자극성악취를 발생시키고, 가연성 가스로 폭발의 위험이 있다. 인체에 대한 영향으로는 피부노출시 눈, 기관지, 점막에 강한 자극을 주며, 흡입시 식욕부진, 흉부압박감을 동반한다. 그리고 장기간 흡입시 발암의 위험이 있으며, 유럽 등에서는 발암유발물질로 규정하고 있다. 사람에 있어 위해한 영향을 주는 유해가스인 포름알데히드 가스는 우리 나라 대기환경 보전법에서 모든 배출시설에서 20ppm이하로 강력히 규제하고 있다. 또한 포름알데히드 가스는 발생사업체에서 현장인력이 직접 가스에 노출되는 특성상 산업안전과 보건측면에서도 반드시 제거되어야 할 유해악취가스이다.Even if we do not mention the damages of various air pollutants caused by high industrialization to our living environment, we are well aware of it. In 1992, the United Nations Conference on Environment and Development (UNCED) in Rio adopted Agenda 21 and began linking trade with the environment. At present, the company's management may face serious difficulties if there is a lack of environmentally friendly elements such as the production process of various products and disposal after use. In view of this trend, formaldehyde gas is generated in the production process of the product, so serious concerns are expected for air pollution as well as the health of workers. Formaldehyde gas is generated from various industrial activities such as synthetic resin manufacturing industry such as phenol resin, dye industry, textile industry, leather industry, plywood manufacturing industry and formalin manufacturing. This gas produces a colorless irritating odor and is a flammable gas that can explode. The effects on the human body are strong irritation to the eyes, bronchus and mucous membranes when exposed to the skin, and accompanied by anorexia and chest compressions when inhaled. In case of prolonged inhalation, there is a risk of carcinogenesis. Formaldehyde gas, a harmful gas that has a harmful effect on humans, is strongly regulated to less than 20 ppm in all emission facilities under the Korean Air Environment Conservation Act. In addition, formaldehyde gas is a noxious odor gas that must be removed in terms of industrial safety and health due to the fact that field workers are directly exposed to the gas at the generating company.

포름알데히드의 화학적 특성을 살펴보면, 분자량은 30이고 녹는점은 -92℃, 끓는점은 -21℃이며 그 화학구조식은 아래(1)와 같다. 포름알데히드는 상온에서 기체상태이며 무수물은 중합되기 쉬워서 세 분자가 중합되어 트리옥산(2)으로 되기 쉽다. 상업용으로는 포르말린이라 불리는 37수용액 상태로 사용되며 합성용으로 이용될 때는 파라포름알데히드(3)인 고체상 고분자물질로 만들어 이 물질을 가열하여 얻는다.Looking at the chemical properties of formaldehyde, the molecular weight is 30, the melting point is -92 ℃, boiling point is -21 ℃ and the chemical formula is as shown in (1). Formaldehyde is gaseous at room temperature, and anhydrides are easy to polymerize, so that three molecules are polymerized to trioxane (2). Commercially, it is used in 37 aqueous solution called formalin. When it is used for synthesis, it is made of solid polymer of paraformaldehyde (3).

포름알데히드의 화학구조에서와 같이 탄소와 산소의 이중결합을 갖는 물질을 카르보닐 화합물이라 부르며 그 종류로는 알데히드류, 케톤류, 카르복실산류, 아미드류 등 매우 다양하게 존재한다. 이러한 물질들이 공통적으로 갖는 탄소와 산소의 이중결합은 화학반응의 중요한 작용기가 되는데, 상대적으로 탄소가 산소보다 전기적으로 양성을 띠기 때문에 전기적으로 음성인 원소가 존재하는 물질과 쉽게 반응할 수 있다. 이러한 특성을 이용하여 포름알데히드의 화학흡착제거에 응용할 수 있는 몇 가지 반응들을 아래에 나타내었다.As in the chemical structure of formaldehyde, a substance having a double bond of carbon and oxygen is called a carbonyl compound, and various kinds of aldehydes, ketones, carboxylic acids, and amides exist. The double bonds of carbon and oxygen that these materials have in common are important functional groups of chemical reactions. Since carbon is more electrically positive than oxygen, it can easily react with a material having an electrically negative element. Using these properties, some reactions that can be applied to chemisorbing of formaldehyde are shown below.

4NH4Cl + 6CH2O → C6H12N4+ 6H2O + 4HCl4NH 4 Cl + 6CH 2 O → C 6 H 12 N 4 + 6H 2 O + 4HCl

NaHSO3+ CH2O → HOCH2SO3NaNaHSO 3 + CH 2 O → HOCH 2 SO 3 Na

(HOCHRCH2)2NH + CH2O → (HOCHRCH2)2NCH2OH(HOCHRCH 2 ) 2 NH + CH 2 O → (HOCHRCH 2 ) 2 NCH 2 OH

위의 반응들 중에서 포름알데히드 제거에 도입할 수 있는 반응은 우선 반응물과 생성물이 무해한 것이어야 하며, 건식 흡착조건을 만족시키기 위해 약간의 수분만 존재하더라도 기체상태의 포름알데히드와 반응할 수 있어야 하는 조건을 만족시켜야 한다.Among the above reactions, the reactions that can be introduced to formaldehyde removal must first be harmless to the reactants and products, and must be able to react with gaseous formaldehyde even in the presence of a little moisture to satisfy dry adsorption conditions. Must satisfy

현재 포름알데히드 가스를 제거하는 방법은 일반적인 유해가스의 제거기술수준에 불과하며, 포름알데히드 가스를 선택적으로 제거하는 방법은 개발되지 않은 실정이다. 일반적으로 현재 사용되고 있는 가스상 오염물질의 제거방법으로는 흡수법, 흡착법, 연소산화법, 응축법 등이 있다. 가장 많이 사용되는 흡수법은 비재생 습식 공정으로 산화력이 강한 O3, KMnO4, NaCl, ClO2등의 산화제를 흡수용매에 첨가시켜 가스상 물질을 흡수 산화 분해시킨다. 이 처리법은 대체로 흡수탑의 장치에 따라 처리 성능이 좌우되기 때문에 장치 전체를 변경시키지 않으면 새로운 공정을 도입하기 어려우며, 산화제 첨가에 따른 장치의 부식과 흡수액에 의한 폐수발생으로 부가적인 폐수처리 시설이 필요하고 반응 부산물로 환경오염의 문제가 있는 폐기물이 생성되는 등 2차적인 환경오염을 일으킨다. 그 외에 연소산화법, 응축법 등이 있으나, 경제성 및 제거효율의 저조 등의 취약한 문제점을 가지고 있다. 기존의 흡착법은 단순히 활성탄, 제올라이트, 백토 등의 흡착제의 공극을 이용하는 물리흡착에만 의존하기 때문에 제거효율에는 한계를 나타낸다. 그러나 본 발명은 물리-화학흡착의 병행으로 유해악취가스의 완전제거특성을 가지고 있다.At present, the method of removing formaldehyde gas is only a general technology for removing harmful gases, and a method of selectively removing formaldehyde gas has not been developed. Generally, gaseous pollutants that are currently used include absorption, adsorption, combustion oxidation, and condensation. The most widely used absorption method is a non-regenerated wet process, in which oxidizing agents such as O 3 , KMnO 4 , NaCl, and ClO 2 , which are highly oxidizing, are added to an absorption solvent to absorb and decompose gaseous substances. Since the treatment performance is largely dependent on the equipment of the absorption tower, it is difficult to introduce a new process without changing the entire apparatus, and additional wastewater treatment facilities are needed due to the corrosion of the equipment due to the addition of oxidants and the generation of wastewater by the absorbent liquid. Secondary environmental pollution is generated, such as by-products of the reaction that produce wastes with environmental pollution problems. In addition, there is a combustion oxidation method, a condensation method, etc., but there are weak problems such as low economic efficiency and low removal efficiency. Existing adsorption method has a limitation in the removal efficiency because it only depends on the physical adsorption using the pores of the adsorbent such as activated carbon, zeolite, clay. However, the present invention has the characteristic of completely removing the harmful odor gas in parallel with physical-chemical adsorption.

현재의 포름알데히드의 주요 제거 방법으로는 흡수와 흡착법이 있는데 흡수법의 단점은 장치비용의 과다, 2차오염물질 유발, 폐수처리 및 슬러지를 처리해야하는 어려움이 있으며, 흡착법은 흡착제의 물리적 특성을 이용한 물리흡착에 의존하므로 제거효율이 낮은 문제점이 있다. 본 발명은 이러한 흡수법과 흡착법의 단점을 보완 개량하여 물리-화학흡착을 병행하여 포름알데히드 가스를 완전 제거하는 것으로써 포름알데히드 가스를 포집하여 흡착제가 충진된 흡착탑으로 보내어 흡착하는 방식으로 장치 설치가 용이하며 장치비용이 저렴하고 사용되는 흡착제가 저가이며 폐수발생과 2차오염문제를 일으키지 않는다. 또한 흡착이 끝난 포름알데히드 흡착제는 비재생방식으로 매립하는데 매립시 흡착제의 주원료인 활성백토, 석분은 부수적으로 토질의 안정화 및 토양내의 중금속 흡착효과도 있는 환경오염방지 효과를 나타낸다.The main removal methods of formaldehyde are absorption and adsorption methods. The disadvantages of absorption methods include excessive equipment cost, secondary pollutant generation, wastewater treatment and sludge treatment, and the adsorption method uses physical properties of the adsorbent. There is a problem that the removal efficiency is low because it depends on the physical adsorption. The present invention is easy to install the device by supplementing and improving the disadvantages of the absorption method and the adsorption method by completely removing the formaldehyde gas in parallel with physical-chemical adsorption to collect the formaldehyde gas sent to the adsorption tower filled with the adsorbent adsorption. The equipment cost is low and the adsorbents used are low cost and do not cause waste water and secondary pollution. In addition, the formaldehyde adsorbent after the adsorption is landfilled in a non-regenerated manner, and activated clay and stone dust, which are the main raw materials of the adsorbent, are incidentally stabilized in soil and have the effect of adsorbing heavy metals in the soil.

본 발명은 포름알데히드 가스를 효과적으로 제거할 수 있는 건식 흡착제의 제조방법이다.The present invention is a method for producing a dry adsorbent that can effectively remove formaldehyde gas.

본 발명의 포름알데히드 흡착제 제조방법을 상세히 설명하면 다음과 같다. 고체원료비로 활성백토를 70∼95wt, 석분을 5∼25wt, 활성탄을 0∼5wt혼합하고 여기에 아세틸아세톤 수용액(초산암모늄 5∼10wt, 아세틸아세톤 0.1∼0.5wt, 초산 0.1wt)을 제조하여 고체원료와 수용액을 6:4의 비율로 섞은 후 이 혼합물을 압출 성형하여 펠렛트(pellet) 형태의 흡착제를 제조하고 수분이 전체 흡착제 중량비에 대하여 10∼30wt가 되도록 건조한다.The formaldehyde adsorbent preparation method of the present invention will be described in detail as follows. 70 to 95wt of activated clay, 5 to 25wt of stone powder, and 0 to 5wt of activated carbon were mixed in the solid raw material ratio, and acetylacetone aqueous solution (5 to 10wt of ammonium acetate, 0.1 to 0.5wt of acetylacetone, 0.1wt of acetic acid) was prepared. After mixing the raw materials and the aqueous solution in a ratio of 6: 4, the mixture is extruded to prepare pellet adsorbents, and the moisture is dried to 10 to 30 wt% with respect to the total adsorbent weight ratio.

이 포름알데히드 흡착제에 사용되는 활성백토와 석분은 가격이 저렴하여 구입이 용이할 뿐 아니라 성형성이 양호하여 처리방법에 따라 기공 및 비표면적을 향상시킬 수 있어서 보다 용이하게 포름알데히드 가스를 제거할 수 있다. 또한 활성백토는 포름알데히드와 아세틸아세톤의 반응이 활발히 일어날 수 있도록 약산성 조건을 유지시키며, 석분은 흡착제의 성형성과 강도를 강화시킬 뿐 아니라 사용된 흡착제의 매립처리시 토양의 안정화에 도움을 준다.Activated clay and stone powder used in this formaldehyde adsorbent are low in price and easy to purchase, and have good moldability and can improve porosity and specific surface area depending on the treatment method, so that formaldehyde gas can be removed more easily. have. In addition, activated clay maintains weakly acidic conditions so that the reaction between formaldehyde and acetylacetone can be active, and stone powder not only enhances the formability and strength of the adsorbent, but also helps stabilize the soil during the landfill treatment of the used adsorbent.

활성탄은 입상 및 분말 활성탄으로 구분되는데 비표면적이 매우 크며 유기물질 및 중성화합물의 탈취성능이 우수하고 폐수 처리시 중금속 흡착 제거에도 널리 이용된다. 본 발명에서는 포름알데히드 흡착능을 최대화시키기 위해 가격이 저렴하고 흡착속도가 빠른 분말 활성탄을 사용하였다.Activated carbon is divided into granular and powdered activated carbon. It has a large specific surface area, excellent deodorizing performance of organic substances and neutral compounds, and is widely used to remove heavy metals during wastewater treatment. In the present invention, in order to maximize the formaldehyde adsorption capacity, the powder activated carbon was used at low cost and fast adsorption rate.

포름알데히드 제거에 직접적으로 작용하는 아세틸아세톤 수용액은 약산성의 조건에서 암모늄염 존재 시에 포름알데히드와 아세틸아세톤이 반응하는 특성을 이용하여 흡착제에 적용되었으며 화학흡착으로 포름알데히드를 제거해주는 역할을 한다.Acetyl acetone aqueous solution that directly acts to remove formaldehyde is applied to the adsorbent by using the characteristic that formaldehyde and acetylacetone react in the presence of ammonium salt in weakly acidic conditions and serves to remove formaldehyde by chemisorption.

이에 사용되는 화학반응식은 다음과 같다.The chemical reaction formula used is as follows.

이 반응에서 생성되는 3,5-디아세틸-1,4-디히드롤티진은 회수 또는 폐기한다.The 3,5-diacetyl-1,4-dihydrotizinine produced in this reaction is recovered or discarded.

본 발명의 흡착제를 이용한 포름알데히드 가스 제거공정은 포름알데히드 함유가스를 흡착제가 충진된 흡착탑으로 유입시켜 포름알데히드를 흡착 제거하는 방법으로 종래의 처리공정에 비해 처리방법이 간단하고 설비비용이 저렴하면서 효과적으로 포름알데히드를 제거할 수 있는 특징을 갖는다.Formaldehyde gas removal process using the adsorbent of the present invention is a method of adsorbing and removing formaldehyde by flowing the formaldehyde-containing gas into the adsorption tower filled with the adsorbent is simpler than the conventional treatment process, and the equipment cost is low and effective It has the characteristic of removing formaldehyde.

실시예에 앞서 각각의 고체원료에 대한 포름알데히드의 흡착정도를 알기 위해 활성백토와 석분, 활성탄만을 사용하여 포름알데히드 흡착제거실험을 실시하였다. 그 결과 출구가스의 농도가 10ppm 검출되는데 활성백토와 석분은 각각 약 10분, 활성탄은 약 25분이 소요되었다.Prior to the embodiment, to determine the degree of adsorption of formaldehyde on each solid raw material, adsorption and removal experiments of formaldehyde were carried out using only activated clay, stone powder and activated carbon. As a result, the concentration of outlet gas was detected at 10ppm, which took about 10 minutes for activated clay and stone powder and 25 minutes for activated carbon, respectively.

실시예 1.Example 1.

활성백토를 주원료로 하여 석분, 활성탄을 표1에 나타낸 바와 같은 원료구성비율로 혼합하고 여기에 초산암모늄, 아세틸아세톤, 초산을 표1의 원료농도 구성비율로 혼합한 수용액을 고체원료의 2/3만큼 첨가한 후 압출하여 펠렛트 형태로 성형한 포름알데히드 흡착제를 함수율 30로 건조하였다.Using activated clay as the main raw material, stone powder and activated carbon were mixed in the raw material composition ratio as shown in Table 1, and an aqueous solution of ammonium acetate, acetylacetone, and acetic acid was mixed in the raw material concentration composition ratio of Table 1 to 2/3 of the solid raw material. After the addition, the formaldehyde adsorbent, which was extruded and molded into pellets, was dried at a water content of 30.

상기 흡착제 400g을 칼럼(Φ40, L700mm)에 충진하여 입구 포름알데히드 가스 농도를 2,000ppm (희석가스 : N2), 유량 500cc/min., 온도는 실온의 조건에서 흡착제거실험을 실시하였다.400 g of the adsorbent was packed in a column (Φ40, L700mm), and the inlet formaldehyde gas concentration was 2,000 ppm (diluent gas: N 2 ), a flow rate of 500 cc / min.

포름알데히드의 흡착능은 출구가스에서 포름알데히드 10ppm이 검출될 때까지의 흡착지속시간으로 나타내었다.The adsorption capacity of formaldehyde is represented by the adsorption duration until 10 ppm of formaldehyde is detected in the outlet gas.

표1에는 본 실시예에서 제조한 포름알데히드 흡착제의 원료비와 포름알데히드 흡착제의 흡착능을 나타내었다.Table 1 shows the raw material ratio of the formaldehyde adsorbent prepared in this example and the adsorption capacity of the formaldehyde adsorbent.

표1의 결과와 같이 활성백토의 비가 증가할수록 흡착제의 흡착능이 증가하는 것을 알 수 있다. 이는 활성백토 비율의 증가에 의해 산성반응조건이 안정하게 되어 포름알데히드의 제거반응이 더 활발하게 일어나기 때문이다.As shown in Table 1, it can be seen that the adsorption capacity of the adsorbent increases as the ratio of activated clay increases. This is because the acidic reaction conditions are stabilized by the increase of the activated clay ratio, and the removal reaction of formaldehyde occurs more actively.

실시예 1의 원료 구성비에 따른 포름알데히드 흡착능Formaldehyde Adsorption Capacity According to Raw Material Composition of Example 1 실험예Experimental Example 원 료 비 ()Raw material costs () 함수율()Water content () 포름알데히드 10ppm 검출시간(hr)Formaldehyde 10ppm Detection Time (hr) 고체 원료비 (60)Solid Raw Material Costs (60) 아세틸아세톤수용액 원료비 (40)Acetyl Acetone Solution Raw Material Cost (40) 활성백토Activated clay 석분Stone powder 활성탄Activated carbon 초산암모늄Ammonium Acetate 아세틸아세톤Acetylacetone 초산Acetic acid 1One 7070 2525 55 7.57.5 0.30.3 0.10.1 3030 2727 22 8080 1515 55 7.57.5 0.30.3 0.10.1 3030 3131 33 9090 55 55 7.57.5 0.30.3 0.10.1 3030 3434

실시예 2Example 2

실시예 1의 세 번째 실험과 같은 고체원료비로 아세틸아세톤 수용액의 원료비를 조절하여 포름알데히드를 흡착 제거한 결과를 표2에 나타내었다.Table 2 shows the results of adsorbing and removing formaldehyde by adjusting the raw material ratio of the acetylacetone aqueous solution to the solid raw material ratio as in the third experiment of Example 1.

표2에서는 아세틸아세톤 수용액 중의 초산암모늄과 아세틸아세톤의 비율이 높아지면서 흡착제의 흡착능이 증가하는 것을 볼 수 있다. 이는 흡착제 내에 포름알데히드와 반응할 수 있는 반응물 농도의 증가로 인해 흡착제가 더 많은 양의 포름알데히드와 화학 흡착할 수 있기 때문이다.In Table 2, it can be seen that the adsorption capacity of the adsorbent increases as the ratio of ammonium acetate and acetylacetone in the acetylacetone aqueous solution increases. This is because the adsorbent can chemisorb with higher amounts of formaldehyde due to an increase in the concentration of reactants that can react with formaldehyde in the adsorbent.

실시예 2의 원료 구성비에 따른 포름알데히드 흡착능Formaldehyde Adsorption Capacity According to Raw Material Composition of Example 2 실험예Experimental Example 원 료 비 ()Raw material costs () 함수율()Water content () 포름알데히드 10ppm 검출시간(hr)Formaldehyde 10ppm Detection Time (hr) 고체 원료비 (60)Solid Raw Material Costs (60) 아세틸아세톤 수용액원료비 (40)Acetyl Acetone Solution Raw Material Cost (40) 활성백토Activated clay 석분Stone powder 활성탄Activated carbon 초산암모늄Ammonium Acetate 아세틸아세톤Acetylacetone 초산Acetic acid 1One 9090 55 55 5.05.0 0.20.2 0.10.1 3030 2929 22 9090 55 55 7.57.5 0.30.3 0.10.1 3030 3434 33 9090 55 55 10.010.0 0.50.5 0.10.1 3030 4141

실시예 3.Example 3.

실시예 2의 세 번째 실험과 동일한 원료구성비로 제조한 흡착제를 70℃에서 건조하여 전체중량에 대한 함수율을 조절하여 포름알데히드를 흡착 제거한 결과를 표3에 나타내었다.Table 3 shows the results of adsorbing and removing formaldehyde by drying the adsorbent prepared at the same raw material composition as the third experiment of Example 2 at 70 ° C. to adjust the water content to the total weight.

실험결과에서 나타난 바와 같이 흡착제의 함수율이 10∼15wt정도로 유지되면 흡착능이 가장 우수한 것으로 나타났다. 흡착제에 수분이 과다하게 존재하면 흡착제의 비표면적이 줄어들어 흡착대상물질과의 접촉확률이 낮아지므로 흡착능이 떨어지고, 수분이 너무 부족하면 산성 조건을 유지시키는 수소이온의 양이 감소하여 초산암모늄이 이온화되어 암모늄 양이온으로 존재할 확률도 줄어들기 때문에 포름알데히드와 아세틸아세톤의 반응이 활발히 일어나지 못하므로 흡착능이 떨어지는 결과를 볼 수 있다.As shown in the experimental results, the adsorption capacity was the best when the water content of the adsorbent was maintained at about 10-15 wt. Excessive moisture in the adsorbent decreases the specific surface area of the adsorbent, which lowers the probability of contact with the adsorbent material, resulting in poor adsorption capacity. When too much moisture is present, ammonium acetate is ionized by decreasing the amount of hydrogen ions that maintain acidic conditions. Since the probability of the presence of ammonium cations decreases, the reaction between formaldehyde and acetylacetone does not occur actively, resulting in poor adsorption capacity.

실시예 3의 함수율에 따른 포름알데히드 흡착능Formaldehyde Adsorption Capacity According to Water Content of Example 3 실험예Experimental Example 원 료 비 ()Raw material costs () 함수율()Water content () 포름알데히드 10ppm 검출시간 (hr)Formaldehyde 10ppm Detection Time (hr) 고체 원료비 (60)Solid Raw Material Costs (60) 아세틸아세톤 수용액 원료비 (40)Acetyl Acetone Aqueous Solution Raw Material Cost (40) 활성백토Activated clay 석분Stone powder 활성탄Activated carbon 초산암모늄Ammonium acetate 아세틸아세톤Acetylacetone 초산Acetic acid 1One 9090 55 55 7.57.5 0.30.3 0.10.1 3535 2525 22 9090 55 55 7.57.5 0.30.3 0.10.1 3030 3434 33 9090 55 55 7.57.5 0.30.3 0.10.1 2525 4545 44 9090 55 55 7.57.5 0.30.3 0.10.1 1515 5252 55 9090 55 55 7.57.5 0.30.3 0.10.1 1010 5050 66 9090 55 55 7.57.5 0.30.3 0.10.1 55 4141

실시예 4.Example 4.

실시예 3과 동일한 조건에서 고체원료중에 활성탄을 첨가하지 않고 활성백토의 중량비를 95로 증가시킨 후 흡착 제거실험을 실시하여 그 결과를 표 4에 나타내었다.Under the same conditions as in Example 3, the weight ratio of activated clay was increased to 95 without adding activated carbon in the solid raw material, and then the adsorption removal experiment was performed and the results are shown in Table 4.

표 4의 결과와 같이 활성탄을 첨가하지 않은 경우 표3의 결과에 비해 물리흡착효과가 떨어지지만 흡착제의 총 흡착시간에는 큰 변화가 없는 것을 알 수 있다. 이는 포름알데히드 기체가 물리흡착보다는 화학흡착에 유리한 극성 구조를 가지고있는데 기인한다.When the activated carbon is not added as shown in Table 4, the physical adsorption effect is lower than that in Table 3, but the total adsorption time of the adsorbent is not significantly changed. This is due to the fact that formaldehyde gas has a polar structure favoring chemisorption rather than physical adsorption.

실시예 4의 고체원료비에 따른 포름알데히드 흡착능Formaldehyde Adsorption Capacity According to Solid Raw Material Ratio of Example 4 실험예Experimental Example 원 료 비 ()Raw material costs () 함수율()Water content () 포름알데히드 10ppm 검출시간 (hr)Formaldehyde 10ppm Detection Time (hr) 고체 원료비 (60)Solid Raw Material Costs (60) 아세틸아세톤 수용액 원료비 (40)Acetyl Acetone Aqueous Solution Raw Material Cost (40) 활성백토Activated clay 석분Stone powder 활성탄Activated carbon 초산암모늄Ammonium Acetate 아세틸아세톤Acetylacetone 초산Acetic acid 1One 9595 55 00 7.57.5 0.30.3 0.10.1 3535 2121 22 9595 55 00 7.57.5 0.30.3 0.10.1 3030 3131 22 9595 55 00 7.57.5 0.30.3 0.10.1 2525 4141 22 9595 55 00 7.57.5 0.30.3 0.10.1 1515 4848 33 9595 55 00 7.57.5 0.30.3 0.10.1 1010 4646 44 9595 55 00 7.57.5 0.30.3 0.10.1 55 3737

본 발명의 흡착제를 이용한 포름알데히드 가스의 제거공정은 종래의 제거방식에 비해 장치가 간단하면서도 슬러지나 폐수가 발생하지 않으며 포름알데히드 가스만 선택적으로 제거할 수 있고 높은 효율성을 갖는데 이점이 있다. 또한 흡착제를 사용 후 매립 처리할 경우 토양 안정화 및 중금속 흡착 효과를 기대할 수 있어 매립지의 지반 강화 및 조기안정화에 도움을 준다.Formaldehyde gas removal process using the adsorbent of the present invention is simple compared to the conventional removal method, the sludge or waste water does not occur, only formaldehyde gas can be selectively removed and has the advantage of having high efficiency. In addition, when the landfill treatment is performed after using the adsorbent, soil stabilization and heavy metal adsorption effects can be expected, which helps to reinforce the ground and early stabilize the landfill.

Claims (2)

포름알데히드 흡착제의 제조방법에 있어서, 고체원료비로 활성백토를 70∼95wt, 석분을 5∼25wt, 활성탄을 0∼5wt혼합하고 여기에 아세틸아세톤 수용액(초산암모늄 농도 5∼10wt, 아세틸아세톤 농도 0.1∼0.5wt, 초산 농도 0.1wt)을 제조하여 고체원료와 수용액을 6:4의 비율로 섞은 후 이 혼합물을 압출 성형하여 펠렛트(pellet) 형태의 흡착제를 제조하고 수분이 전체 흡착제 중량비에 대하여 10∼30wt가 되도록 건조한 포름알데히드 흡착제의 제조방법.In the method for producing a formaldehyde adsorbent, 70 to 95 wt% of activated clay, 5 to 25 wt% of stone powder, and 0 to 5 wt% of activated carbon are mixed, and an aqueous acetylacetone solution (5 to 10 wt% of ammonium acetate and 0.1 to acetylacetone concentration) is added. 0.5 wt, acetic acid concentration 0.1 wt) to prepare a mixture of the solid raw material and the aqueous solution in the ratio of 6: 4, and then the mixture is extruded to prepare a pellet-type adsorbent (10 ~ 1) by weight of the total adsorbent weight ratio Method for producing a formaldehyde adsorbent dried to 30wt. 제1항에 있어서, 고체원료비로 활성백토를 75∼90wt, 석분을 5∼25wt혼합하고 여기에 아세틸아세톤 수용액(초산암모늄 농도 5∼10wt, 아세틸아세톤 농도 0.1∼0.5wt, 초산 농도 0.1wt)을 제조하여 고체원료와 수용액을 6:4의 비율로 섞은 후 이 혼합물을 압출 성형하여 펠렛트(pellet) 형태의 흡착제를 제조하고 수분이 전체 흡착제 중량비에 대하여 10∼30wt가 되도록 건조한 포름알데히드 흡착제의 제조방법.The method according to claim 1, wherein 75 to 90 wt of activated clay and 5 to 25 wt of stone powder are mixed in a solid raw material ratio, and an aqueous acetylacetone solution (5 to 10 wt of ammonium acetate, 0.1 to 0.5 wt of acetylacetone, 0.1 wt of acetic acid) is added. Prepared and mixed with a solid material and an aqueous solution in a ratio of 6: 4, and then the mixture is extruded to prepare a pellet-type adsorbent and to prepare a dry formaldehyde adsorbent so that the water is 10 to 30wt relative to the total weight of the adsorbent Way.
KR1020000012783A 2000-03-14 2000-03-14 Preparing method of an absorbent for formaldehyde KR20010091269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000012783A KR20010091269A (en) 2000-03-14 2000-03-14 Preparing method of an absorbent for formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000012783A KR20010091269A (en) 2000-03-14 2000-03-14 Preparing method of an absorbent for formaldehyde

Publications (2)

Publication Number Publication Date
KR20010091269A true KR20010091269A (en) 2001-10-23
KR100357344B1 KR100357344B1 (en) 2002-10-19

Family

ID=19655019

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000012783A KR20010091269A (en) 2000-03-14 2000-03-14 Preparing method of an absorbent for formaldehyde

Country Status (1)

Country Link
KR (1) KR20010091269A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866651A (en) * 1973-10-10 1975-02-18 Edward N Gomberg Flat free pneumatic tire and void free filling therefor
JPS61293546A (en) * 1985-06-21 1986-12-24 Nippon Chem Ind Co Ltd:The Acidic gas removing agent
US4935149A (en) * 1989-01-12 1990-06-19 Calgon Corporation Low free formaldehyde melamine-formaldehyde detackifier and method of using
JPH10202044A (en) * 1997-01-27 1998-08-04 Kuraray Co Ltd Deodorant drying agent
JPH11347109A (en) * 1998-06-05 1999-12-21 Toyo Riken Kk Formaldehyde absorbent

Also Published As

Publication number Publication date
KR100357344B1 (en) 2002-10-19

Similar Documents

Publication Publication Date Title
US5346876A (en) Air purifying agent and a process for producing same
CN105126534B (en) A kind of emission-control equipment and waste gas processing method
CN102219323B (en) Method for simultaneously removing organic pollutants and ammonia in waste water and reactor
CN110772913A (en) Waste gas treatment device
CN102895837A (en) Composition used for eliminating compounds of aldehydes and ketones
JP2019510526A (en) High functional solid oxygen composition and method for producing the same
US5462693A (en) Air purifying agent and a process for producing same
CN101337156B (en) Purification treatment method of low concentration formaldehyde waste gas
CN112023674A (en) Super absorbent resin carrier adsorption reaction type air purifying agent
KR20010091269A (en) Preparing method of an absorbent for formaldehyde
CN112870967B (en) Purification method and purification device for catalytic decomposition of VOCs
CN214715578U (en) Purification device for catalytically decomposing VOCs (volatile organic compounds)
CN109731558A (en) A kind of anion activity carbon nanometer composite material and the preparation method and application thereof
KR101407408B1 (en) A odor erasing method and the system of organic sludge
CN206027436U (en) Interior decoration coating produces gaseous absorption processing apparatus of triphen
KR101036931B1 (en) Preparation method of deodorant for removing polymer-derived odor and deodorant obtained thereby
KR101333778B1 (en) Method for removing complex bad smell using natural mordenite
KR100424788B1 (en) A nano-structured deodorant based on organic cations, metallic cations and layered silicate
KR100475276B1 (en) Air purification method
JPS63264137A (en) Deodorizer
JP3070220B2 (en) Microbial carrier
KR100447305B1 (en) Liquefied deodorant
US2991014A (en) Method for controlling smog
CN1256171C (en) Biochemical liquid of humate in application for purifying air indoors
CN1915436A (en) Method for preparing medium for strong oxidizing air sterilization and removing odor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121005

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141006

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee