KR20010086936A - High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus - Google Patents

High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus Download PDF

Info

Publication number
KR20010086936A
KR20010086936A KR1020000010940A KR20000010940A KR20010086936A KR 20010086936 A KR20010086936 A KR 20010086936A KR 1020000010940 A KR1020000010940 A KR 1020000010940A KR 20000010940 A KR20000010940 A KR 20000010940A KR 20010086936 A KR20010086936 A KR 20010086936A
Authority
KR
South Korea
Prior art keywords
period
during
raw water
denitrification
anaerobic
Prior art date
Application number
KR1020000010940A
Other languages
Korean (ko)
Inventor
김창원
최명원
하지연
이해군
최광수
임정훈
고주형
Original Assignee
김창원
최명원
한창윤
한창수기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김창원, 최명원, 한창윤, 한창수기 주식회사 filed Critical 김창원
Priority to KR1020000010940A priority Critical patent/KR20010086936A/en
Publication of KR20010086936A publication Critical patent/KR20010086936A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]

Abstract

PURPOSE: An advanced biological treatment process for treatment of wastewater containing high concentration nutrient salt is provided, which can treat livestock farming wastewater or leachate which change in the amount and load greatly, minimize the requirement of foreign substrate for denitrification by utilizing raw water as denitrification substrate during anoxic period, minimize man power requirement by automating the operation of reactor and eliminates the requirement of recycle facility and settling tank of continuous process. CONSTITUTION: The process comprises as follows: (i) intermittent aeration step that consists of alternate continuous operations of anoxic and aerobic aeration; (ii) utilize organic matter contained in raw water as denitrification substrate by selectively feeding raw water during only anoxic period; (iii) supply sufficient alkalinity required for complete nitrification during aerobic period; (iv) real time control at controller by detecting nitrate state in continuous batch reactor; (v) induce complete denitrification of residue nitrate using foreign substrate that has high denitrification rate in stead of raw water during final anoxic period; (vi) oxidize organic matter completely.

Description

고농도 영양염 함유 폐수 처리를 위한 고도 처리공정 및 처리장치{High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus}High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus}

본 발명은 연속 회분식 반응조에 간헐폭기공법과 무산소기간 선택적 원수 주입 그리고 산화환원전위차(ORP)를 이용한 제어시스템을 적용한 축산폐수 등의 고농도 폐수 처리의 새로운 방법 및 장치를 제공코자 하는 것이다.An object of the present invention is to provide a novel method and apparatus for high concentration wastewater treatment such as livestock wastewater using an intermittent aeration technique, selective oxygen injection during aerobic period, and a control system using a redox potential (ORP) in a continuous batch reactor.

종래의 축산폐수 처리방법으로는 생물학적 처리를 주처리 공정으로 하고 있으며 이 생물학적 처리 공정에는 혐기성, 무산소, 호기성 처리법 모두가 사용되고 있다.Conventional livestock wastewater treatment methods use biological treatment as the main treatment process, and anaerobic, anaerobic, and aerobic treatment methods are used for this biological treatment process.

국내 축산폐수 공공처리시설의 경우 호기성 생물학적 처리가 광범위하게 이용되고 있지만 산소공급을 위한 폭기 동력이 방대하고 다량의 잉여 슬러지가 발생하여 처리, 처분이 문제시되고 있으며, 세척수, 소포수, 희석수 등의 용수확보가 필요하다는 단점이 있었다.In domestic livestock wastewater treatment facilities, aerobic biological treatment is widely used, but the aeration power for oxygen supply is large and a large amount of surplus sludge is generated, which causes problems in treatment and disposal. There was a disadvantage in that water reservation was required.

반면에 혐기성 미생물을 이용하는 혐기성 생물 처리법은 폭기 동력이 불필요하다는 에너지 절감효과와 부산물로서 발생하는 메탄가스의 이용이 유효하다는 이유로 이전부터 주목되고 많은 연구가 진행되어 왔으나 혐기성 소화법은 폐수내의 용존산소를 전자수용체로 사용하는 호기성 미생물에 의한 호기성 소화와는 달리 유기분자내의 탄소를 전자수용체로 이용하는 혐기성 미생물에 의해 수행되는데, 이러한 혐기성 미생물은 그 증식속도가 매우 느리고 최적 생육조건의 범위도 매우 좁기 때문에 이의 유지가 처리효율과 안정성 확보에 가장 중요한 인자가 된다. 또한 이러한 혐기성처리법의 경우 대부분이 기후조건이나, 원수성상이 다른 외국에서 개발된 기술을 사용하고 있기 때문에 현장적용시 많은 문제를 야기하고 있다.On the other hand, anaerobic biotreatment using anaerobic microorganisms has been noted for a long time because of the energy saving effect of unnecessary aeration power and the use of methane gas as a by-product. Unlike aerobic digestion by aerobic microorganisms used as electron acceptors, it is carried out by anaerobic microorganisms using carbon in organic molecules as electron acceptors.The anaerobic microorganisms have a very slow growth rate and a very narrow range of optimum growth conditions. Maintenance is the most important factor in ensuring processing efficiency and stability. In addition, most of these anaerobic treatment methods use technology developed in foreign countries with different climatic conditions or raw water phases, which causes many problems in the field application.

특히 1차 처리시설로 혐기성 소화 처리공법을 도입한 경우 혐기성 소화 유출수의 암모니아성 질소의 농도가 매우 높아 후속으로 오는 생물학적 고도처리공정에 독성을 초래하거나, 탈질 시의 기질부족을 야기 시켜 외부기질 주입비용을 증대시키는 결과를 나타내고 있다.In particular, when the anaerobic digestion treatment method is introduced as the primary treatment facility, the concentration of ammonia nitrogen in the anaerobic digestion effluent is very high, which may cause toxicity in the subsequent biological advanced treatment process or cause substrate deficiency during denitrification. It shows the result of increasing the cost.

한편, 대량의 질소를 포함하고 있는 가축분뇨를 혐기성 소화공정과 질소·인후속 고도처리공정(호기성 처리공정)을 조합하여 처리할 경우 혐기성 소화공정에서 유기탄소화합물이 제거되고 질소의 감소는 이루어지지 않으므로 C, N, P 균형이 맞지 않아 결국 후속 고도처리공정을 어렵게 만드는 문제점 또한 야기시키고 있다.On the other hand, if animal manure containing a large amount of nitrogen is treated with a combination of anaerobic digestion and nitrogen and throat advanced processing (aerobic treatment), organic carbon compounds are removed and anaerobic reduction does not occur in anaerobic digestion. As a result, C, N, and P are not balanced, which leads to a problem that makes subsequent advanced processing difficult.

부영양화 방지를 주목적으로 할 경우, 우리 나라에서 규제하고 있는 총 질소 및 총 인의 규제 농도치는 보다 강화될 것으로 판단되나 현재 사용되고 있는 생물학적 영양염류제거 공정(Biological Nutrients Removal : BNR)은 유량의 변동과 유입농도의 변화 폭이 크다는 축산폐수의 특징과 축산업의 채산성을 고려할 때 국내의 실정에 맞지 않는 부분들이 있어 상황검토 없는 공정의 도입은 안정된 유출수질을 보장하기 어렵다는 문제점이 있었던 것이다.In the case of the prevention of eutrophication, the regulation of total nitrogen and total phosphorus regulated in Korea is expected to be strengthened, but the biological nutrients removal (BNR) currently used is the change in flow rate and inflow concentration. Considering the characteristics of livestock wastewater and the profitability of the livestock industry, there is a problem that it is difficult to guarantee stable runoff without introducing a situation.

이에 반해 본 발명에서 채택한 방식인 간헐폭기법을 도입한 연속 회분식 반응조의 경우 호기성 생물학적 영양염류 제거공정의 하나이긴 하나 일반적인 연속식 공정과 달리 단일 반응조내에서 모든 공정이 이루어지기 때문에 내부회송 등의 시설이 불필요하여 시설비 및 소요부지면적 절감효과를 볼 수 있고 유량변동 등이 있을 때 반응조의 일부분만 이용할 수 있어 과대폭기 등을 막아 동력비 절감효과를 노릴 수 있다.On the contrary, in the case of the continuous batch reactor in which the intermittent aeration method is adopted in the present invention, it is one of the aerobic biological nutrient removal processes, but unlike the general continuous process, all the processes are performed in a single reactor, and thus, the facilities such as internal return. Since it is not necessary, the cost of facility and required area can be reduced, and only a part of the reactor can be used when there is a flow rate change.

그리고 원수를 무산소 기간에만 선택적으로 주입하여 탈질 기질로 충분히 활용하고 이후 호기기간 중 완전질산화를 위한 알칼리니티 등 약품비용 절감효과까지 볼 수 있어 여러 가지 경제적 이득을 확보할 수 있다.In addition, raw water can be selectively injected only during the anaerobic period to fully utilize it as a denitrification substrate, and the economic cost can be secured by reducing the cost of drugs such as alkali niti for complete nitrification during the expiration period.

또한, 본 발명에서는 질소제거를 목적으로 산화환원전위차(ORP)의 연속 측정을 통한 고도처리 자동화 시스템을 개발하여 획득된 연속측정 데이터 프로파일(data profile)을 고주파 분석을 통하여 잡음성분을 제거하고 탈질에 관련된 응답특성을 분석하여 반응조내 질산염의 농도를 감지하고 그에 따라 호기기간 중 완전 질산화 시점을 감지하고 최종 무산소 기간 중 외부기질을 통한 잔존 질산염의 완전 탈질 시점을 감지하여 반응시간을 실시간으로 제어할 수 있도록 하여 유기물 및 질소가 충분히 제거된 후 유출수를 방류하도록 할 수 있어 안정적인 유출수질을 확보할 수 있다.In addition, in the present invention, a continuous measurement data profile obtained by developing an advanced processing automation system through continuous measurement of the redox potential (ORP) for the purpose of nitrogen removal is to remove noise components through high frequency analysis and to denitrification. The reaction time can be controlled in real time by detecting the concentration of nitrate in the reaction tank by detecting the relevant response characteristics, and thus the time of complete nitrification during the aerobic period, and the time of complete denitrification of residual nitrate through the external substrate during the final anaerobic period. It is possible to discharge the effluent after the organic matter and nitrogen is sufficiently removed to ensure a stable effluent quality.

이런 시점에서 본 발명이 제시하고 있는 여러 가지 특성은 저비용, 고효율적인 고농도 폐수 처리방법의 한 대안으로서 충분한 장점을 지니는 것이다.At this point, the various characteristics proposed by the present invention are sufficient as an alternative to low cost, high efficiency and high concentration wastewater treatment.

이에 본 발명에서는 연속 회분식 반응조에서 무산소 기간에만 원수를 주입하는 간헐폭기법을 도입하여 유기물은 무산소 기간 중 탈질기질로 이용하고 이용후 남은 양은 호기기간 중 산화될 수 있도록 하며, 질소는 호기기간중 질산화와 무산소 기간 중 탈질을 통해 제거할 수 있게 한다. 이때 연속 회분식 반응조(R)내 산화환원전위차(ORP)를 연속적으로 측정하면서 질산염의 농도를 감지하여 호기기간 중의 질산화 완료시점 및 최종 무산소기간 동안의 탈질 완료시점을 파악하여 반응조 운전 시스템을 제어함으로써 전체 반응시간 축소, 외부기질 등 약품비용절감을 통한 운전비용절감효과, 시설의 단순성으로 인한 소요부지 절감효과 등의 장점을 지니면서 부영양화 등의 심각한 문제를 야기시키고 있는 고농도 폐수 처리문제를 해결할 수 있는 고도처리장치 및 방법을 제공코자 하는 것이다.Therefore, the present invention introduces an intermittent aeration method in which raw water is injected only in an oxygen-free period in a continuous batch reactor, so that organic materials can be used as a denitrification substrate during an anoxic period, and the remaining amount can be oxidized during an aerobic period, and nitrogen is nitrified during an aerobic period. It can be removed by denitrification during and anaerobic period. At this time, by measuring the redox potential (ORP) in the continuous batch reactor (R) continuously, the concentration of nitrate is sensed to determine the completion of nitrification during the aerobic period and the denitrification completion during the final anaerobic period. It is possible to solve the problem of high concentration wastewater treatment, which causes serious problems such as eutrophication, with advantages such as reduction of reaction time, operation cost reduction through chemical cost reduction such as external substrate, and reduction of required site due to simplicity of facility. To provide a processing apparatus and method.

도 1은 본 발명의 일실시예를 보인 연속 회분식 반응조 및 산화환원전위차를 이용한 제어 시스템으로 이루어진 전체 시스템을 보인 개략도1 is a schematic view showing an entire system consisting of a continuous batch reactor showing an embodiment of the present invention and a control system using a redox potential

도 2는 본 발명에서 제공하는 간헐폭기법을 이용한 반응조 운전주기표2 is a reactor operating cycle table using the intermittent aeration method provided by the present invention

■ 도면의 주요부분에 사용된 부호에 대한 설명 ■■ Explanation of symbols used in main part of drawing ■

1 : 유입수 유입관 2 : 유출수 배출관1: inflow water inflow pipe 2: outflow water discharge pipe

T1 : 원수저류조 R : 연속 회분식 반응조T1: Raw water storage tank R: Continuous batch reactor

B : 블로어 P : 펌프B: Blower P: Pump

M : 혼합기(Mixer)M: Mixer

D : 유출수 배출장치(Rail buoy decanter)D: Rail buoy decanter

S1 : pH probeS1: pH probe

S2 : 산화환원전위차(ORP) probeS2: redox potential probe

OI : Optically isolated transmitterOI: Optically isolated transmitter

RE : 릴레이 AD : AD 컨버터RE: Relay AD: AD Converter

CO : 제어기(PLC 또는 PC 또는 DCS)CO: controller (PLC or PC or DCS)

51 : 원수주입 + 무산소기간51: Raw water injection + anaerobic period

52-1 : 원수주입 중단 후 1차 무산소 기간52-1: First anaerobic period after stopping injection of raw water

52-2 : 원수주입 없는 무산소 기간52-2: Anaerobic period without raw water injection

53-1 : 호기기간53-1: Expiration Period

53-2 : 최종 호기기간53-2: Final Expiration Period

54-1 : 외부기질 주입 + 최종 무산소 기간54-1: External Substrate Injection + Final Anaerobic Period

54-2 : 외부기질 주입없는 최종 무산소 기간54-2: Final anaerobic period without external substrate injection

55 : 침전 및 인발기간55: settling and drawing period

도 1과 2는 각각 본 발명의 일 실시예를 보인 연속 회분식 반응조(R) 및 산화환원전위차를 이용한 제어시스템으로 이루어진 전체 시스템과, 본 발명에 의한 간헐폭기법을 이용한 연속 회분식 반응조(R) 운전주기를 나타낸 것이다.1 and 2 are the entire system consisting of a continuous batch reactor (R) and a control system using a redox potential difference showing an embodiment of the present invention, respectively, and continuous batch reactor (R) operation using the intermittent aeration method according to the present invention The cycle is shown.

도 2의 4회에 걸친 무산소기간 중 원수주입기간(51)동안 원수저류조(T1)로부터 연속 회분식 반응조(R)로 전체 원수 주입량을 1/4로 나누어 원수를 공급한다. 이때 공급된 원수를 탈질기질로 이용하여 원수주입없는 무산소기간(52-1, 52-2)동안 질산염은 질소가스로 전환되고 이와 동시에 유기물이 제거된다.Raw water is supplied by dividing the total amount of raw water injection into 1/4 from the raw water storage tank T1 to the continuous batch reactor R during the raw water injection period 51 during the four anaerobic periods of FIG. 2. At this time, nitrate is converted to nitrogen gas during the anoxic period (52-1, 52-2) without raw water injection using the supplied raw water as the denitrification substrate, and at the same time, the organic matter is removed.

탈질과정에서 제거되고 남은 유기물은 호기기간(53-1)동안 제거된다. 또한 상기 호기기간(53-1)동안 암모니아성 질소가 질산염으로 전환되는 질산화반응이 일어난다.The organic matter remaining in the denitrification process is removed during the expiration period 53-1. In addition, a nitrification reaction occurs in which ammonia nitrogen is converted to nitrate during the expiration period 53-1.

외부기질을 공급하는 최종 무산소 기간(54-1) 동안은 탈질율이 높은 외부기질을 공급하여 이전 무산소기간(52-2)동안 원수만으로 충분히 질소가스로 전환되지 못한 잔존 질산염을 최종 무산소기간(54-2)동안 탈질시킨다.During the final anaerobic period (54-1) of supplying external substrates, the remaining nitrates were supplied to the external anoxic period (54-) that had not been sufficiently converted to nitrogen gas by the raw water alone during the previous anaerobic period (52-2). Denitrate during 2).

이후 최종 호기기간(53-2)동안은 최종 무산소기간(54-1)동안 유입된 외부기질 중 최종 무산소기간(54-2)동안 탈질기질로 이용되고 남은 양을 제거한다.Thereafter, during the final expiration period 53-2, the remaining amount of the external substrate introduced during the final anaerobic period 54-1 is used as the denitrification substrate during the final anaerobic period 54-2.

침전 및 인발기간(55)동안 연속 회분식 반응조(R)내 슬러지를 침전시키고 최종 처리된 상등수는 유출수 배출장치(rail buoy decanter; D)를 통해 방류한다.During the settling and drawing period 55, sludge in the continuous batch reactor R is precipitated and the final treated supernatant is discharged through a rail buoy decanter D.

한편, 연속 회분식 반응조(R) 내에는 호기기간동안 공기를 불어넣는 블로어(B)가 설치되고, 무산소 기간동안 완전 혼합상태를 이루기 위한 혼합기(M)가설치된다.On the other hand, in the continuous batch reactor (R), a blower (B) for blowing air during the expiration period is installed, and a mixer (M) for achieving a complete mixing state during the anaerobic period is installed.

또한, 반응조내 산화환원전위차와 pH를 읽기 위한 ORP probe(S1)과 pH probe (S2)가 설치되며 이들 센서로부터 읽은 데이터를 제어기(CO)로 전송하기 위한 시스템으로 optically isolated transmitter(OI), 릴레이(R), AD 컨버터(AD) 등이 설치된다.In addition, ORP probe (S1) and pH probe (S2) are installed to read the redox potential and pH in the reactor, and it is an optically isolated transmitter (OI) and relay for transmitting data read from these sensors to the controller (CO). (R), AD converter (AD) and the like are provided.

본 발명은 상기한 연속 회분식 반응조(R)와 반응기 운전제어 시스템을 이용하여 고농도 폐수처리 방법을 제공함에 특징이 있다.The present invention is characterized by providing a high concentration wastewater treatment method using the continuous batch reactor (R) and the reactor operation control system.

이하, 본 발명을 하나의 실시예를 통하여 더욱 상세히 살펴보면 다음과 같다.Hereinafter, the present invention will be described in more detail through one embodiment.

(실시예)(Example)

우선 연속 회분식 반응조(R)의 운전을 위한 fill ratio 결정을 위해, 유입 원수의 NH4 +-N 농도가 약 3,400mg/L 정도일 때, fill ratio를 1/4, 1/8, 1/12, 1/16으로 달리하면서 최적 fill ratio 도출을 위한 실험을 수행한 결과, fill ratio 1/12에서 최대 질산화율 0.35kgNH4 +-N/m3·day를 얻었고, 이후 실험에서 fill ratio는 이러한 원수의 NH4 +-N 농도와 fill ratio의 관계를 이용하여 유동적으로 결정하였다.First, to determine the fill ratio for the operation of the continuous batch reactor (R), fill ratio is 1/4, 1/8, 1/12, when the concentration of NH 4 + -N in the influent is about 3,400 mg / L. Experiments for deriving the optimal fill ratio with different 1/16 resulted in a maximum nitrification rate of 0.35kgNH 4 + -N / m 3 · day at fill ratio 1/12. Fluidity was determined using the relationship between 4 + -N concentration and fill ratio.

위 결과를 바탕으로 연속 회분식 반응조(R)를 도 2에 나타낸 간헐폭기 운전주기대로 운전하여 다음과 같은 결과를 얻었다.Based on the above results, the continuous batch reactor (R) was operated in the intermittent aeration operation cycle shown in FIG. 2 to obtain the following results.

운전 중 평균 원수농도 SCODcr 10,000mg/L와 평균 용적부하 1kgCOD/m3·day의 조건에서 유기물 제거효율 93% 이상, 제거율 0.93kgCOD/m3·day를 얻었다.Under the conditions of average raw water concentration SCODcr 10,000mg / L and average volume load 1kgCOD / m 3 · day, the removal efficiency of organic matter was above 93% and the removal rate was 0.93kgCOD / m 3 · day.

생물학적 산소요구량인 BOD5는 유입수가 평균 6,000mg/L이고 유출수는 평균 10mg/L로 평균 제거율 99.8%를 얻었다.The biological oxygen demand of BOD 5 was 6,000mg / L of influent and 10mg / L of effluent, and the average removal rate was 99.8%.

원수 평균 NH4 +-N 3,400mg/L일 때 평균 질산화율 99.7% 이상을 보였으며 방류수질은 5mg/L이하로, 평균 질산화율은 0.34kgNH4 +-N/m3·day였다.The average nitrification rate was more than 99.7% when raw water average NH 4 + -N 3,400mg / L, the discharge quality was below 5mg / L, and the average nitrification rate was 0.34kgNH 4 + -N / m 3 · day.

반응조 내로 원수를 주입하는 방법을 초기 무산소 기간동안 한번에 넣어주는 일시공급(single feeding)과 반응기간 동안 원수를 연속적으로 주입하는 연속공급(continuous feeding), 그리고 본 발명에서 채택한 무산소 기간 중 선택적으로 원수를 공급하는 간헐 공급(intermittent feeding)의 세 가지를 비교 실험한 결과 유출수 NH4 +-N의 경우 일시 공급이나 연속 공급에 비해 간헐 공급에서 1/5 이하로 낮게 나타나 유출수질이 상당히 많이 향상됨을 확인할 수 있었다.The method of injecting the raw water into the reactor at a time during the initial anaerobic period (single feeding), the continuous feeding of the raw water continuously during the reaction period (continuous feeding), and the oxygen-free period adopted in the present invention selectively As a result of comparing the three types of intermittent feeding, the effluent NH 4 + -N was found to be less than 1/5 of the intermittent supply compared to the temporary supply or the continuous supply, and the effluent quality was significantly improved. there was.

또한 연속 공급에서는 반응이 진행됨에 따라 무산소 기간 중 탈질 기질 부족현상으로 인해 질산염이 축적되는 현상이 나타났으나 본 발명에서 채택한 간헐폭기 (intermittent feeding)에 ORP를 이용하여 탈질 반응시간을 제어하는 시스템을 이용했을 때 반응조내 질산염이 축적되는 현상이 전혀 나타나지 않았으며 반응조내상태에 따라 반응시간을 유동적으로 조절할 수 있어 유출수질을 보장할 수 있었다.In addition, in the continuous feeding, as the reaction proceeds, nitrates accumulate due to the denitrification substrate deficiency during anoxic period, but the system for controlling the denitrification reaction time by using ORP in the intermittent feeding adopted in the present invention. When used, the phenomenon of nitrate accumulation in the reactor did not appear at all, and the reaction time could be flexibly adjusted according to the condition of the reactor to ensure the quality of the effluent.

또한, 원수를 탈질기질로 충분히 활용할 수 있어 일시 공급에 비해 외부기질 사용을 70% 이상 절감할 수 있어 상당히 경제성이 있는 것으로 판단되었다.In addition, raw water can be fully utilized as a denitrification substrate, which can reduce the use of external substrates by more than 70% compared to temporary supply.

그리고 실제 원수 중 포함된 알칼리니티가 13,000mg/L 정도로 3,400mg/L에 달하는 NH4 +-N을 호기기간동안 완전질산화 하기에 부족하나 간헐폭기법을 이용함으로써 무산소 기간동안 탈질로 알칼리니티가 생성되어 이후 호기기간동안 알칼리니티를 보충할 필요가 없었고 따라서 약품 비용절감효과를 볼 수 있었다.In addition, NH 4 + -N, which contains 13,000 mg / L of alkali nitrile in raw water, is insufficient to completely nitrate NH 4 + -N during aerobic period. As a result, there was no need to replenish alkalinity during the expiration period, thus reducing drug costs.

ORP를 이용하여 질산화 완료 시점과 탈질 완료 시점을 감지하여 반응시간을 조절함으로 인해 유입되는 원수의 성상에 따라 반응시간을 유동적으로 제어기에서 결정할 수 있어 원수성상이 설정치 보다 낮을 경우 반응시간이 짧아져서 전체 처리 용량을 증가시킬 수 있었고, 원수성상이 높을 때는 반응완료 시점이 감지될 때까지 반응시간을 충분히 줘서 부하변동에 상관없이 유출수질이 보장될 수 있었다.By detecting the completion time of nitrification and the completion of denitrification by using ORP, the reaction time can be fluidly determined by the controller according to the properties of the incoming raw water.The reaction time is shortened when the raw water phase is lower than the set value. The treatment capacity could be increased, and when the raw water phase was high, the effluent quality could be guaranteed regardless of the load fluctuation by giving sufficient reaction time until the reaction completion time was detected.

이상에서 살펴 본 바와 같이 본 발명의 고농도 폐수 처리를 위한 연속 회분식 반응조 운전시스템은 유기물질 및 질소의 제거가 가능하면서도 반응조 운전 자동화 및 제어가 가능하여 축산폐수 처리에 있어서 다음과 같은 여러 이점과 경제적 효과 등을 기대할 수 있다.As described above, the continuous batch reactor operation system for the high concentration wastewater treatment according to the present invention is capable of removing and removing organic substances and nitrogen, while also allowing automation and control of the reactor operation. You can expect.

첫째, 발생량 변동이나 부하변동이 심한 축산폐수 또는 침출수 등 고농도 폐수 처리를 위해 저렴한 비용에 안정적으로 고도처리가 가능한 시스템을 갖출 수 있고,First, it can be equipped with a system capable of stable and high-cost treatment at high cost for the treatment of high concentration wastewater such as livestock wastewater or leachate with high generation amount or load fluctuation.

둘째, 무산소 기간동안 원수를 탈질기질로 활용하여 탈질을 위한 외부기질 요구량을 최소한으로 하고 이후 호기기간동안 완전 질산화를 위한 알칼리니티를 충분히 보충해 줄 수 있어 운전비용 부담을 줄일 수 있고,Second, by using raw water as denitrification during anoxic period, the external substrate requirement for denitrification can be minimized, and alkalinity for complete nitrification can be fully replenished during the expiration period, thus reducing the operating cost burden.

셋째, 반응조 운전을 자동화하여 반응조 운전 및 관리에 소요되는 인력비용부담 또한 줄일 수 있으며,Third, by automating the operation of the reactor can also reduce the manpower costs required to operate and manage the reactor,

넷째, 연속식 공정과 같은 반송시설이나 침전조가 따로 필요하지 않아 처리장 부지가 협소하거나 건물 내부에 설치하는 등 소규모의 처리시설 건설이 요구되는 경우 유용하게 적용할 수 있다.Fourth, it can be usefully applied when the construction of a small treatment plant is required, such as a continuous treatment plant or a sedimentation tank, which requires a separate treatment plant site or installation inside the building.

Claims (2)

무산소, 호기기간이 연속 교호로 이루어지는 간헐폭기 공정과,Intermittent aeration process consisting of a series of alternating anaerobic and aerobic periods, 무산소 기간에만 선택적으로 원수를 주입하여 원수 중 유기물을 탈질기질로 충분히 이용토록 하며,Selectively inject raw water only during the period of anaerobic use to fully utilize organic matter in the raw water as denitrification substrate, 이후 호기기간동안 완전 질산화에 소요되는 알칼리니티 공급이 충분히 이루어지도록 하는 공정,After the process to ensure that the supply of alkali nitritic for complete nitrification during the expiration period, 연속 회분식 반응조내의 질산염 상태를 감지하여 제어기에서 실시간 제어를 수행토록 하는 공정,Detecting nitrate status in a continuous batch reactor to perform real time control in the controller, 최종 무산소 기간에는 원수 대신 탈질율이 높은 외부기질을 이용하여 잔류 질산염의 완전 탈질을 유도하는 공정과,During the final anaerobic period, a process for inducing complete denitrification of residual nitrates using an external substrate having a high denitrification rate instead of raw water 이후 최종 호기기간 중 잔존 유기물의 완전산화가 이루어지도록 하는 공정을 포함하는 것을 특징으로 하는 고농도 영양염 함유 폐수 처리를 위한 고도 처리공정.Thereafter, a high treatment process for the treatment of high concentration nutrient-containing wastewater, characterized in that it comprises a process for complete oxidation of the remaining organic matter during the final expiration period. 연속 회분식 반응조(R)내에 원수저류조(T1)로부터 펌프(P)를 이용하여 유입수유입관(1)을 통하여 원수를 공급할 수 있도록 하고, 유출수배출장치(D)로부터 펌프(P)를 이용하여 유출수를 배출할 수 있도록 유출수배출관(2)을 갖는 고농도 영양염 함유 폐수 처리를 위한 고도 처리장치를 구성함에 있어서;In the continuous batch reactor (R), the raw water can be supplied from the raw water storage tank (T1) using the pump (P) through the influent inlet pipe (1), and the effluent water from the effluent discharge device (D) using the pump (P). In constructing an advanced treatment device for the treatment of high concentration nutrient-containing wastewater having an effluent discharge pipe (2) to discharge the; 상기 연속 회분식 반응조(R)내에는 산화환원전위차(ORP)를 연속적으로 측정하는 ORP probe(S2)와, 질산염의 거동을 파악하여 호기기간동안 완전 질산화 시점을 감지하는 pH probe(S1)를 설치하여 제어기(CO)로 전송하기 위한 Optically isolated transmitter(OI), AD 컨버터(AD), 릴레이(RE)를 설치하여 각각의 펌프(P) 및 블로어(B)의 on/off를 제어토록 구성하며,In the continuous batch reactor (R) by installing an ORP probe (S2) for continuously measuring the redox potential (ORP), and pH probe (S1) to detect the complete nitrification time during the expiration period by grasping the behavior of nitrate Optically isolated transmitter (OI), AD converter (AD), and relay (RE) are installed to transmit to the controller (CO) to configure on / off of each pump (P) and blower (B). 상기 연속 회분식 반응조(R) 내에는 호기기간동안 공기를 공급하는 블로어(B)와, 무산소 기간동안 완전 혼합상태를 이루기 위한 혼합기(M)가 설치된 것을 특징으로 하는 고농도 영양염 함유 폐수 처리를 위한 고도 처리장치.In the continuous batch reactor (R), a blower (B) for supplying air during the expiration period, and a mixer (M) for achieving a complete mixing state during the anaerobic period is installed for the high concentration nutrient-containing wastewater treatment Device.
KR1020000010940A 2000-03-04 2000-03-04 High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus KR20010086936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000010940A KR20010086936A (en) 2000-03-04 2000-03-04 High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000010940A KR20010086936A (en) 2000-03-04 2000-03-04 High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus

Publications (1)

Publication Number Publication Date
KR20010086936A true KR20010086936A (en) 2001-09-15

Family

ID=19652351

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000010940A KR20010086936A (en) 2000-03-04 2000-03-04 High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus

Country Status (1)

Country Link
KR (1) KR20010086936A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432518B1 (en) * 2004-01-08 2004-05-22 주식회사 아쿠아테크 Waste water treatment system and method for carring out continuous denitrification and nitrification in a single active reaction tank by utilizing an apparatus for judging reaction step
KR100434639B1 (en) * 2002-04-04 2004-06-16 주식회사 경호엔지니어링 종합건축사사무소 inner flow control system of apparatus for treating water
KR100450037B1 (en) * 2002-01-07 2004-10-06 주식회사 대명테크 Wastewater treatment process and system with auto-controlled Intermittent aeration system
KR100891996B1 (en) * 2008-10-31 2009-04-08 주식회사 한독이엔지 Bioreactor system and method for treating high concentrated organic wastewater
KR101237087B1 (en) * 2011-05-30 2013-02-25 현대제철 주식회사 Dissolved oxygen removal apparatus for corrosion test

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154296A (en) * 1984-08-24 1986-03-18 Suido Kiko Kk Treatment of sewage
JPS62282694A (en) * 1986-05-30 1987-12-08 Nishihara Environ Sanit Res Corp Method and apparatus for denitrification and dephosphorization of sewage
JPS62286597A (en) * 1986-06-03 1987-12-12 Sumitomo Jukikai Envirotec Kk Biological denitrification of raw excretion
JPH05220495A (en) * 1992-02-14 1993-08-31 Fuji Electric Co Ltd Controlling method for sewage disposal process
JPH06238294A (en) * 1993-02-15 1994-08-30 Kitamatsu Nanbu Seisou Ichibu Jimu Kumiai Biological denitrification treatment
JPH07132296A (en) * 1993-11-10 1995-05-23 Shokuhin Sangyo Clean Eco Syst Gijutsu Kenkyu Kumiai Activated sludge treating device
KR20010010216A (en) * 1999-07-16 2001-02-05 라창식 Real-time control technology for wastewater treatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154296A (en) * 1984-08-24 1986-03-18 Suido Kiko Kk Treatment of sewage
JPS62282694A (en) * 1986-05-30 1987-12-08 Nishihara Environ Sanit Res Corp Method and apparatus for denitrification and dephosphorization of sewage
JPS62286597A (en) * 1986-06-03 1987-12-12 Sumitomo Jukikai Envirotec Kk Biological denitrification of raw excretion
JPH05220495A (en) * 1992-02-14 1993-08-31 Fuji Electric Co Ltd Controlling method for sewage disposal process
JPH06238294A (en) * 1993-02-15 1994-08-30 Kitamatsu Nanbu Seisou Ichibu Jimu Kumiai Biological denitrification treatment
JPH07132296A (en) * 1993-11-10 1995-05-23 Shokuhin Sangyo Clean Eco Syst Gijutsu Kenkyu Kumiai Activated sludge treating device
KR20010010216A (en) * 1999-07-16 2001-02-05 라창식 Real-time control technology for wastewater treatment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450037B1 (en) * 2002-01-07 2004-10-06 주식회사 대명테크 Wastewater treatment process and system with auto-controlled Intermittent aeration system
KR100434639B1 (en) * 2002-04-04 2004-06-16 주식회사 경호엔지니어링 종합건축사사무소 inner flow control system of apparatus for treating water
KR100432518B1 (en) * 2004-01-08 2004-05-22 주식회사 아쿠아테크 Waste water treatment system and method for carring out continuous denitrification and nitrification in a single active reaction tank by utilizing an apparatus for judging reaction step
KR100891996B1 (en) * 2008-10-31 2009-04-08 주식회사 한독이엔지 Bioreactor system and method for treating high concentrated organic wastewater
KR101237087B1 (en) * 2011-05-30 2013-02-25 현대제철 주식회사 Dissolved oxygen removal apparatus for corrosion test

Similar Documents

Publication Publication Date Title
US9352990B2 (en) Method and apparatus for maximizing nitrogen removal from wastewater
Obaja et al. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater
KR101272016B1 (en) Wastewater Treatment Apparatus Using Biofilm and Aerobic Granule Sludge and Method for Treating Wastewater Using the Same
US8894857B2 (en) Methods and systems for treating wastewater
US20140360933A1 (en) Methods and apparatus for nitrogen removal from wastewater
JP2009502494A (en) Method and apparatus for nitrogen enrichment (high nitrogen concentration) wastewater treatment in a continuous fractionation cycle biological reactor
CA2816381A1 (en) Method for treating water within a sequencing batch reactor, including an in-line measurement of the nitrite concentration
KR20120101464A (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
US11827550B2 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
Christensson et al. ANITA™ Mox–A BioFarm Solution for Fast Start-up of Deammonifying MBBRs
Yu et al. Performance enhancement of SBR applying real-time control
KR20180117340A (en) The Sewage Disposal Systems
Zaborowska et al. Improving the energy balance in wastewater treatment plants by optimization of aeration control and application of new technologies
Fatone et al. Biological short-cut nitrogen removal from anaerobic digestate in a demonstration sequencing batch reactor
Mulder et al. Full-scale experience with the SHARON process through the eyes of the operators
KR100304544B1 (en) Method for removing nitrogen and phosphorus using anaerobic digestion
Gali et al. SBR technology for high ammonium loading rates
CN105984991B (en) A kind of sewerage advanced treatment process
KR20010086936A (en) High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus
KR20090011513A (en) Method for controling wastewater treatment process
Juan et al. Biological nitrogen removal in a step-feed CAST with real-time control treating municipal wastewater
KR100436043B1 (en) Method for removing nitro-oxides in waste water
KR100258637B1 (en) A sewage disposal method
Gustavsson et al. Operation for nitritation of sludge liquor in a full-scale SBR
Celen-Erdem et al. A pilot-scale study on the partial nitritation-anammox process for treatment of anaerobic sludge digester effluent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application