KR100434639B1 - inner flow control system of apparatus for treating water - Google Patents

inner flow control system of apparatus for treating water Download PDF

Info

Publication number
KR100434639B1
KR100434639B1 KR10-2002-0018468A KR20020018468A KR100434639B1 KR 100434639 B1 KR100434639 B1 KR 100434639B1 KR 20020018468 A KR20020018468 A KR 20020018468A KR 100434639 B1 KR100434639 B1 KR 100434639B1
Authority
KR
South Korea
Prior art keywords
tank
internal
control
anaerobic
anaerobic tank
Prior art date
Application number
KR10-2002-0018468A
Other languages
Korean (ko)
Other versions
KR20030079435A (en
Inventor
강예석
Original Assignee
주식회사 경호엔지니어링 종합건축사사무소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경호엔지니어링 종합건축사사무소 filed Critical 주식회사 경호엔지니어링 종합건축사사무소
Priority to KR10-2002-0018468A priority Critical patent/KR100434639B1/en
Publication of KR20030079435A publication Critical patent/KR20030079435A/en
Application granted granted Critical
Publication of KR100434639B1 publication Critical patent/KR100434639B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/2873Particular arrangements for anaerobic reactors with internal draft tube circulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2

Abstract

본 발명은 폐수처리장치의 내부반송 유량제어시스템에 관한 것이다. 더욱 구체적으로 혐기조, 용존산소저감조, 무산소조, 호기조, 침전조, 상기 호기조와 용존산소저감조를 연결하는 내부반송라인 및 상기 무산소조와 혐기조를 연결하는 내부반송라인을 포함하는 폐수처리장치에서, 무산소조에서 질산성질소의 농도가 낮은 처리수를 혐기조로 내부반송시켜 혐기조에서 탈인작용에 기여하는 인제거미생물인 PAOs가 우점화될 수 있도록 최적환경을 조성하는 혐기조내부반송유량제어 및 무산소조에서의 F/M비[질산성질소(NO3 --N)와 혼합액부유물질(MLSS)의 비]를 최적으로 유지시켜 연중 높은 비탈질율(SNDR) 확보가 가능한 무산소조내부유량제어에 의하여 폐수처리장치의 효율적인 제어가 가능하고, 이를 중앙제어실에서 원격조정 할 수 있는 폐수처리장치의 내부반송 유량제어시스템에 관한 것이다.The present invention relates to an internal return flow control system of a wastewater treatment apparatus. More specifically, in the waste water treatment apparatus comprising an anaerobic tank, a dissolved oxygen low tank, an anoxic tank, an aerobic tank, a settling tank, an internal transport line connecting the aerobic tank and the dissolved oxygen low tank and an internal transport line connecting the anoxic tank and the anaerobic tank, Controlling the flow rate inside the anaerobic tank and F / M ratio in the anaerobic tank to create an optimal environment for the PAOs, which are phosphorus-removing microorganisms that contribute to dephosphorization in the anaerobic tank, by returning the treated water with low concentration of nitrate nitrogen to the anaerobic tank. to keep the - - nitrate nitrogen (NO 3 -N) and the mixture ratio of suspended solids (MLSS)] best possible effective control of a waste water treatment apparatus by a flow rate control possible anoxic tank internal high denitration ratio (SNDR) secured year The present invention relates to an internal transport flow control system of a wastewater treatment system that can be remotely controlled from a central control room.

Description

폐수처리장치의 내부반송 유량제어시스템{inner flow control system of apparatus for treating water}Inner flow control system of apparatus for treating water

본 발명은 폐수처리장치의 내부반송 유량제어시스템에 관한 것이다. 더욱 구체적으로 혐기조, 용존산소저감조, 무산소조, 호기조, 침전조, 상기 호기조와 용존산소저감조를 연결하는 내부반송라인 및 상기 무산소조와 혐기조를 연결하는 내부반송라인을 포함하는 폐수처리장치에서, 무산소조에서 질산성질소의 농도가 낮은 처리수를 혐기조로 내부반송시켜 혐기조에서 탈인작용에 기여하는 인제거미생물인 PAOs가 우점화될 수 있도록 최적환경을 조성하는 혐기조내부반송유량제어 및 무산소조에서의 F/M비[질산성질소(NO3-N)와 혼합액부유물질(MLSS)의 비]를 최적으로 유지시켜 연중 높은 비탈질율(SNDR) 확보가 가능한 무산소조내부유량제어에 의하여 폐수처리장치의 효율적인 제어가 가능하고, 이를 중앙제어실에서 원격조정 할 수 있는 폐수처리장치의 내부반송 유량제어시스템에 관한 것이다.The present invention relates to an internal return flow control system of a wastewater treatment apparatus. More specifically, in the waste water treatment apparatus comprising an anaerobic tank, a dissolved oxygen low tank, an anoxic tank, an aerobic tank, a settling tank, an internal transport line connecting the aerobic tank and the dissolved oxygen low tank and an internal transport line connecting the anoxic tank and the anaerobic tank, Controlling the flow rate inside the anaerobic tank and F / M ratio in the anaerobic tank to create an optimal environment for the PAOs, which are phosphorus-removing microorganisms that contribute to dephosphorization in the anaerobic tank, by returning the treated water with low concentration of nitrate nitrogen to the anaerobic tank. Efficient control of the wastewater treatment system is possible by controlling the internal flow rate of the anaerobic tank, which can maintain the ratio of nitrogen-nitrogen nitrogen (NO3-N) and mixed liquid suspended solids (MLSS) optimally to ensure high denitrification rate (SNDR) throughout the year. The present invention relates to an internal transport flow control system of a wastewater treatment system that can be remotely controlled from a central control room.

본 발명은 본 발명의 출원인이 기 출원한 폐수처리장치(특허출원 제 10-2000-0011595호)의 내부반송유량의 효율적인 제어를 위한 것이다.The present invention is for the efficient control of the internal transport flow rate of the wastewater treatment apparatus (patent application No. 10-2000-0011595) filed by the applicant of the present invention.

이에 먼저 본 발명이 적용되는 폐수처리장치의 대표적인 구체예를 살펴보면, 도1과 같이 폐수처리장치는 혐기조(1), 무산소조(2), 호기조(3) 및 용존산소저감조(4) 침전조(5)로 구성되며, 구성은 종래의 A2/O방식의 폐수처리장치와 동일하지만, 종래의 A2/O방식의 폐수처리장치는 침전조(5)에서 침전된 슬러지를 혐기조로 반송하는 반면, 본 발명이 적용되는 폐수처리장치는 침전조(5)에서 침전된 슬러지를 호기조(3)로 반송함에 차이가 있다. 폐수처리하기 위한 유입수는 혐기조(1)로 유입되며, 혐기조(1)에서 믹서에 의해 혼합됨과 동시에 인제거 미생물인 PAOs(Phosphours Accumulating Organisms)에 의해 유기물이 제거되고, 인(PO₄ ̄-P)이 방출되어 조내 인의 농도가 증가한다.First, a representative embodiment of the wastewater treatment apparatus to which the present invention is applied will be described. As shown in FIG. 1, the wastewater treatment apparatus includes an anaerobic tank (1), an anaerobic tank (2), an aerobic tank (3), and a dissolved oxygen lowering tank (4) and a precipitation tank (5). ), And the configuration is the same as the conventional A 2 / O wastewater treatment apparatus, while the conventional A 2 / O wastewater treatment apparatus returns the sludge precipitated in the settling tank (5) to the anaerobic tank, The wastewater treatment apparatus to which the invention is applied has a difference in returning the sludge deposited in the settling tank 5 to the aerobic tank 3. The influent for wastewater treatment is introduced into the anaerobic tank (1), and is mixed by the mixer in the anaerobic tank (1) and at the same time organic matter is removed by the phosphorus-removing microorganisms (Phosphours Accumulating Organisms) and phosphorus (PO₄ ̄-P) Released, the concentration of phosphorus in the bath increases.

혐기조(1)에서 처리된 처리수는 무산소조(2)로 이송되며, 무산소조(2)에서도 믹서에 의해 혼합되면서 탈질균에 의한 질소 및 유기물의 제거가 일어난다.The treated water treated in the anaerobic tank 1 is transferred to the anoxic tank 2, and in the anoxic tank 2 is mixed by a mixer to remove nitrogen and organics by denitrification bacteria.

무산소조(2)에서 처리된 처리수는 호기조(3)로 이송되고, 일부는 무산소조 내부반송라인(9)을 통해 혐기조로 반송되는데, 무산소조에서 NOx가 제거된 처리수를 혐기조(1)로 내부반송함에 따라 혐기조에서 NOx에 의한 인 방출 억제현상이 발생하지 않아 결국 최종 인의 제거효율이 향상되게 된다.The treated water treated in the anaerobic tank (2) is transferred to the aerobic tank (3), and part of the treated water is returned to the anaerobic tank through the anaerobic tank internal transfer line (9), and the treated water from which the NOx is removed from the anaerobic tank is returned to the anaerobic tank (1). As a result, NOx suppression of phosphorus emission from the anaerobic tank does not occur, resulting in an improved efficiency of final phosphorus removal.

호기조(3)에서는 바닥에서 압축공기를 불어넣어 산소를 공급함으로써 잔여 유기물 과 암모니아성 질소의 제거가 일어난다. 호기조(3)에서 처리된 처리수는침전조(5)로 이송되고 일부는 질소의 제거를 위해 내부반송라인(7)을 통해 무산소조로 반송된다. 침전조(5)에서는 슬러지를 침전시키고 정화된 물을 외부로 배출하며, 슬러지의 일부는 다시 내부반송라인(6)을 통해 호기조(3)로 공급된다. 상기 호기조(3)에서 무산소조(2)로 반송되는 반송수를 중간에 용존산소저감조(4)를 거치도록 함으로써 반송수내의 용존산소를 제거하여 무산소조(2)에서의 처리효율이 향상된다. 용존산소저감조(4)는 혐기조(1) 또는 무산소조(2) 내부에 설치되거나, 혐기조(1)와 무산소조(2)의 중간에 설치되어도 상관없다.In the aeration tank (3), the compressed air is blown from the bottom to supply oxygen to remove residual organic matter and ammonia nitrogen. The treated water treated in the aerobic tank 3 is transferred to the settling tank 5 and a part of it is returned to the anoxic tank through the internal transfer line 7 for the removal of nitrogen. In the settling tank 5, the sludge is settled and the purified water is discharged to the outside, and a part of the sludge is supplied to the aeration tank 3 through the inner conveying line 6 again. By passing the dissolved oxygen reduction tank 4 in the middle of passing the returned water from the aerobic tank 3 to the anoxic tank 2, the treatment efficiency in the anoxic tank 2 is improved by removing the dissolved oxygen in the returned water. The dissolved oxygen reducing tank 4 may be installed inside the anaerobic tank 1 or the anaerobic tank 2 or may be provided between the anaerobic tank 1 and the anoxic tank 2.

상기와 같은 폐수처리장치의 효율적인 운영을 위해서는 무산소조(2)에서 질산성질소의 농도가 낮은 처리수의 양을 최적화시켜 혐기조(1)로 내부반송시켜 혐기조에서 PAOs가 우점화될 수 있는 환경을 조성하는 것과 무산소조(2)에서의 탈질균의 최적존재량을 표시하는 F/M비(질산성질소(NO3-N)와 혼합액부유물질(MLSS)의 비)를 최적상태로 유지할 수 있도록 호기로(3)부터 용존산소저감조(4)로 반송되는 처리수의 반송유량을 조절하는 것이 매우 중요하다.For efficient operation of the wastewater treatment system as described above, the amount of treated water having low concentration of nitrate nitrogen in the anoxic tank (2) is optimized and returned to the anaerobic tank (1) to create an environment in which PAOs can predominate in the anaerobic tank. And the F / M ratio (the ratio of nitrate nitrogen (NO3-N) and mixed liquor suspended solids (MLSS)) indicating the optimal amount of denitrification bacteria in the anoxic tank (2). It is very important to adjust the return flow rate of the treated water returned to the dissolved oxygen reduction tank (4).

즉, 혐기조 및 무산소조의 오폐수의 정화에 기능하는 미생물(PAOs, 탈질균 등)의 양을 생물학적처리공정에 있어 최적의 값으로 유지하는 것이 상술한 폐수처리장치에서 매우 중요하기 때문에, 이러한 폐수처리장치에서 내부반송되는 처리수의 양을 제어하고, 나아가 이러한 제어를 자동적으로 원격제어 할 수 있는 기술개발이 절실하게 필요하게 되었다.That is, since it is very important in the wastewater treatment apparatus described above to maintain the optimum amount of microorganisms (PAOs, denitrification bacteria, etc.) that function in the purification of wastewater in anaerobic and anaerobic tanks in the biological treatment process, such wastewater treatment apparatus There is an urgent need for the development of technology that can control the amount of treated water returned internally and further remotely control this control.

본 발명은 상기와 같은 기술개발의 필요성에 의해 고안된 것으로서,The present invention has been devised by the necessity of the above technical development,

본 발명의 목적은 폐수처리장치의 내부반송되는 처리수량의 최적제어를 통해 보다 효율적으로 폐수처리장치를 운용하기 위한 것이다.An object of the present invention is to operate the wastewater treatment system more efficiently through the optimal control of the amount of water transported inside the wastewater treatment apparatus.

본 발명의 다른 목적은 계측수단, 계측수단에 의해 계측된 값을 처리하여 내부반송 처리수의 양을 조절하는 제어수단 및 상기 제어수단을 자동적으로 원격조정할 수 있는 제어감시수단으로 구성되는 시스템을 제공하여 폐수처리장치의 최적제어를 제공하는 것이다.Another object of the present invention is to provide a system consisting of a measuring means, a control means for processing the value measured by the measuring means to adjust the amount of the internal transport water and a control monitoring means capable of automatically remotely controlling the control means. To provide optimum control of the wastewater treatment system.

도1은 본 발명이 적용되는 폐수처리장치의 설치구성도의 구체예이다.1 is a specific example of the installation configuration of the wastewater treatment apparatus to which the present invention is applied.

도2는 본 발명의 시스템이 적용된 폐수처리장치의 설치구성도의 실시예이다.Figure 2 is an embodiment of the installation configuration of the wastewater treatment apparatus to which the system of the present invention is applied.

도3은 본 발명의 공정제어설비(PCS)의 내부연산회로중 무산소조 내부반송유량의 제어에 관한 알고리즘의 구체예이다.3 is a specific example of an algorithm related to the control of an oxygen-free tank internal transfer flow rate in the internal operation circuit of the process control equipment (PCS) of the present invention.

도4는 본 발명의 공정제어설비(PCS)의 내부연산회로중 혐기조 내부반송유량의 제어에 관한 알고리즘의 구체예이다.4 is a specific example of an algorithm relating to the control of the internal conveyance flow rate of the anaerobic tank in the internal operation circuit of the process control equipment (PCS) of the present invention.

<도면의 부호에 대한 간단한 설명><Short description of the symbols in the drawings>

10:혐기조 20:용존산소저감조10: anaerobic tank 20: dissolved oxygen reduction

30:무산소조 40:호기조30: anoxic tank 40: angi group

50:침전조 100:무산소조유량반송장치 110,210:내부반송펌프 120,220:내부반송펌프조절수단(인버터)50: sedimentation tank 100: anoxic tank flow transfer device 110, 210: internal transfer pump 120, 220: internal transfer pump adjusting means (inverter)

200:혐기조 유량반송장치 300:유량반송조절장치200: anaerobic tank flow transfer device 300: flow transfer control device

310:공정제어설비(PCS) 311:질산성질소농도계310: process control equipment (PCS) 311: nitrate nitrogen concentration meter

312:용존산소농도계 313:무산소조내부반송유량계 314:유입수유량계 315:유입수화학적산소요구량계312: dissolved oxygen concentration meter 313: internal oxygen flow meter 314: influent flow meter 315: influent chemical oxygen demand meter

316:혼합액부유물질농도계 317:혐기조내부반송유량계 400:켬퓨터감시조작설비316: mixed liquid suspended solids concentration meter 317: anaerobic tank internal conveyance flowmeter 400: on-computer monitoring operation equipment

본 발명은 상기와 같은 목적을 이루기 위해, 폐수처리장치의 호기조 및 무산소조로부터 내부반송되는 처리수의 량을 제어하기 위해, 무산소조유량반송장치, 혐기조유량반송장치 및 유량반송조절장치 및 이를 원격자동제어할 수 있는 컴퓨터감시조작설비가 폐수처리장치에 설치되며, 도2 내지 도4를 기준으로 바람직한 실시예를 상세히 설명한다.The present invention, in order to achieve the above object, in order to control the amount of treated water conveyed from the aerobic tank and the anaerobic tank of the waste water treatment apparatus, an oxygen-free tank flow transfer device, anaerobic tank flow transfer device and flow rate transfer control device and remote automatic control thereof A computer monitoring operation facility capable of being installed in the wastewater treatment apparatus will be described in detail with reference to FIGS. 2 to 4.

본 발명의 폐수처리장치의 내부반송 유량제어시스템은,The internal conveyance flow control system of the wastewater treatment apparatus of the present invention,

용존산소저감조(20)를 경유하여 호기조(40)와 무산소조(30) 사이에 연결되는 내부반송라인(70), 무산소조(30)와 혐기조(10)의 내부반송라인(60) 및 침전조(50)를 포함하는 폐수처리장치(80)에서,An internal conveying line 70 connected between the aerobic tank 40 and the anoxic tank 30 via the dissolved oxygen reducing tank 20, the internal conveying line 60 and the settling tank 50 of the anaerobic tank 30 and the anaerobic tank 10. In the wastewater treatment apparatus (80) comprising:

상기 호기조에 설치되어, 호기조에서 처리된 처리수를 용존산소저감조(20)에 반송하는 내부반송펌프(110) 및 인버터와 같은 펌프작동조절수단(120)을 포함하는 무산소조 유량반송장치(100); 상기 무산소조(30)에 설치되어, 무산소조에서 처리된 처리수를 혐기조(10)에 반송하는 내부반송펌프(210) 및 인버터와 같은 펌프작동조절수단(220)을 포함하는 혐기조 유량반송장치(200); 및 상기 혐기조 및 무산소조 유량반송장치의 제어인자를 계측하는 계측기기, 상기 계측기기의 계측값에 의해 내부반송유량공정을 제어하는 공정제어설비(310)를 포함하는 유량반송조절장치(300)를 포함하며, 상기 폐수정화장치(80)에 무산소조 유량반송장치(100), 혐기조유량반송장치(200)와 유량반송조절장치(300) 및 컴퓨터제어감시조작설비(400)가 설치된 설치 구성도를 도시한 것이 도2이다.An oxygen-free tank flow conveying apparatus 100 is installed in the exhalation tank, including an internal conveying pump 110 for conveying the treated water treated in the exhalation tank to the dissolved oxygen reduction tank 20 and a pump operation control means 120 such as an inverter. ; The anaerobic tank flow conveying apparatus 200, which is installed in the anoxic tank 30, includes an internal conveying pump 210 for conveying the treated water treated in the anaerobic tank 10 to the anaerobic tank 10 and a pump operation control means 220 such as an inverter. ; And a flow measuring device 300 including a measuring device for measuring control factors of the anaerobic tank and anoxic tank flow conveying device, and a process control facility 310 for controlling an internal conveying flow process by the measured value of the measuring device. In addition, the wastewater purification apparatus 80 is an anaerobic tank flow conveying apparatus 100, an anaerobic tank flow conveying apparatus 200 and a flow conveying control device 300 and a computer controlled monitoring operation equipment 400 is shown an installation diagram installed 2 is shown.

이에 먼저 본 발명이 적용되는 폐수처리장치(80)를 먼저 살펴보고, 호기조(40)에서 처리된 처리수를 무산소조의 용존산소저감조(20)에 반송하는 무산소조유량반송장치(100), 무산소조(30)에서 처리된 처리수를 혐기조(10)에 반송하는 혐기조유량반송장치(200), 및 상기 무산소조유량반송장치 와 혐기조유량반송장치를 자동적으로 제어하는 유량반송조절장치(300), 상기 유량반송조절장치(300)를 원격제어하는 컴퓨터감시조작설비(400)를 순서대로 설명한다.First of all, the wastewater treatment apparatus 80 to which the present invention is applied will be described first, and the oxygen-free tank flow conveyance apparatus 100 and the oxygen-free tank for conveying the treated water treated in the aerobic tank 40 to the dissolved oxygen lowering tank 20 in the anoxic tank ( Anaerobic tank flow conveying apparatus 200 for returning the treated water treated in 30) to the anaerobic tank 10, and a flow conveyance control device 300 for automatically controlling the anaerobic tank flow conveying apparatus and the anaerobic tank flow conveying apparatus, the flow rate conveying The computer monitoring and operating facility 400 for remotely controlling the adjusting device 300 will be described in order.

<폐수처리장치><Waste water treatment device>

본 발명이 적용되는 폐수처리장치(80) 살펴보면, 폐수처리장치(80)는혐기조(10), 용존산소저감조(20), 무산소조(30), 호기조(40) 및 침전조(50)로 구성된다.Looking at the wastewater treatment apparatus 80 to which the present invention is applied, the wastewater treatment apparatus 80 is composed of an anaerobic tank 10, dissolved oxygen reduction tank 20, anoxic tank 30, an aerobic tank 40 and a settling tank 50. .

폐수를 처리하기 위한 유입수는 혐기조(10)로 유입되며, 혐기조(10)에서 믹서에 의해 혼합됨과 동시에 인제거 미생물인 PAOs(Phosphours Accumulating Organisms)에 의해 유기물이 제거되고, 인(PO₄ ̄-P)이 방출되어 혐기조내 인의 농도가 증가한다. 혐기조(10)에서 처리된 처리수는 무산소조(30)로 이송되며, 무산소조(30)에서도 믹서에 의해 혼합되면서 탈질균에 의한 질소 및 유기물의 제거가 일어난다.Influent for treating wastewater is introduced into the anaerobic tank (10), and mixed with the mixer in the anaerobic tank (10) and at the same time organic matter is removed by the phosphorus removal microorganisms (Phosphours Accumulating Organisms), phosphorus (PO ₄ ̄-P) It is released, increasing the concentration of phosphorus in the anaerobic tank. The treated water treated in the anaerobic tank 10 is transferred to the anoxic tank 30, and the nitrogen and organics are removed by the denitrification bacteria while being mixed by the mixer in the anoxic tank 30 as well.

무산소조(30)에서 처리된 처리수는 호기조(40)로 이송되고, 일부는 무산소조 내부반송라인(60)을 통해 혐기조(10)로 반송되는데, 무산소조에서 NOx가 제거된 처리수를 혐기조(10)로 내부반송함에 따라 혐기조에서 NOx에 의한 인 방출 억제현상이 발생하지 않아 결국 최종 인의 제거효율이 향상되게 된다.The treated water treated in the anaerobic tank 30 is transferred to the aerobic tank 40, and part of the treated water is returned to the anaerobic tank 10 through the anaerobic tank internal return line 60, and the treated water from which the NOx is removed from the anaerobic tank 10 is anaerobic tank 10. As it is transported inside the furnace, the suppression of phosphorus emission by NOx does not occur in the anaerobic tank, so that the final phosphorus removal efficiency is improved.

호기조(30)에서는 바닥에서 압축공기를 불어넣어 산소를 공급함으로써 잔여 유기물 과 암모니아성 질소의 제거가 일어난다. 호기조(30)에서 처리된 처리수는 침전조(50)로 이송되고 일부는 질소의 제거를 위해 내부반송라인(70)을 통해 용존산소저감조(20)를 경유하여 무산소조(30)로 반송된다. 침전조(50)에서는 슬러지를 침전시키고 정화된 물을 외부로 배출하며, 슬러지의 일부는 다시 내부반송라인을 통해 호기조(40)로 공급된다.In the aerobic tank (30) by blowing compressed air from the bottom to supply oxygen to remove the residual organic matter and ammonia nitrogen. The treated water treated in the aerobic tank 30 is transferred to the settling tank 50 and part of the treated water is returned to the anoxic tank 30 via the dissolved oxygen reduction tank 20 through the inner transfer line 70 to remove nitrogen. In the settling tank 50, the sludge is precipitated and the purified water is discharged to the outside, and a part of the sludge is supplied to the aeration tank 40 through the inner conveying line again.

상기 호기조(40)에서 무산소조(30)로 반송되는 반송수를 중간에 용존산소저감조(20)를 거치도록 함으로써 반송수내의 용존산소를 제거하여 무산소조(30)에서의 처리효율을 향상 시킨다. 용존산소저감조(20)는 혐기조(10) 또는 무산소조(30) 내부에 설치되거나, 혐기조(10)와 무산소조(30) 중간에 설치된다.By passing the dissolved oxygen reduction tank 20 in the middle of the conveyed water returned from the aerobic tank 40 to the anoxic tank 30, the dissolved oxygen in the conveyed water is removed to improve the treatment efficiency in the anoxic tank 30. Dissolved oxygen reduction tank 20 is installed in the anaerobic tank 10 or the anaerobic tank 30, or is installed between the anaerobic tank 10 and the anaerobic tank 30.

<무산소조 유량반송장치><Anoxic tank flow transfer device>

무산소조 유량반송장치(100)는 호기조(30)에서 처리된 처리수를 무산소조의 용존산소저감조(20)로 반송하는 장치로서, 내부반송펌프(110) 및 내부반송펌프의 회전수를 조절하는 인버터와 같은 펌프작동조절수단(120)을 포함한다.The oxygen-free tank flow conveying apparatus 100 is a device for conveying the treated water treated in the aerobic tank 30 to the dissolved oxygen-low tank 20 of the oxygen-free tank, the inverter for adjusting the rotational speed of the internal transport pump 110 and the internal transport pump Pump operation control means such as 120.

내부반송펌프(110)는 호기조 내부에서 작동할 수 있는 펌프가 이용되며, 도2에서는 호기조 내부 바닥에 설치되어 있으며, 폐수정화처리장치의 크기 및 호기조의 용량에 따라 여러 대가 설치될 수 있다. 내부반송펌프(110)의 회전수의 대, 소에 따라 호기조에서 처리된 처리수의 무산소조로의 반송량이 조절된다.The internal conveying pump 110 is used to operate the pump inside the aerobic tank, it is installed in the bottom of the aerobic tank in Figure 2, may be installed in accordance with the size of the waste water purification treatment apparatus and the capacity of the aerobic tank. The amount of conveyance of the treated water processed in an aerobic tank to the anoxic tank is adjusted according to the magnitude | size of the rotation speed of the internal conveyance pump 110.

펌프작동조절수단(120)은 내부반송펌프(110)의 모터(M)의 회전수를 조절하기 위한 것으로서, 후술되는 공정제어설비(310)의 제어연산결과에 따른 상기 모터의 회전수를 변환시킬 수 있는 인버터가 이용됨이 바람직하지만 이에 한정되는 것은 아니며 내부반송펌프의 모터의 회전수를 제어할 수 있는 다른 장치의 이용도 가능하다. 이러한 회전수의 조절을 제어하는 수단이 후술되는 공정제어설비(PCS, 310)이고, 이러한 공정제어설비는 후술되는 혐기조유량반송장치(200)도 제어한다.Pump operation control means 120 is for adjusting the rotational speed of the motor (M) of the internal transfer pump 110, to convert the rotational speed of the motor according to the control operation result of the process control equipment 310 to be described later It is preferable that an inverter can be used, but is not limited thereto. It is also possible to use another apparatus capable of controlling the rotational speed of the motor of the internal transfer pump. The means for controlling the adjustment of the rotational speed is a process control facility (PCS, 310) to be described later, this process control facility also controls the anaerobic tank flow transfer device 200 described later.

<혐기조 유량반송장치><Aerobic tank flow conveying device>

혐기조유량반송장치(200)는 무산소조(30)에서 처리된 처리수를 혐기조(10)로 반송하는 장치로서, 내부반송펌프(210) 및 내부반송펌프의 회전수를 조절하는 인버터와 같은 펌프작동조절수단(220)을 포함한다.Anaerobic tank flow conveying apparatus 200 is a device for conveying the treated water treated in the anaerobic tank 30 to the anaerobic tank 10, the pump operation control such as the inverter to control the rotational speed of the inner conveying pump 210 and the inner conveying pump Means 220.

내부반송펌프(210)는 상술한 호기조 유량반송장치와 동일하며, 내부반송펌프(210)의 회전수의 대, 소에 따라 무산소조에서 처리된 처리수의 반송량이 조절된다.The internal conveying pump 210 is the same as the above-described aerobic flow rate conveying apparatus, and the conveying amount of the treated water treated in the anoxic tank is adjusted according to the magnitude of the rotation speed of the inner conveying pump 210.

펌프작동조절수단(220)은 내부반송펌프(210)의 모터(M)의 회전수를 조절하기 위한 것으로서, 역시 후술되는 공정제어설비(320)의 제어연산결과 따른 상기 모터의 회전수를 변환시킬 수 있는 인버터(220)가 이용됨이 바람직하며, 이러한 회전수의 조절을 제어하는 수단이 후술되는 공정제어설비(PCS, 310)이다.The pump operation control means 220 is to adjust the rotational speed of the motor (M) of the internal transfer pump 210, and also to convert the rotational speed of the motor according to the control operation result of the process control equipment 320, which will be described later It is preferable that an inverter 220 can be used, and a means for controlling the adjustment of the rotation speed is a process control facility (PCS, 310) described below.

<유량반송조절장치><Flow transfer control device>

유량반송조절장치(300)는 상술한 무산소조유량반송장치(100) 및 혐기조유량반송장치(200)에서 공통적으로 사용되는 내부반송펌프(110,120)의 회전수를 조절하는 기능을 가지며, 자동제어를 위해 PCS(Process Control Station, 공정제어설비)의 제어연산장치인 PLC(Programmable Logic Control)가 이용된다. 즉 상기 PLC의 내부프로그램의 따른 제어연산 결과가 조작량으로 출력되며, 이에 따라 내부반송펌프의 회전수가 조절되는데 이러한 제어연산 결과를 얻는데 필요한 입력값은 폐수처리장치에 설치된 다수의 계측기기에 의해 측정된 계측값이 이용된다. 즉, 계측기기에 의하여 측정된 계측값(입력값)과 PLC의 내부 프로그램(제어연산)에 의하여 조절하고자 하는 목표값인 조작량(제어연산결과)이 생성되며, 이러한 조작량(제어연산결과)은 호기조 및 무산소조의 내부반송펌프의 인버터에 전달되고, 상기 인버터에서 발생되는 주파수에 의해 내부반송펌프의 회전수가 제어된다.The flow transfer control device 300 has a function of adjusting the rotation speed of the internal transfer pumps 110 and 120 which are commonly used in the above-described anoxic tank flow transfer device 100 and the anaerobic tank flow transfer device 200, for automatic control. Programmable Logic Control (PLC), which is a control operation device of a PCS (Process Control Station), is used. That is, the result of control operation according to the internal program of the PLC is output as an operation amount, and accordingly, the rotation speed of the internal transfer pump is adjusted. The input value required to obtain the control operation result is measured by a plurality of measuring devices installed in the wastewater treatment apparatus. The value is used. That is, the manipulated value (control operation result), which is a target value to be adjusted, is generated by the measured value (input value) measured by the measuring instrument and the internal program (control operation) of the PLC, and the manipulated value (control operation result) It is transmitted to the inverter of the internal transfer pump of the anaerobic tank, and the rotation speed of the internal transfer pump is controlled by the frequency generated by the inverter.

상기 계측기기는 크게 무산소조유량반송장치의 제어를 위한 계측기기 및 혐기조유량반송장치의 제어를 위한 계측기기로 나누어 볼 수 있는데, 이는 무산소조유량반송장치(100) 와 혐기조유량반송장치(200)를 제어하기 위한 제어연산에 요구되는 입력값에 차이가 있기 때문이다.The measuring device can be divided into a measuring device for the control of the anaerobic flow rate transport apparatus and a measuring device for the control of the anaerobic flow rate transport apparatus, which is used to control the anaerobic flow rate transport apparatus 100 and the anaerobic flow rate transport apparatus 200. This is because there is a difference in the input value required for the control operation.

즉, 무산소조유량반송장치(100)의 제어연산에 필요한 입력값은 무산소조의 질산성질소농도, 무산소조(또는 호기조)에 설치되는 용존산소저감조(20)의 용존산소농도, 무산소조의 내부반송유량값인데, 이러한 값들을 측정하는 계측기기는 통상의 농도계 및 유량계를 이용하되, 도2에는 각각 질산성질소농도계(311), 용존산소농도계(312), 무산소조내부반송유량계(313)로 표시되어 있으며, 측정된 값은 전기적신호로 변환되어 PLC에 전달되며, 이러한 변환장치가 도2에 NO3T, DOT, FT1으로 각각 표시되어 있다.In other words, the input value required for the control operation of the oxygen-free tank flow transfer device 100 is the nitric acid concentration of the oxygen-free tank, the dissolved oxygen concentration of the dissolved oxygen-lowering tank 20 installed in the oxygen-free tank (or aerobic tank), and the internal transport flow value of the oxygen-free tank. The measuring instrument for measuring these values is a conventional densitometer and a flow meter, but is shown in Figure 2 as a nitrate nitrogen concentration meter 311, dissolved oxygen concentration meter 312, anoxic tank internal return flow meter (313), respectively The converted value is converted into an electrical signal and transmitted to the PLC, and these converters are indicated as NO 3 T, DOT, and FT 1 in FIG.

또한, 혐기조유량반송장치(200)의 제어연산에 필요한 입력값은 혐기조에 유입되는 유입오폐수량, 유입오폐수의 화학적요구산소량, 혐기조의 혼합액부유물질(MLSS)의 농도 및 혐기조의 내부반송유량인데, 이러한 값들을 측정하는 계측기기 역시 통상의 농도계 및 유량계를 이용하되, 도2에는 각각 유입수유량계(314), 유입수화학적산소요구량계(315), 혼합액부유물질농도계(316) 및 혐기조 내부반송유량계(317)로 표시되어 있으며, 계측된 값도 역시 전기적신호로 변환되어 PLC에 전달되며, 이러한 변환장치가 도2에 FT2, CODT, MLSST FT3로 각각 표시되어 있다.In addition, input values required for the control operation of the anaerobic tank flow conveying apparatus 200 are inflow wastewater flowing into the anaerobic tank, chemical required oxygen content of the influent wastewater, concentration of the mixed liquid suspended solids (MLSS) of the anaerobic tank, and internal transport flow of the anaerobic tank. Measuring equipment for measuring these values also uses a conventional concentration meter and flow meter, but Figure 2 shows the influent flow meter 314, influent chemical oxygen demand meter 315, mixed liquid suspended solids concentration meter 316 and anaerobic tank internal flow meter (317) The measured values are also converted into electrical signals and transferred to the PLC, and these converters are indicated as FT2, CODT, and MLSST FT3 in FIG.

호기조, 용존산소저감조, 무산소조 및 혐기조에 각각 설치된 계측기기들로부터 계측된 입력값을 제어하고자 하는 조작량으로 변환하는 장치가 도2의 공정제어설비(PCS,310)이다. 이러한 PCS는 내부연산장치로서 PLC를 채택하고 있으며, 상기 PLC는 계측기기로부터 입력되는 입력값을 기준으로 내부 프로그램에 따라 목표로 하는 조작량을 자동적으로 연산하는 장치이며, 본 발명에서는 입력값을 받아들이는 수단을 입력회로라 하고, 입력값을 조작량으로 변환시키는 수단을 내부연산회로라하고, 변환된 조작량을 내부반송펌프의 인버터를 조절할 수 있는 주파수를 형성시키는 수단을 펌프조정회로라 하고 이러한 회로들은 상기 PLC의 내부 프로그램으로 기능하는 것으로 한다.The apparatus for converting the input values measured from the measuring instruments installed in the aerobic tank, the dissolved oxygen lowering tank, the anoxic tank, and the anaerobic tank to the desired manipulated value is the process control facility (PCS) 310 of FIG. The PCS adopts a PLC as an internal computing device, and the PLC is a device for automatically calculating a target manipulated value according to an internal program based on an input value input from a measuring device. The means is called an input circuit, the means for converting the input value into the manipulated variable is called an internal operation circuit, and the means for forming the frequency at which the converted manipulated variable is capable of adjusting the inverter of the internal transfer pump is called a pump adjusting circuit. Function as internal program of PLC.

상기 입력회로 및 펌프조정회로는 통상의 PLC에서 채택하고 있는 입력회로 및 출력회로로서 기능하는 것이므로 별도의 설명은 생략한다.Since the input circuit and the pump adjusting circuit function as input circuits and output circuits adopted by ordinary PLCs, a separate description is omitted.

상기 PLC의 내부연산회로는 계측기기로부터 전달된 계측값을 입력값으로 하여 내부로직에 따라 최종적인 폐수처리장치에 설치된 내부반송펌프(110,210)의 회전수를 조절하는 작용을 한다.The internal operation circuit of the PLC serves to adjust the rotation speed of the internal transfer pumps 110 and 210 installed in the final wastewater treatment device according to the internal logic using the measured value transmitted from the measuring device as an input value.

먼저, 호기조(40)에 설치된 내부반송펌프(210)의 회전수를 조절하는 PLC의 내부연산회로의 알고리즘을 도시한 것이 도3이다.First, FIG. 3 shows an algorithm of an internal operation circuit of a PLC for adjusting the rotation speed of the internal transfer pump 210 installed in the aerobic tank 40.

즉, 상술한 바와 같이 무산소조유량반송장치(100)의 제어값에 필요한 입력값은 무산소조의 질산성질소농도, 무산소조(또는 호기조)에 설치되는 용존산소저감조(20)의 용존산소농도, 무산소조의 내부반송유량값이며, 최종적인 조작량은 내부반송펌프(210)의 인버터의 회전수이다.That is, as described above, the input value required for the control value of the oxygen-free tank flow conveyance apparatus 100 includes the nitrate-nitrogen concentration of the oxygen-free tank, the dissolved oxygen concentration of the dissolved oxygen-lowering tank 20 installed in the oxygen-free tank (or aerobic tank), and the oxygen-free tank. It is an internal conveyance flow rate value, and a final operation amount is the rotation speed of the inverter of the internal conveyance pump 210.

제어연산은 주연산회로인 캐스캐이드 연산회로와 보조연산회로인 용존산소저감조의 용존산소농도제어 PID 연산회로로 구성되며, 이들 각각의 연산결과를 작은값 선택기(LOW선택기)를 통하여 출력함으로서 용존산소저감조의 용존산소 농도가 목표값인 0.2mg/L을 초과할 경우 내부반송유량을 감소시킬 수 있도록 한다.The control operation consists of the cascade operation circuit, which is the main operation circuit, and the dissolved oxygen concentration control PID operation circuit of the dissolved oxygen reduction modulation, which is the auxiliary operation circuit, and is dissolved by outputting each of these calculation results through a small value selector (LOW selector). When the dissolved oxygen concentration in the oxygen lowering tank exceeds the target value of 0.2 mg / L, the internal return flow rate can be reduced.

캐스캐이드 연산회로의 상위(MASTER) PID연산에 사용되는 편차는 무산소조의 질산성질소(NO3 --N)농도와 목표값과의 차이이며, 하위 PID연산에 사용되는 편차는 상위 PID 연산결과와 무산소조에 유입되는 내부반송유량과의 차이이다.The deviation used for the master PID operation of the cascade operation circuit is the difference between the anoxic nitrogen nitrate (NO 3 -- N) concentration and the target value, and the deviation used for the lower PID operation is the result of the upper PID operation. This is the difference from the internal return flow into the tank.

상·하한제어회로와 내부반송유량운전자회로는 계측기기 고장시 운전자의 수동설정값에 의하여 계속 운전할 수 있도록 한다.The upper and lower limit control circuit and the internal return flow driver circuit can be operated continuously by the manual setting value of the driver in case of failure of the measuring equipment.

최종적인 제어연산결과 즉, 조작량의 출력에 비례하도록 내부반송펌프의 인버터가 모터전원의 주파수를 변환시켜 모터의 회전수를 조절하게 된다. 이러한 모터의 회전수의 조절에 따라 질산성질소를 미생물기작에 의하여 제거하는 무산소조에서의 질산성질소와 미생물량(MLSS)과의 비, 즉 상술한 F/M비를 적정하게 유지함으로써 최대의 비탈질율(SDNR)확보를 가능케하는 환경이 조성된다.As a result of the final control operation, that is, the inverter of the internal transfer pump converts the frequency of the motor power so as to be proportional to the output of the manipulated variable to adjust the rotation speed of the motor. By adjusting the rotational speed of the motor, the ratio between the nitrous nitrogen and the microbial mass (MLSS) in the anoxic tank in which the nitrate is removed by the microbial mechanism, that is, the maximum ratio is maintained by maintaining the above-described F / M ratio. An environment is created to enable SDNR.

또한, 무산소조(20)에 설치된 내부반송펌프(110)의 회전수를 조절하는 PLC의 내부연산회로의 알고리즘을 도시한 것이 도4이다.4 shows an algorithm of the internal operation circuit of the PLC for adjusting the rotational speed of the internal transfer pump 110 installed in the oxygen-free tank 20.

즉, 상술한 바와 같이 혐기조유량반송장치(100)의 제어연산에 필요한 입력값은 혐기조에 유입되는 유입오폐수량, 유입오폐수의 화학적요구산소량, 혐기조의 혼합액부유물질(MLSS)의 농도 및 혐기조의 내부반송유량이며, 최종적인 조작량은 내부반송펌프(110)의 인버터의 회전수이다.That is, as described above, the input value required for the control operation of the anaerobic tank transfer device 100 includes the amount of wastewater flowing into the anaerobic tank, the chemical demand oxygen of the wastewater, the concentration of the mixed liquid suspended solids (MLSS) of the anaerobic tank, and the inside of the anaerobic tank. It is a conveyance flow volume and a final operation amount is the rotation speed of the inverter of the internal conveyance pump 110. FIG.

제어연산은 상위(MASTER) PID연산과 하위 PID연산으로 구성되는 캐스캐이드연산방식이다. 상위 PID연산에 사용되는 편차는 혐기조 오·폐수량과 유입수화학적산소요구량의 곱셈결과를 설정값 변환을 통하여 구한 목표값으로부터 혐기조혼합액부유물질농도를 감하여 얻는다. 하위 PID연산에 사용되는 편차는 상위 PID연산결과로부터 혐기조 내부반송유량을 감하여 얻는다. 상·하한 제한회로와 내부반송유량운전자의 수동설정값에 의하여 계속운전될 수 있다.The control operation is a cascade operation method consisting of a master PID operation and a lower PID operation. Deviation used for higher PID operation is obtained by subtracting the anaerobic tank mixed liquor concentration from the target value obtained by multiplying the anaerobic tank waste and influent chemical oxygen demand by the set value conversion. The deviation used for the lower PID operation is obtained by subtracting the internal return flow of the anaerobic tank from the upper PID operation result. Can be operated continuously by the upper and lower limit circuit and the manual setting value of the internal return flow operator.

상기 공정제어설비(PCS)는 폐수처리장치의 운전을 중앙제어실에서 원격감시제어가 가능하도록 켬퓨터감시제어시스템(OPS, CRT Operator's Station,400)에 연결되어 상기 OPS 출력장치에 약속된 도형으로 표시하여 상기 중앙제어실에 실시간으로 감시할 수 있도록 하여 PCS가 별도의 수동 조작없이 제어되도록 한다.The process control equipment (PCS) is connected to a computer monitoring control system (OPS, CRT Operator's Station, 400) to remotely control the operation of the wastewater treatment system in a central control room. The central control room can be monitored in real time so that the PCS can be controlled without a separate manual operation.

본 발명은 폐수처리장치에 설치된 계측기기, 상기 계측기기에 의해 계측된 값을 처리하여 내부반송 처리수의 양을 조절하는 제어수단 및 상기 제어수단을 자동적으로 원격조정할 수 있는 제어감시수단으로 구성되는 시스템을 제공하여 폐수처리장치의 최적제어를 통해 유입되는 오·폐수의 처리의 효율성을 높일 수 있다.The present invention is a system comprising a measuring device installed in a wastewater treatment device, a control means for processing the value measured by the measuring device to adjust the amount of the internal transport water and a control and monitoring means for automatically remotely controlling the control means. It is possible to increase the efficiency of the treatment of influent wastewater through the optimal control of the wastewater treatment system by providing a.

Claims (5)

용존산소저감조를 경유하는 호기조와 무산소조의 내부반송라인, 무산소조와 혐기조의 내부반송라인 및 침전조를 포함하는 폐수처리장치에서,In a wastewater treatment apparatus including an aerobic tank and an anoxic tank inner conveying line through a dissolved oxygen reducing tank, an inner conveying line of anoxic and anaerobic tanks and a settling tank, 상기 호기조에 설치되어, 호기조에서 처리된 처리수를 용존산소저감조에 반송하는 내부반송펌프 및 인버터와 같은 펌프작동조절수단을 포함하는 무산소조유량반송장치;An oxygen-free tank flow conveyance device installed in the aerobic tank, the pump comprising an internal transport pump for conveying the treated water treated in the aerobic tank to the dissolved oxygen reduction tank and a pump operation control means such as an inverter; 상기 무산소조에 설치되어, 무산소조에서 처리된 처리수를 혐기조에 반송하는 내부반송펌프 및 인버터와 같은 펌프작동조절수단을 포함하는 혐기조유량반송장치; 및,An anaerobic tank flow conveying apparatus installed in the anoxic tank and including a pump operation control means such as an internal conveying pump and an inverter for conveying the treated water treated in the anaerobic tank to the anaerobic tank; And, 상기 무산소조 및 혐기조 유량반송장치의 제어값을 계측하는 계측기기, 상기 계측기기의 계측값에 의해 내부반송유량공정을 제어하는 공정제어설비를 포함하는 유량반송조절장치;A flow conveyance adjusting apparatus including a measuring device for measuring a control value of the anoxic tank and an anaerobic tank flow conveying device, and a process control facility for controlling an internal conveying flow rate process by the measured value of the measuring device; 를 포함하며, 상기 유량반송조절장치에 의해 혐기조의 탈인작용 및 무산소조의 비탈질율이 자동제어 되어 최적화되는 것을 특징으로 하는 폐수처리장치의 내부반송 유량제어시스템.Included, the internal flow rate control system of the wastewater treatment apparatus, characterized in that the dephosphorization action of the anaerobic tank and the non-nitrogen ratio of the anaerobic tank by the flow rate control device is automatically controlled and optimized. 제1항에서, 상기 계측기기는The method of claim 1, wherein the measuring device 폐수처리장치에 유입라인에 설치되며, 유입오폐수 량을 계측하는 계측기기;Installed in the inlet line in the wastewater treatment device, the measuring device for measuring the amount of wastewater introduced; 폐수처리장치에 유입라인에 설치되며, 유입오폐수의 화학적산소요구량(COD)을 계측하는 계측기기;A measuring device installed in an inlet line of the wastewater treatment device and measuring a chemical oxygen demand (COD) of the influent wastewater; 혐기조에 설치되며, 혐기조의 혼합액부유물질(MLSS)의 농도를 계측하는 계측기기;A measuring device installed in the anaerobic tank and measuring the concentration of the mixed liquid suspended solids (MLSS) in the anaerobic tank; 무산소조에 설치되며, 무산소조의 질산성질소의 농도를 계측하는 계측기기;A measuring device installed in the anoxic tank and measuring the concentration of nitrate nitrogen in the anoxic tank; 무산소조 또는 호기조에 설치되는 용존산소저감조의 용존산소를 계측하는 계측기기; 및A measuring device for measuring the dissolved oxygen of the dissolved oxygen reducing tank installed in the anoxic tank or the aerobic tank; And 호기조유량반송장치 및 혐기조유량반송장치의 내부 반송유량을 계측하는 계측기기;A measuring device for measuring an internal conveying flow rate of the aerobic flow rate conveying apparatus and the anaerobic flow rate conveying apparatus; 를 포함하며, 각각의 계측기기의 계측값은 공정제어설비(PCS)에 제어되어 혐기조 및 무산소조 내부반송유량이 자동적으로 제어되는 것을 특징으로 하는 폐수처리장치의 내부반송 유량제어시스템.Included, the measured value of each measuring instrument is controlled in the process control equipment (PCS), the internal transport flow rate control system of the wastewater treatment apparatus, characterized in that the anaerobic tank and anoxic tank internal transport flow rate is automatically controlled. 제2항에서, 상기 혐기조 내부반송유량의 자동제어는In claim 2, the automatic control of the flow rate of the inside of the anaerobic tank is 혐기조의 유입오폐수량, 유입오폐수의 화학적요구산소량, 혐기조의 혼합액부유물질의농도, 및 혐기조의 내부반송유량의 계측값인 입력신호를 받아들이는 입력회로;An input circuit for receiving an input signal which is a measurement value of an inflow wastewater amount of an anaerobic tank, a chemical required oxygen amount of an inflow wastewater, a concentration of a mixed liquid floating material of an anaerobic tank, and an internal return flow rate of an anaerobic tank; 운전자의 수동설정값을 추가시킬 수 있는 운전자입력회로에 조정되며, 상기 입력신호를 제어목표값인 상한 및 하한제어값으로 변환시키는 내부연산회로; 및,An internal operation circuit adjusted to a driver input circuit capable of adding a manual setting value of a driver, and converting the input signal into upper and lower control values which are control target values; And, 상기 상한 및 하한 제어값에 비례하도록 혐기조의 펌프작동조절수단에 의해 조정된 주파수에 의해 내부반송펌프의 회전수를 조절하는 펌프조정회로;A pump adjusting circuit for adjusting the rotational speed of the internal conveying pump by a frequency adjusted by a pump operation adjusting means of an anaerobic tank so as to be proportional to the upper and lower control values; 를 포함하는 공장제어설비에 의하여 제어되는 것을 특징으로 하는 폐수처리장치의 내부반송 유량제어시스템.Internal conveyance flow control system of the wastewater treatment apparatus, characterized in that controlled by the plant control equipment comprising a. 제2항에서, 상기 무산소조 내부반송유량의 자동제어는The automatic control of the oxygen-free tank internal transfer flow rate is 무산소조의 질산성 질소농도, 용존산소저감조의 용존산소농도, 및 무산소조의 내부반송유량의 계측값인 입력신호를 받아들이는 입력회로;An input circuit for receiving an input signal that is a measured value of the nitrate nitrogen concentration in the anoxic tank, the dissolved oxygen concentration in the dissolved oxygen low tank, and the internal return flow rate of the anoxic tank; 운전자의 수동설정값을 추가시킬 수 있는 운전자입력회로에 조정되며, 상기 입력신호를 제어목표값인 상한 및 하한 제어값으로 변환시키는 내부연산회로; 및,An internal operation circuit adjusted to a driver input circuit capable of adding a manual setting value of a driver, and converting the input signal into upper and lower control values which are control target values; And, 상기 상한 및 하한 제어값에 비례하도록 무산소조의 펌프작동조절수단에 의해 조정된 주파수에 의해 내부반송펌프의 회전수를 조절하는 펌프조정회로;A pump adjusting circuit for adjusting the rotational speed of the internal conveying pump by the frequency adjusted by the pump operation adjusting means of the anoxic tank so as to be proportional to the upper and lower limit control values; 를 포함하는 공장제어설비에 의하여 제어되는 것을 특징으로 하는 폐수처리장치의 내부반송 유량제어시스템.Internal conveyance flow control system of the wastewater treatment apparatus, characterized in that controlled by the plant control equipment comprising a. 제1항 내지 제4항 중 어느 한 항에서, 상기 유량반송제어장치는 공정제어설비(PCS)에 연결되며, 공정제어설비의 제어를 약속된 도형으로 표시할 수 있는 표시장치 및 표시장치에 의해 시각화된 제어공정을 실시간으로 감시하는 켬퓨터감시조작설비(OPS)가 설치된 중앙제어실에 의하여 원격으로 자동 제어되는 것을 특징으로하는 폐수처리장치의 내부반송 유량제어시스템.The display apparatus according to any one of claims 1 to 4, wherein the flow conveyance control device is connected to a process control facility (PCS), and is provided by a display device and a display device capable of displaying the control of the process control facility in a promised figure. An internal conveyance flow control system of a wastewater treatment system, characterized in that the remote control is automatically controlled by a central control room equipped with an On-Site Monitoring System (OPS) for monitoring the visualized control process in real time.
KR10-2002-0018468A 2002-04-04 2002-04-04 inner flow control system of apparatus for treating water KR100434639B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0018468A KR100434639B1 (en) 2002-04-04 2002-04-04 inner flow control system of apparatus for treating water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0018468A KR100434639B1 (en) 2002-04-04 2002-04-04 inner flow control system of apparatus for treating water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR2020020010197U Division KR200279809Y1 (en) 2002-04-04 2002-04-04 inner flow control system of apparatus for treating water

Publications (2)

Publication Number Publication Date
KR20030079435A KR20030079435A (en) 2003-10-10
KR100434639B1 true KR100434639B1 (en) 2004-06-16

Family

ID=32377805

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0018468A KR100434639B1 (en) 2002-04-04 2002-04-04 inner flow control system of apparatus for treating water

Country Status (1)

Country Link
KR (1) KR100434639B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097144B1 (en) 2011-07-05 2011-12-21 대웅이엔에스 (주) Advanced batch equipment and the method thereof for sewage-wastewater using an anoxic/anaerobic bioreactor
KR101130542B1 (en) * 2011-06-21 2012-03-30 제이에이건설주식회사 A2o(anaerobic anoxic aerobic) reaction apparatus using aeration-mixing-liquid transfer device and method of treating wastewater using thereit
KR20220074123A (en) 2020-11-27 2022-06-03 주식회사 유니온 Ship exhaust gas scrubber simulation test system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709456B1 (en) * 2006-03-31 2007-04-18 지에스건설 주식회사 Waste water disposal plant and waste water disposal method
KR100796456B1 (en) * 2007-06-22 2008-01-21 태화강재산업 주식회사 Waste water treatment process control apparatus and method
KR100884504B1 (en) 2008-06-17 2009-03-06 태화강재산업 주식회사 Apparatus for treating waste water and method for controlling the same
CN108585207B (en) * 2018-07-16 2024-01-02 北京北排水务设计研究院有限公司 Baffle plate for preventing dissolved oxygen in aerobic tank from flowing back to anoxic tank and application method of baffle plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861889A (en) * 1981-10-07 1983-04-13 Toshiba Corp Controlling method for sewage treatment
KR19990060464A (en) * 1997-12-31 1999-07-26 정충혁 Sewage and 5) Circulation of Microbial Return Sludge and High Purity Oxygen Mixture Nitrogen and phosphorus simultaneous treatment method of wastewater and its apparatus
KR20000063457A (en) * 2000-07-13 2000-11-06 김학명 Internal clarifier Oxidation ditch system combined with flow control function
KR20010086936A (en) * 2000-03-04 2001-09-15 김창원 High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus
KR200267141Y1 (en) * 2001-11-09 2002-03-09 (주)동명기술공단종합건축사사무소 equipment for advanced wastewater-treatment with a function of control according to the composition
KR200273463Y1 (en) * 2002-01-07 2002-04-26 주식회사 대명테크 Wastewater treatment system with auto-controlled Intermittent aeration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861889A (en) * 1981-10-07 1983-04-13 Toshiba Corp Controlling method for sewage treatment
KR19990060464A (en) * 1997-12-31 1999-07-26 정충혁 Sewage and 5) Circulation of Microbial Return Sludge and High Purity Oxygen Mixture Nitrogen and phosphorus simultaneous treatment method of wastewater and its apparatus
KR20010086936A (en) * 2000-03-04 2001-09-15 김창원 High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus
KR20000063457A (en) * 2000-07-13 2000-11-06 김학명 Internal clarifier Oxidation ditch system combined with flow control function
KR200267141Y1 (en) * 2001-11-09 2002-03-09 (주)동명기술공단종합건축사사무소 equipment for advanced wastewater-treatment with a function of control according to the composition
KR200273463Y1 (en) * 2002-01-07 2002-04-26 주식회사 대명테크 Wastewater treatment system with auto-controlled Intermittent aeration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130542B1 (en) * 2011-06-21 2012-03-30 제이에이건설주식회사 A2o(anaerobic anoxic aerobic) reaction apparatus using aeration-mixing-liquid transfer device and method of treating wastewater using thereit
KR101097144B1 (en) 2011-07-05 2011-12-21 대웅이엔에스 (주) Advanced batch equipment and the method thereof for sewage-wastewater using an anoxic/anaerobic bioreactor
KR20220074123A (en) 2020-11-27 2022-06-03 주식회사 유니온 Ship exhaust gas scrubber simulation test system

Also Published As

Publication number Publication date
KR20030079435A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP5606513B2 (en) Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
JP4117274B2 (en) Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment
KR100434639B1 (en) inner flow control system of apparatus for treating water
JP6404999B2 (en) Organic wastewater treatment equipment
Einfeldt The implementation of biological phosphorus and nitrogen removal with the bio-denipho process on a 265,000 PE treatment plant
JP6158691B2 (en) Organic wastewater treatment apparatus, organic wastewater treatment method, and organic wastewater treatment apparatus control program
KR100519694B1 (en) Small-scale Sewage Disposal Facility
KR20050009678A (en) Computing process apparatus for information on water quality
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
KR200279809Y1 (en) inner flow control system of apparatus for treating water
JPH1043788A (en) Control method for biological water treating device
US6706171B2 (en) Systems for treating wastewater in a series of filter-containing tanks
CN212770334U (en) Integrated sewage treatment device
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
KR20150064574A (en) Energy-saving system for treatment of wastewater and method for control of the same
JP2000325980A (en) Sewage treatment method and apparatus
KR100810960B1 (en) Economic nitrogen phosphorous which uses the to conventional activated sludge processand clear
JP3708752B2 (en) Nitrate nitrogen biological treatment method and apparatus
JPH0938682A (en) Biological water treatment
JP2005349324A (en) Advanced sewage treatment method and apparatus
JPH11290888A (en) Method for biological water treatment and its control device
CN113860643B (en) Dense waste liquid processing system of msw incineration power plant
JP2018103113A (en) System and method for treating waste water
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP2004000986A (en) Method for controlling biological water treatment apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130403

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140414

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180423

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 16