KR20010086846A - Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction - Google Patents

Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction Download PDF

Info

Publication number
KR20010086846A
KR20010086846A KR1020000010768A KR20000010768A KR20010086846A KR 20010086846 A KR20010086846 A KR 20010086846A KR 1020000010768 A KR1020000010768 A KR 1020000010768A KR 20000010768 A KR20000010768 A KR 20000010768A KR 20010086846 A KR20010086846 A KR 20010086846A
Authority
KR
South Korea
Prior art keywords
steel sheet
silicon steel
less
cold rolling
rolling
Prior art date
Application number
KR1020000010768A
Other languages
Korean (ko)
Inventor
허남회
Original Assignee
허남회
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허남회 filed Critical 허남회
Priority to KR1020000010768A priority Critical patent/KR20010086846A/en
Publication of KR20010086846A publication Critical patent/KR20010086846A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A method for manufacturing flat rolled magnetic steel sheets and strip is provided which improves productivity and reduces production costs by increasing rolling productivity and enabling heat treatment under the non-vacuum atmosphere. CONSTITUTION: In manufacturing ultra-thin silicon flat rolled magnetic steel sheets and strip having a thickness of 0.23 mm or less by passing a hot rolled silicon steel sheet manufactured by melting and hot rolling through processes of first cold rolling, first intermediate annealing, second cold rolling and recrystallization annealing under the dry hydrogen atmosphere, the method for manufacturing an ultra-thin oriented silicon steel sheet having low watt loss and high magnetization properties is characterized in that a rolling ratio of the second cold rolling is 30 to 80%, and an atmospheric temperature of the recrystallization annealing under the dry hydrogen atmosphere is ranging from 850 to 1350 deg.C, wherein the hot rolled silicon steel sheet comprises 4 wt.% or less of Si, 0.01 wt.% or less of C, 0.01 wt.% or less of N, 0.05 wt.% or less of S, 0.01 wt.% or less of sol.Al and a balance of Fe and other inevitable impurities, and wherein the dry hydrogen atmosphere has a partial pressure of vapor for hydrogen (PH2O/PH2) which is less than 10¬-3.

Description

저철손 및 고자화 특성을 가진 극박 방향성 규소 강판의 제조 방법{Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction}Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction

본 발명은 전기 또는 전자(電磁) 강판으로도 불리는 규소 강판에 관한 것으로서, 더 자세하게는 4.0wt이하의 규소를 함유한 규소강을 열간 압연 및 2회 이상의 냉간 압연에 의하여 0.23mm이하의 판으로 제조한 후, 건 수소 또는 진공 분위기에서 850℃ 이상의 온도에서 재결정을 일으켜 {110}〈100〉의 방향성을 갖는 고스(Goss) 집합조직을 형성시킴으로써 저철손 및 고자속 밀도 특성을 갖는 극박 방향성 규소 강판의 제조 방법에 관한 것이다.The present invention relates to a silicon steel sheet, also referred to as an electrical or electronic steel sheet, and more particularly, to a silicon steel containing less than 4.0wt.silicon steel is made into a sheet of 0.23mm or less by hot rolling and two or more cold rolling. After recrystallization at a temperature of 850 ° C. or higher in dry hydrogen or a vacuum atmosphere, a Goss texture having a directionality of {110} <100> was formed to obtain ultra-thin silicon steel sheet having low iron loss and high magnetic flux density characteristics. It relates to a manufacturing method.

자성재료(磁性材料)는 연질 자성재료와 경질 자성재료로 구분되며, 전자는 자기 이력곡선(hysteresis loop)의 폭이 좁고 긴 특징이 있는 재료로서 변압기나 모터의 철심으로 사용되고, 후자는 자화(磁化)하는데 큰 자계가 필요한 - 이력곡선의 폭이 넓은 - 특징을 갖는 재료로서 영구자석으로 사용된다.Magnetic materials are classified into soft magnetic materials and hard magnetic materials. The former is characterized by a narrow and long magnetic hysteresis loop, which is used as a core of a transformer or a motor, and the latter is magnetized. It is used as a permanent magnet because it has a large magnetic field-a wide hysteresis curve.

철심재료인 연질 자성재료에 있어서, 강자성체 원소로는 철, 니켈, 코발트 등이 있으나, 값이 저렴한 철계 재료가 가장 많이 사용되며, 변압기, 발전기, 전동기 등에 사용되는 철심재료는 포화자속밀도가 높아야 하는데, 철의 경우는 그것이 상당히 높아서 좋으나, 저항률이 낮아서 교류로 자화하면 와전류(渦電流)에 의한 에너지 손실이 크게 되어 교류기기의 철심재료로는 문제가 된다. 따라서, 판의 두께를 얇게 하거나 규소를 첨가하여 저항률을 높인 전자 강판이 널리 사용되고 있다.In the soft magnetic material, which is an iron core material, ferromagnetic elements include iron, nickel, and cobalt, but the most inexpensive iron-based materials are used. Iron core materials used in transformers, generators, and motors must have high saturation magnetic flux density. In the case of iron, it may be quite high, but the low resistivity causes magnetization by alternating current, which causes a large energy loss due to eddy currents, which is a problem as an iron core material of an alternating current device. Therefore, an electronic steel sheet having a thin plate or adding silicon to increase resistivity is widely used.

변압기나 발전기의 철심에서 자속(磁束)이 변화하면 철심 중에 와전류라고 하는 전류가 흐르게 되며, 이 와전류에 의한 전력 손실을 와전류손이라 하고, 이력곡선을 한번 형성할 때마다 곡선의 면적에 상당하는 에너지를 소비하게 되는데 이러한 손실을 이력손(hysteresis loss)이라고 한다.When the magnetic flux changes in the iron core of a transformer or generator, a current called eddy current flows in the iron core, and the power loss due to this eddy current is called the eddy current loss, and the energy corresponding to the area of the curve each time a hysteresis curve is formed. This loss is called hysteresis loss.

상기와 같은 와전류손과 이력손을 합한 철손(鐵損)을 적게 하기 위해서는 얇은 철판을 절연하여 적층해서 사용하면 효율을 높일 수 있으나, 이러한 방법에는한계가 있다.In order to reduce the iron loss combined with the eddy current loss and the hysteresis loss as described above, a thin iron plate may be insulated and stacked to increase efficiency, but there is a limit to such a method.

상기의 단순한 물리적 방법과 달리 철에 규소를 첨가하면 전기 저항이 증가하고 와전류손이 감소할 뿐 아니라 이력손과 시효(時效)도 감소하는 효과가 있기 때문에, 강에 규소를 첨가한 규소 강판이 전자 강판으로 개발·사용되고 있다.Unlike the simple physical method described above, the addition of silicon to iron increases the electrical resistance, reduces the eddy current loss, and also reduces the hysteresis loss and aging. It is developed and used as a steel plate.

저탄소강에 규소를 3wt이상 첨가하면 변태점이 없어지고, 소둔 온도를 높여 결정립을 크게 할 수 있기 때문에 이력손의 감소와 저자속밀도에서의 투자율 증대를 이룰 수 있으나, 규소 량이 증가하면 가공이 어려워지고 포화자속밀도가 낮아지는 문제가 있어 현재 생산되고 있는 규소강판은 보통 규소 함량이 3wt이하인 냉간 압연 강판이다.When more than 3wt of silicon is added to low carbon steel, transformation point is eliminated and crystal grains can be increased by increasing the annealing temperature, which can reduce hysteresis loss and increase the permeability at low flux density, but increasing the amount of silicon makes processing difficult. Due to the problem of low saturation magnetic flux density, currently produced silicon steel sheet is a cold rolled steel sheet having a silicon content of 3wt or less.

상기 규소 강판 단결정의 세 방향 결정방향인 <100>방향과 <110>방향 및 <111>방향에 대한 자화곡선을 측정해보면 <100>방향이 가장 자화되기 쉽기 때문에 매우 낮은 자화력으로 포화되며 <111>방향이 가장 자화되기 어렵다는 사실을 알 수 있다.When the magnetization curves of the <100> direction, the <110> direction, and the <111> direction, which are the three-direction crystalline directions of the silicon steel sheet single crystal, were measured, the <100> direction was most easily magnetized, and thus, it was saturated with a very low magnetization force and <111. It can be seen that the direction is most difficult to magnetize.

즉, 결정방향에 따라 자화의 정도가 달라지므로 철심에 사용되는 재료는 강판 제조 과정에서의 압연과 소둔을 적절히 조절하여 최적의 재결정 집합조직을 얻도록 하여야 한다.That is, since the degree of magnetization varies depending on the crystallization direction, the material used for the iron core should be properly controlled to obtain the optimum recrystallization texture by controlling the rolling and annealing during the steel sheet manufacturing process.

전자 강판은 방향성 전자 강판과 무방향성 전자 강판이 있으며, 후자는 그 결정 배열이 극히 불규칙(random)하여 자기 특성의 방향성이 적고, 규소를 약 3wt정도 함유한 고급품에서 규소를 거의 첨가하지 않은 저급품까지 있다.The electronic steel sheet has a grain-oriented electrical steel sheet and a non-oriented electrical steel sheet. The latter has a very irregular crystal arrangement, and thus has low directionality of magnetic properties, and a high-grade product containing about 3wt of silicon to a low-grade product containing little silicon. have.

이런 종류의 전자 강판은 발전기나 전동기 등의 회전기에 주로 쓰이며 대형회전기에는 저철손의 고급품이, 소형 회전기에는 철손이 다소 커도 높은 자속밀도를 갖는 값이 싼 저급품이 사용된다.This type of electronic steel sheet is mainly used for rotating machines such as generators and electric motors, and high-grade products of low iron loss are used for large-sized rotors, and low-priced low-grade products having high magnetic flux densities are used even for small rotors.

방향성 전자 강판은 도 1에 도시한 바와 같이 가장 자화되기 쉬운 <100> 결정방향이 압연방향(1)에 평행하며, {110}면이 압연면(2)에 평행하도록 배열됨으로써 압연 방향의 자기 특성이 매우 우수해지는 것이다.In the grain-oriented electrical steel sheet, as shown in FIG. 1, the most easily magnetized <100> crystal direction is parallel to the rolling direction 1, and the {110} plane is arranged parallel to the rolling surface 2, so that the magnetic properties of the rolling direction are obtained. This is very good.

상기와 같은 전자 강판은 냉간 압연 →습수소 분위기의 탈탄 소둔(탈탄과 1차 재결정) →건수소 분위기의 완전 소둔(탈황·탈질과 2차 재결정) →인산계 피막처리의 공정을 거쳐 제조되며, 이때 인산계 피막은 압연 방향으로 외부 장력을 작용시키는 효과가 있어 철손, 여자전류(勵磁電流) 및 소음을 감소시켜 준다.The electrical steel sheet as described above is manufactured through a process of cold rolling → decarburization annealing in a hydrogen hydrogen atmosphere (decarburization and primary recrystallization) → complete annealing in a dry hydrogen atmosphere (desulfurization, denitrification and secondary recrystallization) → phosphoric acid coating. At this time, the phosphate coating has an effect of exerting an external tension in the rolling direction, thereby reducing iron loss, excitation current, and noise.

상기 종래의 방법에 의하여 제조되는 강판은 통상적으로 두께가 0.23∼0.27mm정도이며, 규소 함량이 3wt인 방향성 규소 강판의 제조 방법으로서, 수소 분위기 속에서 AlN이나 MnS 등의 석출물에 의한 결정립 성장 억제를 동반하는 2차 재결정으로 제조된다.The steel sheet produced by the conventional method is usually 0.23 ~ 0.27mm thickness, the silicon content of 3wt oriented silicon steel sheet manufacturing method, in the hydrogen atmosphere suppressed grain growth by precipitates such as AlN, MnS, etc. Prepared with the accompanying secondary recrystallization.

상기와 같이 제조되는 규소 강판은 자속 밀도가 높아 현재 대부분의 소·대형 변합기에 사용되고 있으나, 와전류손에 기인한 철손을 감소시키기 위하여 강판의 두께를 줄이는 것에는 한계가 있다.The silicon steel sheet manufactured as described above has high magnetic flux density and is currently used in most small and large transformers, but there is a limit to reducing the thickness of the steel sheet in order to reduce iron loss caused by eddy current loss.

변압기 뿐 아니라 전자 부품용 코어(core) 재료에 요구되는 저철손, 고자속밀도 및 저자왜(低磁歪)를 만족시키기 위해서는 규소의 함량을 증가시키고, 상기의 방향성을 가지면서 강판의 두께가 되도록 얇아야 한다.In order to satisfy the low iron loss, high magnetic flux density and low distortion required for core materials for electronic parts as well as transformers, the silicon content is increased, and the thickness of the steel sheet is reduced to the thickness of the steel sheet while having the above-mentioned direction. Should.

따라서, 규소 강판의 두께를 줄여 철손을 감소시키기 위하여 멜트스피닝(melt spinning)법으로 Fe81B13.5Si3.5C2성분의 두께 0.02∼0.04mm인 비정질 철심재료가 개발되었고, 이는 철손이 적어 현재 주상 변압기에 일부 사용되고는 있으나, 저자속밀도 특성을 갖기 때문에 철심재료로 사용시 이를 보완하기 위해서는 철심의 부피가 20이상 커지는 문제가 있다.Therefore, in order to reduce the iron loss by reducing the thickness of the silicon steel sheet, an amorphous iron core material having a thickness of 0.02 to 0.04 mm of Fe 81 B 13.5 Si 3.5 C 2 component was developed by the melt spinning method. Although it has been used in some transformers, because of the low-velocity density characteristics, there is a problem that the volume of the iron core becomes larger than 20 to compensate for this when used as an iron core material.

그리고, 신일본제철과 동북대에 의하여 극박 방향성 3규소강판이 개발되었으나, 이는 3차에 걸친 냉간 압연과 3차 재결정에 의하여 제조되는 바, 3차에 이르는 냉간 압연과 그에 따른 소둔 횟수의 증가에 따라 생산성이 저하되고, 3차 재결정을 진공 중에서 실시함에 따라 진공 설비의 대형화가 어려워 대량 생산이 힘들기 때문에 가격 또한 매우 높은 문제가 있다.In addition, ultrathin oriented trisilicon steel sheets were developed by Nippon Steel and Northeast Asia, but these were manufactured by three cold rolling and three recrystallization. As a result, the productivity is lowered, and since the third recrystallization is carried out in a vacuum, it is difficult to increase the size of the vacuum equipment, making mass production difficult.

상기에서 살펴본 바와 같이, 극박 방향성 전자 강판은 규소 함량 증가에 따라 냉간 압연성이 떨어지고, 기지 조직의 방향성을 선택적으로 성장시키기 위하여 열처리 비용이 상승하는 문제가 있는 바, 압연 생산성을 높이고 진공이 아닌 분위기에서 열처리가 가능함으로써 생산성과 생산 비용을 절감할 수 있는 전자 강판 제조 방법을 제공함에 본 발명의 목적이 있다.As discussed above, the ultra-thin grain-oriented electrical steel sheet has a problem that the cold rolling property decreases with increasing silicon content and the heat treatment cost increases to selectively grow the orientation of the matrix structure. It is an object of the present invention to provide a method for manufacturing an electronic steel sheet which can reduce the productivity and production cost by heat treatment possible.

도 1은 본 발명 방법의 제조 공정도.1 is a manufacturing process diagram of the method of the present invention.

도 2는 압연면과 결정립의 방향성 관계를 보인 개념도.2 is a conceptual diagram showing the directional relationship between the rolled surface and crystal grains.

도 3은 황의 편석과 자속밀도의 상관 관계 그래프3 is a correlation graph of segregation and magnetic flux density of sulfur

((도면의 주요 부분에 대한 부호의 설명))((Explanation of symbols for main part of drawing))

1. 압연 방향 2. 압연면1. Rolling direction 2. Rolled surface

본 발명의 상기 목적은 Si ≤4wt, C ≤0.01wt, N ≤0.01wt, S ≤0.05wt,sol.Al ≤0.01wt, 잔량의 Fe와 기타 불가피한 불순물로 조성된 규소 강판을 용해 및 열간 압연에 의하여 제조하고, 이를 최종 냉간 압연율이 30이상 80미만이 되도록 2회의 냉간 압연과 1회의 중간 소둔, 또는 3회의 냉간 압연과 2회의 중간 소둔을 통하여 두께 0.23mm 이하의 냉간 압연 규소 강판을 제조한 후, 상기 강판을 850∼1350℃의 건 수소 또는 진공 분위기에서 최종 재결정 소둔함으로써 달성된다.The object of the present invention is to dissolve and hot-roll a silicon steel sheet composed of Si ≤4wt, C ≤0.01wt, N ≤0.01wt, S ≤0.05wt, sol.Al ≤0.01wt, the balance of Fe and other unavoidable impurities. The cold rolled silicon steel sheet having a thickness of 0.23 mm or less was manufactured by two cold rolling and one intermediate annealing, or three cold rolling and two intermediate annealing so that the final cold rolling rate was 30 or more and less than 80. Thereafter, the steel sheet is achieved by final recrystallization annealing in dry hydrogen at 850 to 1350 ° C. or in a vacuum atmosphere.

상기 각 성분의 함량 기준을 살펴보면, Si가 4를 초과할 경우 압연성이 극히 불량하게 되어 냉간 압연율이 작아져 2차 압연에 의한 극박 압연이 어렵게 되며, 기지 조직인 Fe를 제외한 그 외 성분의 함량이 상기 기준 값을 초과하게 되면 최종 재결정 소둔시 선택적인 고스 집합의 성장을 방해하게 된다.Looking at the content standards of the above components, when Si exceeds 4, the rollability becomes extremely poor and the cold rolling rate becomes small, making ultra-thin rolling difficult by secondary rolling, and the content of other components except Fe, which is a matrix structure. Exceeding this threshold will hinder the growth of the selective goth set upon final recrystallization annealing.

특히, 황의 경우 최종 소둔시 Fe와 황 원자 간의 원자 크기 차이로 조직내에 형성된 응력장을 감소시키기 위하여 결정 입계와 강판 표면으로 편석하게 되고, 이러한 황의 편석 거동은 자속 밀도에 매우 큰 영향을 미치게 된다.In particular, sulfur is segregated to the grain boundaries and the surface of the steel sheet in order to reduce the stress field formed in the structure due to the difference in atomic size between Fe and sulfur atoms during the final annealing, this segregation behavior of sulfur has a very significant effect on the magnetic flux density.

도 3은 황을 30ppm 함유하는 냉간 압연 규소 강판의 최종 재결정 소둔 과정에서 소둔 시간에 따라 일어나는 황의 편석 거동과 자속밀도의 상관 관계를 도시한 것으로서, 자속밀도가 황의 편석양 감소에 따라 급격히 상승함을 알 수 있다.Figure 3 shows the correlation between the segregation behavior of sulfur and the magnetic flux density in accordance with the annealing time in the final recrystallization annealing process of 30ppm sulfur-containing cold rolled silicon steel sheet, the magnetic flux density rises rapidly as the segregation amount of sulfur decreases Able to know.

따라서, 황의 함량을 기준 이하로 낮추어야 할 뿐 아니라, 강판의 결정입계 또는 표면으로 편석되는 황을 황화수소가스화 하거나 증발에 의하여 제거해 주어야 하기 때문에 최종 재결정 소둔을 건 수소 또는 진공 분위기에서 실시하여야 하며, 건 수소 분위기는 수소에 대한 수증기의 분압(PH2P/PH2)이 10-3미만이고, 진공 분위기는 진공도를 10-3토르(torr) 이하가 되도록 하여야 한다.Therefore, the final recrystallization annealing should be carried out in dry hydrogen or vacuum atmosphere because not only the sulfur content should be lowered below the standard but also the sulfur segregated to the grain boundary or surface of the steel sheet should be removed by hydrogen sulfide gasification or evaporation. atmosphere and the partial pressure (P H2P / P H2) of the steam to hydrogen is less than 10 -3, a vacuum atmosphere is to be such that the 10 -3 torr (torr) less than the degree of vacuum.

또한, 소둔시 편석되는 황의 거동은 소둔 온도와 밀접한 관계를 갖는 바, 소둔 온도가 850℃ 미만일 경우에는 재결정이 완료되는 시간이 길어질 뿐만 아니라, 입계와 표면으로 편석된 황의 증발 및 황화수소가스화 반응이 원활하지 못하여 고스 집합 조직 형성을 방해함에 따라 자속밀도를 떨어뜨리며, 1350℃를 초과하면 재결정 속도가 너무 빠르게 되어 재결정 제어가 힘들다.In addition, the behavior of the segregated sulfur during annealing is closely related to the annealing temperature. When the annealing temperature is less than 850 ° C., the recrystallization time is not only long, but also the evaporation and hydrogen sulfide gasification reaction of the segregated sulfur at the grain boundary and the surface is smooth. As a result, the magnetic flux density decreases as it interferes with the formation of goth aggregated tissues, and when the temperature exceeds 1350 ° C., the recrystallization rate is too high, making it difficult to control the recrystallization.

그리고, 최종 냉간 압연율이 30에 미치지 못하면 압연 가공량이 적어 재결정에 필요한 추진력(driving force)이 부족함으로써 소둔 온도를 정도 이상 높이거나 소둔 시간이 상당히 길어지게 되며, 경우에 따라서는 재결정이 일어나지 않을 수도 있고, 80이상이 되면 압연 가공량이 과다하게 되어 재결정 초기의 재결정립의 크기가 작아 {100} 및 {111} 결정립 성장이 빠르게 되고, {110}<100> 고스 결정립의 성장이 방해되어 자속 밀도가 감소하게 된다.In addition, if the final cold rolling rate is less than 30, the amount of rolling work is small and the driving force required for recrystallization is insufficient, thereby increasing the annealing temperature or the annealing time considerably, and in some cases, recrystallization may not occur. When the amount is 80 or more, the amount of rolling work is excessive, the size of the recrystallized grains at the initial stage of recrystallization is small, so that the {100} and {111} grains grow faster, and the growth of {110} <100> Goth grains is hindered and the magnetic flux density is increased. Will decrease.

본 발명 저철손 및 고자화 특성을 가진 극박 방향성 규소 강판의 제조 방법의 상기 기술적 구성과 구체적인 작용 효과에 대한 자세한 사항은 본 발명의 바람직한 실시예를 도시하고 있는 도면을 참조한 아래의 설명에 의하여 명확하게 이해될 것이다.Details of the technical configuration and specific effects of the method for producing ultra-thin silicon steel sheet having low iron loss and high magnetization properties of the present invention will be clearly explained by the following description with reference to the drawings showing preferred embodiments of the present invention. Will be understood.

본 발명 극박 방향성 규소 강판의 제조 공정은 도2의 공정 흐름도에 도시한 바와 같이 용해 →열간 압연 →1차 냉간 압연 →중간 소둔 →2차 냉간 압연 →최종 재결정 소둔, 또는 용해 →열간 압연 →1차 냉간 압연 →1차 중간 소둔 →2차 냉간압연 →2차 중간 소둔 →3차 냉간 압연 →최종 재결정 소둔으로 구성되는 두 가지 공정이 있다.The manufacturing process of the ultra-thin silicon steel sheet of the present invention is melted → hot rolling → primary cold rolling → intermediate annealing → secondary cold rolling → final recrystallization annealing or melting → hot rolling → primary as shown in the process flow chart of FIG. There are two processes consisting of cold rolling → 1st intermediate annealing → 2nd cold rolling → 2nd intermediate annealing → 3rd cold rolling → final recrystallization annealing.

상기 용해와 열간 압연을 통하여 규소 함량이 2.98wt, 황의 함량이 0.003wt이고 두께가 2mm인 열연 규소 강판을 2차 및 3차의 냉간 압연에 의한 두 공정을 통하여 두께 0.1mm의 냉간 압연 규소 강판을 제조하였으며, 그 때의 작업 조건과 규소 강판의 자속 밀도를 측정한 결과가 다음의 표1이다.Through the melting and hot rolling, a hot rolled silicon steel sheet having a silicon content of 2.98 wt, a sulfur content of 0.003 wt%, and a thickness of 2 mm was subjected to cold and rolled silicon steel sheets having a thickness of 0.1 mm through two processes of secondary and tertiary cold rolling. Table 1 shows the results of measuring the working conditions and the magnetic flux density of the silicon steel sheet at that time.

구분division 냉간압연횟수Cold Rolling Count 냉간압연율()Cold Rolling Rate () 최종두께(mm)Final thickness (mm) 재결정소둔온도(℃)Recrystallization annealing temperature (℃) 재결정분위기Recrystallization 재결정시 간(hrs)Recrystallization time (hrs) 자속밀도(B10,Tesla)Magnetic flux density (B 10 , Tesla) 실시예1Example 1 22 92-4092-40 0.10.1 10001000 건수소Dry hydrogen 6262 1.901.90 22 92-4092-40 0.10.1 11001100 건수소Dry hydrogen 88 1.911.91 22 92-4092-40 0.10.1 12001200 건수소Dry hydrogen 44 1.921.92 22 92-4092-40 0.10.1 13001300 건수소Dry hydrogen 44 1.951.95 실시예2Example 2 22 88-6088-60 0.10.1 10001000 건수소Dry hydrogen 6262 1.881.88 22 88-6088-60 0.10.1 11001100 건수소Dry hydrogen 88 1.931.93 22 88-6088-60 0.10.1 12001200 건수소Dry hydrogen 44 1.971.97 22 88-6088-60 0.10.1 13001300 건수소Dry hydrogen 44 1.961.96 실시예3Example 3 22 84-7084-70 0.10.1 12001200 건수소Dry hydrogen 44 1.941.94 22 75-8075-80 0.10.1 12001200 건수소Dry hydrogen 44 1.681.68 실시예4Example 4 33 50-50-8050-50-80 0.10.1 12001200 건수소Dry hydrogen 44 1.661.66 33 80-37-6080-37-60 0.10.1 12001200 건수소Dry hydrogen 44 1.931.93 33 80-50-5080-50-50 0.10.1 12001200 건수소Dry hydrogen 44 1.971.97 33 80-55-4480-55-44 0.10.1 12001200 건수소Dry hydrogen 44 1.961.96 33 90-64-3090-64-30 0.10.1 12001200 건수소Dry hydrogen 44 1.941.94

* B10; 10 Oersted의 자속 밀도 하에서 자화되는 정도를 나타내며,* B 10 ; Indicates the degree of magnetization under a magnetic density of 10 Oersted,

단결정 규소강의 경우 이론 값은 2.03 Tesla 이다.For single crystal silicon steel, the theoretical value is 2.03 Tesla.

상기 표1을 살펴보면, 2차 또는 3차 냉간 압연에 관계없이 최종 냉간 압연율이 80미만일 경우에는 최종 재결정 소둔 후, 규소 강판의 자속 밀도가 1.9 테슬러 이상의 높은 값을 보이나, 80이상이 되면 자성치가 상당히 낮아짐을 알 수 있다.Referring to Table 1, regardless of the secondary or tertiary cold rolling, if the final cold rolling rate is less than 80, after the final recrystallization annealing, the magnetic flux density of the silicon steel sheet shows a high value of 1.9 Tesler or more, but when it is 80 or more Can be seen to be significantly lower.

이는 최종 압연율이 크게되면 전술한 바와 같이 최종 소둔시 초기 결정립이 작아지기 때문에 {100}과 {111} 방향 결정립들의 표면 에너지 유기 선택적 결정 성장 속도가 빠르게 되어 소둔 후반기에 {110}<001>인 고스 결정립들의 선택적 성장 과정이 억제되기 때문이다.As the final rolling ratio increases, the initial grains decrease during final annealing as described above, so that the surface energy organic selective crystal growth rate of the {100} and {111} directional grains is increased to be {110} <001> in the second half of the annealing. This is because the selective growth process of goth grains is suppressed.

또한, 3차 압연에 의한 자속 밀도가 2차 압연의 것과 비슷한 수준으로서 경제성 측면에서는 2차 압연에 의한 공정이 바람직하다.In addition, the magnetic flux density by tertiary rolling is similar to that of secondary rolling, and the process by secondary rolling is preferable from an economical viewpoint.

상기 실시예의 소재인 열연 규소 강판의 규소와 황의 함량을 2.97wt와 0.03wt로 변화시킨 다른 실시예의 결과를 다음의 표2에 나타내었다.Table 2 shows the results of another example in which the silicon and sulfur content of the hot rolled silicon steel sheet, which is the material of the example, was changed to 2.97 wt% and 0.03 wt%.

구분division 냉간압연횟수Cold Rolling Count 냉간압연율()Cold Rolling Rate () 최종두께(mm)Final thickness (mm) 재결정소둔온도(℃)Recrystallization annealing temperature (℃) 재결정분위기Recrystallization 재결정시 간(hrs)Recrystallization time (hrs) 자속밀도(B10,Tesla)Magnetic flux density (B 10 , Tesla) 실시예5Example 5 22 92-4092-40 0.10.1 10001000 건수소Dry hydrogen 6262 1.901.90 22 92-4092-40 0.10.1 11001100 건수소Dry hydrogen 88 1.921.92 22 92-4092-40 0.10.1 12001200 건수소Dry hydrogen 44 1.931.93 22 92-4092-40 0.10.1 13001300 건수소Dry hydrogen 44 1.941.94 실시예6Example 6 22 88-6088-60 0.10.1 10001000 건수소Dry hydrogen 6262 1.891.89 22 88-6088-60 0.10.1 11001100 건수소Dry hydrogen 88 1.921.92 22 88-6088-60 0.10.1 12001200 건수소Dry hydrogen 44 1.931.93 22 88-6088-60 0.10.1 13001300 건수소Dry hydrogen 44 1.941.94 실시예7Example 7 22 84-7084-70 0.10.1 12001200 건수소Dry hydrogen 44 1.701.70 22 75-8075-80 0.10.1 12001200 건수소Dry hydrogen 44 1.691.69

상기의 실시예 5내지 7의 자속 밀도를 살펴보면, 최종 냉간 압연율이 80이상이 될 경우 자속 밀도가 현저히 감소하던 실시예 1내지 4와 달리 70이상에서 자속 밀도가 상당히 감소하는 것을 알 수 있다.Looking at the magnetic flux density of Examples 5 to 7, it can be seen that the magnetic flux density is significantly reduced at 70 or more, unlike Examples 1 to 4, where the magnetic flux density is significantly reduced when the final cold rolling rate is 80 or more.

이 것은 동일한 최종 냉간 압연율 하에서 모상의 황 농도가 증가할 수록 황의 편석 범위가 확대됨에 따라 {100}과 {111} 결정립들의 표면에너지 유기 선택적 결정 성장 영역이 넓어짐으로써 {110}<001> 고스 결정립들의 선택적 성장이 방해되었기 때문이다.This means that under the same final cold rolling rate, the {110} <001> Goth grains were expanded by increasing the surface energy organic selective crystal growth region of {100} and {111} grains as the segregation range of sulfur increased as the sulfur concentration of the parent phase increased. Their selective growth was hampered.

최종 재결정 소둔 분위기의 영향을 살펴보기 위하여 상기 황의 함량이 0.03인 실시예 열연 강판을 2차 냉간 압연과 최종 진공 소둔 처리한 결과가 다음의 표3이다.In order to examine the effect of the final recrystallization annealing atmosphere, the results of the second cold rolling and final vacuum annealing of the Example hot rolled steel sheet having a sulfur content of 0.03 are shown in Table 3 below.

구분division 냉간압연횟수Cold Rolling Count 냉간압연율()Cold Rolling Rate () 최종두께(mm)Final thickness (mm) 재결정소둔온도(℃)Recrystallization annealing temperature (℃) 재결정소둔분위기Recrystallization annealing atmosphere 재결정시 간(hrs)Recrystallization time (hrs) 자속밀도(B10,Tesla)Magnetic flux density (B 10 , Tesla) 실시예8Example 8 22 92-4092-40 0.10.1 12001200 진공vacuum 44 1.981.98 22 88-6088-60 0.10.1 12001200 진공vacuum 44 1.681.68

실시예8의 경우는 최종 압연율이 60임에도 불구하고 자속 밀도가 매우 떨어진 결과를 보여 주고 있다. 이 것은 건 수소 분위기보다 진공 중에서 황이 편석되는 시간 범위가 넓기 때문에 {100}과 {111} 결정립의 선택적 결정 성장 시간이 길어지고 상대적으로 {110}<100> 결정립의 성장이 방해된 결과이다.In the case of Example 8, although the final rolling rate is 60, the magnetic flux density is very low. This is the result of longer selective crystal growth time of {100} and {111} grains and relatively hindered growth of {110} <100> grains due to the wider time range in which sulfur segregates in vacuum than in a dry hydrogen atmosphere.

따라서, 최종 재결정 소둔을 진공 분위기에서 실시할 때는 황의 편석 시간대가 건 수소 분위기에서 보다 길게 되므로 {100}과 {111} 결정립의 선택적 결정 성장을 최대한 억제하고, 편석된 황이 없는 시간대에서 {110}<100> 결정립의 성장을 촉진시키기 위해서는 기지 조직의 가공량을 상대적으로 낮추어 초기 결정립 크기를 크게 조절하여야 한다. 그러므로, 진공 중에서 최종 재결정 소둔을 실시할 경우에는 3회가 아닌 2회의 냉간 압연을 적용하고, 2차 냉간 압연율은 70미만으로 하는 것이 바람직 하다.Therefore, when the final recrystallization annealing is carried out in a vacuum atmosphere, the segregation time of sulfur becomes longer than in the dry hydrogen atmosphere, thus suppressing selective crystal growth of {100} and {111} grains as much as possible, and in the absence of segregation of {110} < 100> In order to promote grain growth, the initial grain size should be largely controlled by relatively reducing the amount of processing of the matrix. Therefore, when performing final recrystallization annealing in vacuum, it is preferable to apply two cold rollings instead of three, and to make the secondary cold rolling rate less than 70.

상기에서 살펴본 바와 같이, 본 발명의 극박 전자 강판 제조 방법은 2차 냉간 압연에 의하여 생산이 가능하기 때문에 압연 생산성을 향상시킬 수 있을 뿐 아니라, 건 수소 분위기에서 최종 소둔을 실시함으로써 고가의 진공 설비를 갖추어야 하는 문제를 해결하여 생산 비용을 낮출 수 있다.As described above, since the ultra-thin electrical steel sheet manufacturing method of the present invention can be produced by secondary cold rolling, not only can the rolling productivity be improved, but also the final vacuum annealing is carried out in a dry hydrogen atmosphere. The cost of production can be lowered by solving problems that must be in place.

Claims (6)

용해와 열간 압연으로 제조된 열연 규소 강판을 1차 냉간 압연 →1차 중간 소둔 →2차 냉간 압연 →건 수소 분위기 재결정 소둔의 공정으로 두께 0.23mm 이하의 극박 규소 전자 강판을 제조함에 있어서, 2차 냉간 압연율을 30이상 80미만으로 하며, 건 수소 분위기 재결정 소둔의 분위기 온도를 850∼1350℃로 함을 특징으로 하는 저철손 및 고자화 특성을 가진 극박 방향성 규소 강판의 제조 방법.In the process of primary cold rolling → primary intermediate annealing → secondary cold rolling → dry hydrogen atmosphere recrystallization annealing of hot-rolled silicon steel sheet produced by melting and hot rolling, the secondary silicon steel sheet having a thickness of 0.23 mm or less is prepared. A method for producing ultra-thin silicon steel sheet having low iron loss and high magnetization characteristics, characterized in that the cold rolling rate is 30 or more and less than 80, and the atmosphere temperature of dry hydrogen atmosphere recrystallization annealing is 850-1350 ° C. 제 1항에 있어서, 상기 열연 규소 강판은 Si ≤4wt, C ≤0.01wt, N ≤0.01wt, S ≤0.05wt, sol.Al ≤0.01wt, 잔량의 Fe와 기타 불가피한 불순물로 조성됨을 특징으로 하는 저철손 및 고자화 특성을 가진 극박 방향성 규소 강판의 제조 방법.The method of claim 1, wherein the hot-rolled silicon steel sheet is composed of Si ≤ 4wt, C ≤0.01wt, N ≤0.01wt, S ≤0.05wt, sol.Al ≤0.01wt, remaining amount of Fe and other unavoidable impurities Method for producing ultra-thin silicon steel sheet having low iron loss and high magnetization characteristics. 제 1항에 있어서, 건 수소 분위기는 수소에 대한 수증기의 분압(PH2P/PH2)이 10-3미만임을 특징으로 하는 저철손 및 고자화 특성을 가진 극박 방향성 규소 강판의 제조 방법.The method of claim 1, wherein the hydrogen atmosphere is very thin gun method for producing a grain-oriented silicon steel sheet having a low iron loss and want Characterization characterized in that the partial pressure (P H2P / P H2) is less than 10 -3 in water vapor to hydrogen. 용해와 열간 압연으로 제조된 열연 규소 강판을 1차 냉간 압연 →1차 중간 소둔 →2차 냉간 압연 →2차 중간 소둔 →3차 냉간 압연 →건 수소 분위기 재결정 소둔의 공정으로 두께 0.23mm 이하의 극박 규소 전자 강판을 제조함에 있어서, 3차 냉간 압연율을 30이상 80미만으로 하며, 건 수소 분위기 재결정 소둔의 분위기 온도를 850∼1350℃로 함을 특징으로 하는 저철손 및 고자화 특성을 가진 극박 방향성 규소 강판의 제조 방법The hot rolled silicon steel sheet produced by melting and hot rolling is first cold rolled → first intermediate annealing → second cold rolling → second intermediate annealing → third cold rolling → dry hydrogen atmosphere recrystallization annealing In manufacturing the silicon steel sheet, the third cold rolling rate is 30 or more and less than 80, and the ultra-thin directional property having low iron loss and high magnetization characteristics, characterized in that the atmosphere temperature of dry hydrogen recrystallization annealing is 850 ~ 1350 ℃ Method of manufacturing silicon steel sheet 용해와 열간 압연으로 제조된 열연 규소 강판을 1차 냉간 압연 →1차 중간 소둔 →2차 냉간 압연 →진공 분위기 재결정 소둔의 공정으로 두께 0.23mm 이하의 극박 규소 전자 강판을 제조함에 있어서, 2차 냉간 압연율을 30이상 70미만으로 하며, 진공 분위기 재결정 소둔의 분위기 온도를 850∼1350℃로 함을 특징으로 하는 저철손 및 고자화 특성을 가진 극박 방향성 규소 강판의 제조 방법.In the process of primary cold rolling → primary intermediate annealing → secondary cold rolling → vacuum atmosphere recrystallization annealing of hot rolled silicon steel sheet produced by melting and hot rolling, secondary cold rolling A method for producing ultra-thin silicon steel sheet having low iron loss and high magnetization characteristics, characterized in that the rolling ratio is 30 or more and less than 70, and the atmospheric temperature of vacuum recrystallization annealing is 850 to 1350 ° C. 제 5항에 있어서, 진공 분위기의 진공도는 10-3토르 이하임을 특징으로 하는 저철손 및 고자화 특성을 가진 극박 방향성 규소 강판의 제조 방법.6. The method of claim 5, wherein the vacuum degree of the vacuum atmosphere is 10 −3 Torr or less.
KR1020000010768A 2000-03-03 2000-03-03 Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction KR20010086846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000010768A KR20010086846A (en) 2000-03-03 2000-03-03 Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000010768A KR20010086846A (en) 2000-03-03 2000-03-03 Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction

Publications (1)

Publication Number Publication Date
KR20010086846A true KR20010086846A (en) 2001-09-15

Family

ID=19652101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000010768A KR20010086846A (en) 2000-03-03 2000-03-03 Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction

Country Status (1)

Country Link
KR (1) KR20010086846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457099A (en) * 2018-11-09 2019-03-12 鞍钢股份有限公司 A kind of process improving common orientation silicon steel electromagnetic performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119621A (en) * 1987-10-30 1989-05-11 Nippon Steel Corp Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
KR930002526A (en) * 1991-07-29 1993-02-23 미요시 슌기찌 Manufacturing method of grain-oriented silicon steel sheet with crystal orientation integrated in Goss orientation
JPH06256846A (en) * 1993-03-01 1994-09-13 Kawasaki Steel Corp Production of grain oriented electrical steel sheet having stable high magnetic flux density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119621A (en) * 1987-10-30 1989-05-11 Nippon Steel Corp Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
KR930002526A (en) * 1991-07-29 1993-02-23 미요시 슌기찌 Manufacturing method of grain-oriented silicon steel sheet with crystal orientation integrated in Goss orientation
JPH06256846A (en) * 1993-03-01 1994-09-13 Kawasaki Steel Corp Production of grain oriented electrical steel sheet having stable high magnetic flux density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457099A (en) * 2018-11-09 2019-03-12 鞍钢股份有限公司 A kind of process improving common orientation silicon steel electromagnetic performance
CN109457099B (en) * 2018-11-09 2020-06-23 鞍钢股份有限公司 Process method for improving electromagnetic performance of common oriented silicon steel

Similar Documents

Publication Publication Date Title
RU2674181C1 (en) Sheet from non-textured electrotechnical steel, its manufacturing method and engine core
US4204890A (en) Method of producing non-oriented silicon steel sheets having an excellent electromagnetic property
US9579701B2 (en) Manufacturing method of non-oriented electrical steel sheet
CN104603309B (en) Iron core grain-oriented magnetic steel sheet and its manufacture method
Lyudkovsky et al. Nonoriented electrical steels
KR101482354B1 (en) Grain-oriented electrical steel having excellent magnetic properties
CN108699621A (en) The manufacturing method of orientation electromagnetic steel plate
KR20010086846A (en) Production method of Si-steel strip having single-preferred orientation and properties of low core loss and high magnetic induction
KR20040056749A (en) Method for the production of Si-steel strip having single-preferred orientation and properties of low core and high magnetic induction
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR100501002B1 (en) A method for manufacturing grain oriented electric steel sheet
KR960006027B1 (en) Process for production of non-oriented electrical steel sheet having excellent magnetic properties
KR100370547B1 (en) Non-oriented electrical steel sheet excellent in permeability and method of producing the same
KR920008694B1 (en) Making process for electric steel plates
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
JPH01319632A (en) Production of silicon steel plate
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
KR19980052510A (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR900005380B1 (en) Making process for silicon plate
KR940007496B1 (en) Method of manufacturing non-oriented electromagnetic steel plates with excellent magnetic characteristic
JPH11350032A (en) Production of silicon steel sheet
KR910003880B1 (en) Making process for electrical sheet
JP4306259B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application