KR20010085003A - Twin Heat Exchanger of Filtering & Regenerative - Google Patents

Twin Heat Exchanger of Filtering & Regenerative Download PDF

Info

Publication number
KR20010085003A
KR20010085003A KR1020010042522A KR20010042522A KR20010085003A KR 20010085003 A KR20010085003 A KR 20010085003A KR 1020010042522 A KR1020010042522 A KR 1020010042522A KR 20010042522 A KR20010042522 A KR 20010042522A KR 20010085003 A KR20010085003 A KR 20010085003A
Authority
KR
South Korea
Prior art keywords
heat
heat exchanger
filter
boiler
honeycomb ceramic
Prior art date
Application number
KR1020010042522A
Other languages
Korean (ko)
Inventor
오일권
Original Assignee
오일권
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오일권 filed Critical 오일권
Priority to KR1020010042522A priority Critical patent/KR20010085003A/en
Publication of KR20010085003A publication Critical patent/KR20010085003A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE: A dual type waste heat exchanger of thermal storage material for a filter is provided to reduce the damage of a thermal storage unit and a heat transfer unit caused by a long combustion time by adopting the dual structure of a heat exchanger and to save fuel by recycling the heat of the thermal storage unit even though a boiler is run continuously for 24h. CONSTITUTION: Waste gas of 150-300deg.C of a boiler flows through a honeycomb ceramic filter(1) primarily. The ash of fuel as well as the remaining soot and dust of the gas is adsorbed by the surface tension of the honeycomb ceramic by flowing through plural latticed holes having a large sectional area. A condensate is generated by heat transfer out of a water jacket of a plate type heat exchanger and dropped into the ceramic for the filter. Thereby, the remaining sulfur of the waste gas is combined with water molecules. The sulfur oxide is adsorbed to the body of the honeycomb ceramic together with the filtered dust to prevent the life span of the heat exchanger from being shortened and to keep the thermal efficiency regular. The adsorbed dust and sludge is eliminated primarily by a tool and then secondarily by a high-pressure washing machine or a regular water hose.

Description

필터용 축열제의 쌍구조 폐기열교환기{Twin Heat Exchanger of Filtering & Regenerative}Twin structure waste heat exchanger of heat storage agent for filter {Twin Heat Exchanger of Filtering & Regenerative}

보일러용으로 사용되는 각종연료, 즉 고체연료, 액체연료, 기체연료에서 연소후 생성된 매진(검뎅이)과 유황성분으로 인한 폐기열교환기의 수명단축과 환경오염방지 그리고 고온으로 폐기되는 에너지대부분을 흡수해 재사용해서 열효율상승으로 인한 연료절감과 폐에너지의 연속적인 활용을 목적으로 함. 대개 공업용 상업용 보일러가 가동되는 곳에서는 연료절감을 목적으로 폐기열 회수기를 보일러 배출가스의 출구와 굴뚝사이에 설치 운전해 왔다.It is possible to reduce the lifespan and prevent environmental pollution of waste heat exchangers due to soot and sulfur generated after combustion in various fuels used for boilers, ie, solid fuels, liquid fuels, and gaseous fuels. It aims to reduce fuel consumption and continuous use of waste energy by absorbing and reusing it. In most industrial commercial boilers, waste heat recovery units have been installed between the outlet of the boiler exhaust and the chimney for fuel savings.

(도2)(Figure 2)

기존의 방식은 보일러에 부착된 버너 가동시 보일러 전열면을 통과한 미흡수된 고온의 열량을 제한된 조건인 버너가동시만 열교환을 수행했고 전열면적을 확대하기 위해 스파이럴 튜브와 핀튜브를 (도7)다이아몬드형으로 배치제작함으로 여기에 동반된 압력손실을 제거하기 위한 강제배기팬(도2)을 설치해 설치비와 운전비를 상승시키고 열교환기 내부청소가 구조상 난이하므로 효율이 현저히 떨어지고 또한 열교환시 발생되는 응축수와 연소가스에 잔존되어져 있는 황산화물과 매진(검뎅이)이 고착되어 부식을 촉진시켜 배기가스의 유로막힘으로 결국 기기의 수명단축을 가져오므로 연료절감으로 얻어진 이익이 기대치에 미치지 못했다.The conventional method performs heat exchange only during burner operation, which is limited in terms of unabsorbed high temperature heat passing through the boiler heating surface when the burner attached to the boiler is operated, and the spiral tube and fin tube (Fig. 7) are enlarged to increase the heat transfer area. Install the forced exhaust fan (Fig. 2) to eliminate the pressure loss accompanied by the batch production in diamond type to increase the installation cost and operation cost, and because the internal cleaning of the heat exchanger is difficult in structure, the efficiency decreases significantly and condensate generated during heat exchange Sulfur oxides and soot (soot) remaining in the combustion gas were stuck and accelerated corrosion, which blocked the flow path of the exhaust gas, which in turn shortened the life of the equipment, so the profits from the fuel savings were not as expected.

1. 기존의 튜브타입의 전열면청소의 어려움으로 열효율이 떨어짐1. Thermal efficiency decreases due to the difficulty of cleaning the heat transfer surface of the existing tube type

대개의 폐기열교환기는 핀튜브와 스파이럴튜브로 제작되고 다이아몬드배열은 연료연소가스에서 셍성된 매진과 슬러지, 열교환부의 응축수로 인해 가스의 유로막힘으로 고온의 폐가스가 제대로 배출되지 못해 버너의 실화을 유발해 보일러 연소실내부에서 이상폭발을 유발할수 있어 위험성과 운용자의 불안감을 초래할수 있다.Most waste heat exchangers are made of fin tube and spiral tube, and diamond array is burned out because hot exhaust gas is not properly discharged due to blockage of gas flow due to the sold out, sludge produced from fuel combustion gas, and condensate from heat exchanger. Abnormal explosions may occur inside the combustion chamber, which may lead to danger and operator anxiety.

2. 고체연료,액체연료 연소가스에 함유된S+O2=SO2로 인해 전열면의 부식.연료의 연소가스에 함유된 유황과 산소,열전도에 의해 생성된 응축수와 결합해 결국 전열면의 취약부분에 용착되어 부식을 유발함으로써 열교환기의 수명을 단축시킴2. Corrosion of the heating surface due to S + O2 = SO2 contained in solid fuel and liquid fuel combustion gases.It is combined with condensate generated by sulfur, oxygen, and heat conduction in the combustion gas of fuel. To reduce the life of heat exchanger

3. 보일러에 부착된 버너는 일정조건이 되면 정지하므로 버너휴화시 열교환이 정지됨.3. The burner attached to the boiler stops under certain conditions, so the heat exchange is stopped during burner rest.

그로인한 반응수의 열편차가 발생되어져 보일러로 유입되어지는 온도편차가 심해 에너지 조절에 어려움이 생김As a result, thermal deviation of the reaction water is generated, which causes difficulty in energy control due to severe temperature deviation introduced into the boiler.

4. 열교환기의 전열면에서 흡수되지못한 열량을 대기방출로 인한 에너지 손실.4. Loss of energy due to the release of heat into the heat transfer surface of the heat exchanger that was not absorbed.

아무리 효율이 뛰어난 열교환기라 할지라도 강제배기팬을 사용해 덕트내의 △p를 상쇄하는 방식은 열효율의 조건에 반대되는 즉 체류시간단축과 같은이유로 배기되는 열량을 절반도 흡수해 내지 못한다. 그러므로 인해 사용되어 질수 있는 에너지가 대기로 버러져 연료의 과소모로 이어지는 형국이다.No matter how efficient the heat exchanger is, the method of canceling Δp in the duct by using a forced exhaust fan does not absorb half the amount of heat exhausted for reasons such as shortening the residence time, as opposed to the condition of thermal efficiency. Therefore, the energy that can be used is lost to the atmosphere, leading to excessive consumption of fuel.

5. 기존의 튜브타입은 배열된 튜브의 점점과 수리가 어렵다.5. Conventional tube types are difficult to repair and repair of arranged tubes.

기존의 열교환기는 핀튜브의 직렬연결으로 밀집되게 제작되므로 저온부식과 열응력으로 인해 용접부위 또는 전열면이 손상되어 반응수가 누설될때 누설부위의위치확인이 안되고 수리가 어렵다.Existing heat exchangers are made densely by series connection of fin tube, so when welding water or heating surface is damaged due to low temperature corrosion and thermal stress, the leaked water cannot be located and repair is difficult.

도1. 본 발명의 정면도Figure 1. Front view of the present invention

도2. 기존 폐기 열교환기의 열흐름도Figure 2. Heat Flow Chart of Existing Waste Heat Exchanger

도3. 본 발명의 중요3부분 구성도Figure 3. Important three-part configuration diagram of the present invention

도4. 본 발명의 열흐름도Figure 4. Heat flow chart of the present invention

도5. 열교환부의 사시도Figure 5. Perspective view of heat exchanger

도6. 열교환부 챔버의 좌,우 측면도Figure 6. Left and Right Side View of Heat Exchanger Chamber

도7. 방해 안내판의 부분확대도Figure 7. Magnification of Obstruction Guide

도8. 기존 튜브타입 배열Figure 8. Existing tube type arrangement

도9. 허니콤세라믹(축열부)사시도Figure 9. Honeycomb Ceramic

도10.허니콤세라믹(필터부)사시도Fig. 10.Honeycomb ceramic (filter section) perspective view

〈도면의 주요부분에 대한 간단한 설명〉<Brief description of the main parts of the drawing>

1: 3way 스위칭 밸브 2.3: 1번탑 댐퍼1: 3way switching valve 2.3: 1st tower damper

4: 리싸이클 팬 5: 급수순환 펌프4: recycle fan 5: feed water pump

6,7: 2번탑 댐퍼 8: 리싸이클 팬6,7: Tower 2 Damper 8: Recycling Fan

9: 급수 순환 펌프9: water supply circulation pump

1. 보일러를 통과해 나온 150℃∼300℃의 폐가스는 일차적으로 필터링을 주된 기능으로 하는 허니콤세라믹(가로×세로×높이150×150×150)(도10)필터부를 통과해 연료중의 회분과 중질류연소에서의 잔류탄소 매진(검뎅이)을 엄청난 단면적을 가진 격자구멍을 통과하면서 허니콤세라믹의 표면장력으로 분진을 흡착하고 또한 필터용 세라믹의 다음공정부분 즉 판형열교환기의 물자켓외부에서 열전도에 의해 생성된 응축수가 필터용 세라믹에 떨어져 결국은 폐가스에 잔존되어 있는 유황과 물분자에 있는 분자가 결합해 유황산화물이 필터링된 분진과 허니콤세라믹의 몸체에 흡착되어서 황산화물로 인한 부식으로 열교환기의 수명단축과 열효율 저하를 미연에 방지할수 있고 흡착된 분진과 슬러지는 일차적으로 도구를 사용해 제거한후 고압의 세척기나 일반 상수원호스로 쉽게 제거되어 원래의 상태를 유지하고 처리된 폐수와 분진은 위탁처리하면 된다.1. The waste gas of 150 ℃ ~ 300 ℃ from the boiler passes through the honeycomb ceramic (horizontal × vertical × height 150 × 150 × 150) (Fig. 10) filter which mainly functions as the filtration. Residual carbon sold out in heavy and heavy combustion passes through the lattice hole with enormous cross-sectional area, adsorbing dust by the surface tension of honeycomb ceramic, and outside the jacket of the filter heat exchanger, namely the plate heat exchanger. The condensate generated by heat conduction falls on the filter ceramic and eventually the sulfur remaining in the waste gas and the molecules in the water molecules combine, so that the sulfur oxides are adsorbed to the filtered dust and the body of the honeycomb ceramic. It can prevent the shortening of the heat exchanger and the deterioration of the heat efficiency in advance, and the adsorbed dust and sludge are first removed with a tool and then a high pressure washer or a general Easily removed with a water supply hose to maintain its original condition and treated wastewater and dust can be consigned.

2. 열교환부는 많은 전열면적,폐가스의 체류시간 지연, 반응수의 체류시간을 늘리기 위해 다음과 같이 제작되어 진다.(도3-2)2. The heat exchanger is manufactured as follows to increase the heat transfer area, delay of residence time of waste gas, and residence time of reaction water (Fig. 3-2).

열교환부에서의 열의 유동으로 인해 발생되는 수축과 팽창을 고려해 열교환부를 여려개의 챔버로 구분해서 각기 독립되게 설치하고(도5) 각 챔버 내부에는 반응수의 반응시간을 연장하기위해 다단계의 베플(도6-1)을 설치해 강도향상과 열효율 상승을 유도했고 각 챔버의 외부각도를 3°∼10°로 주어 가스의 체류시간과 대류작용을 적극적으로 유도했고 각각의 챔버사이에 (도5-1)방해안내판을 보일러 배출가스 출구덕트 단면적과 챔버의 갯수를 고려해 간극을 확정하고 방해안내판을 셋팅하여 150mm정도의 간격을 주어서 수직으로 설치하면 배출가스가 전열면을 떠나지 않게 작용을 강요하게 되어지고 각 방해안내판에는 필터부에서 채 흡착되지 못한 매진이 중력과 관성에 의해 안착되는 부수적인 효과도 생기게 된다. 또한 챔버의 물의 양을감안해 챔버마다 수직으로 연관을 배열해서 (도5)전열면확대를 가져오고 연관과 연관의 피치는 80∼100mm로 제한되게 설치된다.In consideration of the contraction and expansion caused by the flow of heat in the heat exchanger, the heat exchanger is divided into several chambers and installed independently of each other (FIG. 5). 6-1) was installed to intensify the strength and increase the thermal efficiency, and the external angle of each chamber was 3 ° to 10 ° to actively induce the residence time and convection of the gas between each chamber (Fig. 5-1). If the obstruction guide plate is installed vertically with the interval of about 150mm by setting the obstruction guide plate in consideration of the cross section area of the boiler exhaust gas duct and the number of chambers, the exhaust gas is forced to act so as not to leave the heating surface. The guide plate also has the side effect that the dust that is not adsorbed by the filter unit is settled by gravity and inertia. In addition, taking into account the amount of water in the chamber, the tubes are arranged vertically in each chamber (FIG. 5), resulting in an enlarged heat transfer surface, and the pitch of the tubes and the tubes is limited to 80-100 mm.

또한 열교환부의 반응수를 다시 한번 가열하기위한 방안으로 필터부와 열교환부 사이에 가열기(도5,6)를 설치해서 보일러로 보내지기전 반응수 온도를 상승시키게 되어 있다. 이상과 같이 제작되어진 열교환부에 외부단열면을 볼트식으로 체결할수있게 해서 발생되어질수 있는 보수부분과 크리닝작업을 육안으로 쉽게 식별하고 보수작업과 크리닝작업의 용이함을 부여하게 된다.In addition, as a method for heating the reaction water of the heat exchanger once again, a heater (FIGS. 5 and 6) is installed between the filter unit and the heat exchanger to increase the temperature of the reaction water before being sent to the boiler. It is possible to visually identify the repair part and the cleaning work that can be generated by bolting the external insulation surface to the heat exchange part manufactured as described above and give the ease of repair work and cleaning work.

전열면적은 대개13∼20M2으로하고 재료의 수급과 수명을 고려해 스테인레스(STS304)로 제작하며 열효율 계산은 《열교환부의 온수발생량(시간당 무게)×온수비열×(열교환부의 입구온도-출구온도)》÷전열면적의 값에 연료의 저위발열량으로 나누면 1M2당 열량을 구할수 있다.The heat transfer area is usually 13-20M2, and it is made of stainless steel (STS304) in consideration of the supply and demand of materials.Thermal efficiency calculation is `` Hot water generation (weight per hour) x hot water specific heat x (heat inlet temperature-outlet temperature) of the heat exchanger '' ÷÷ By dividing the heat transfer area by the low calorific value of the fuel, the calorie value per 1 M2 can be obtained.

3. 본 발명의 축열부 허니콤 세라믹은 외형이 150×150×300(가로×세로×높이)크기이며 한 개의 세라믹에는 높이 방향으로 25×25구멍,40×40구멍의 두 종류가 있다.(도9)세라믹의 성분은 SIO270% AL203 2.5%로 구성되어져 있고 내열온도는 1000℃이상이며 높은 열전도율을 갖고 있으며 400N/mm2의 강도을 갖고 있는 고기능 축열제이다.(영문별지참조)이곳 축열부는 보일러의 출구덕트 단면적기준(1200장/1M2)를 기본으로 조적되어지며 열교환부에서 미흡수된 대부분의 열량을 흡수하는 기능을 수행한다. 만일 축열부에 장시간 사용으로 인한 슬러지가 발생되면 공기압과 물로 청소가능하며 크리닝후 원래의 기능으로 회복하게 된다. 이상과 같이 크게 세부분으로 결합되어진 (필터부,열교환부, 축열부)장치는 아래와 같은 방법으로 운영된다.(대표도1)3. The heat storage honeycomb ceramic according to the present invention has an external shape of 150 × 150 × 300 (width × length × height), and one ceramic has two kinds of 25 × 25 holes and 40 × 40 holes in the height direction. 9) The component of ceramic is composed of SIO270% AL203 2.5%, heat resistance temperature is over 1000 ℃, has high thermal conductivity, and has high strength of 400N / mm2. It is constructed based on the exit duct cross-sectional area standard (1200 sheets / 1M2), and absorbs most of the heat that is not absorbed by the heat exchanger. If sludge occurs due to long time use in the heat storage unit, it can be cleaned with air pressure and water, and will be restored to its original function after cleaning. The device (filter unit, heat exchanger, and heat storage unit), which is largely combined as described above, is operated in the following manner.

필터용 축열제의 쌍구조 폐기열교환기는 두 개의 탑을 한조로 구성된다. 먼저 고온의 폐기가스가 필터부를 통과한후 지정된시간에 타임머로 움직이는 스위칭 밸브(도1-1)를 통과하고 1번 탑으로 배출되어져(도1-2,3)댐퍼가 열리고 열교환부의 전열면을통과하고 미처 미흡수된 열량은 축열부에 열을 빼았기고 배출된다. 이때 열교환부와 축열부사이의 온도감지 센서(TE)에 지정된 온도 40℃이상이 걸리면 급수의 순환펌프,리싸이클 팬(도1-4,5)이 구동되고 축열부온도가 과열되기 직전까지의 시간이 장입된 스위칭 밸브가 (도1-1)반대로 닫혀져 1번탑의 댐퍼(도1-2,3)는 닫혀지고 2번탑의 두 개의 댐퍼(도1-6,7)는 열리고 가스가 2번 탑으로 배출되어지게 된다. 2번탑 열교환부는 흡열작용을, 축열부는 축열작용을 시작하고 1번탑과 동일한 방식으로 열교환작용을 수행한다. 같은 시간대에1번탑은 폐기가스의 차단으로 축열부에 저장된 열량이 리사이클 팬에 의해 계속적으로 열교환부 전열면에 축열된 온도를 뿌려주는 작용을 하며 1번탑 온도감지 센서(TE)에 셋팅40℃이하로 떨어지면 급수 순환펌프와 리싸이클 팬의 정지로 휴식상태에 들어간다.The paired waste heat exchanger of the heat storage agent for the filter is composed of two towers. First, the hot waste gas passes through the filter part and then passes through the switching valve (Fig. 1-1) which moves to the timer at the designated time and is discharged to the No. 1 tower (Figs. 1-2 and 3). The amount of heat that has passed and is not absorbed is drained out of the heat storage unit and discharged. At this time, if the temperature detected by the temperature sensor TE between the heat exchanger and the heat accumulator is over 40 ° C, the water supply circulation pump and the recycle fan (Figs. 1-4 and 5) are driven and the time until the heat accumulator is just overheated The charged switching valve is closed in reverse (Fig. 1-1), the dampers in tower 1 (Figs. 1-2, 3) are closed, the two dampers in tower 2 (Figs. 1-6, 7) are opened and the gas is in tower 2. Will be discharged. The second tower heat exchanger performs an endothermic action, and the heat storage unit starts the heat storage action and performs heat exchange in the same manner as the first tower. At the same time, the tower 1 serves to spray the heat stored in the heat exchanger's heat transfer surface by the recycling fan continuously by the waste gas blocking, and is set in the tower temperature sensor (TE) below 40 ℃. When it is lowered to, the water circulation pump and the recycling fan stop to enter the resting state.

여기서 1번탑과 2번탑의 TE는 셋팅온도 40℃를 기준으로 그 온도이상일 경우 리싸이클 팬과 급수 순환펌프가 작동되고 그 이하 온도일때 정지하게 하는 기능을하게 된다. 그후 2번탑의 축열부가 과열되기 직전에 스위칭 밸브에 의해 가스는 다시 1번탑으로 배출되고 2번탑에서는 1번탑과 동일하게 배출가스가 차단되어져 축열부에 열량이,리싸이클 팬을 통해 계속적으로 열교환부 전열면에 고온의 온도을 뿌려주는 작용을 하며 2번탑 TE에 의해 동작이 제어된다.Here, TE of towers 1 and 2 is operated by recycling fan and feed water circulation pump when the temperature is higher than the setting temperature 40 ℃ and stops when the temperature is lower than that. After that, just before the heat accumulator of tower 2 is overheated, the gas is discharged to tower 1 again by the switching valve, and the exhaust gas is blocked in the same way as tower 1 in tower 2. It sprays high temperature on the heat surface and the operation is controlled by the second tower TE.

이렇게 해서 24시간 보일러를 연속가동해도 버려지는 열 대부분을 흡수하게 되어진다.In this way, a continuous 24-hour boiler will absorb most of the heat that is wasted.

본 발명의 필터용 축열제의 쌍구조 폐기열교환기는 전열면이 판형구조이므로 보수되어 질수 있는 부분 즉, 용접비드가 구조물의 모서리로 배치되기 때문에 보수가 손쉽고 크리닝작업과 전열면전역을 눈으로 보면서 할 수 있고 보일러에서 배출되는 고온의 폐가스 열량을 필터부와 열교환부,축열부로 폐열의 활용을 적극적으로 가능하게 했으며 두 개의 탑구조가 계속적인 보일러의 연속사용에도 유연하게 대처할수 있게 된다.결국 보일러 가동시간을 축소시키므로 연료절감을 가져와 각 운영자의 생산비 절감과 크게는 에너지 절약에 이바지하게 된다.The waste heat exchanger structure of the heat storage agent for the filter according to the present invention has a plate-like heat transfer surface, and thus, a repairable part, that is, a weld bead is disposed at the corner of the structure, so that the repair is easy and the cleaning work and the heat transfer surface area can be visually observed. The high heat waste gas discharged from the boiler makes it possible to actively use the waste heat as the filter unit, the heat exchange unit and the heat storage unit, and the two tower structures can flexibly cope with the continuous use of the boiler. Reducing the time saves fuel, contributing to each operator's production cost savings and energy savings.

Claims (1)

본 발명의 입구에서 매진(검뎅이)과 유황산화물을 흡착하는 필터부와 일정한 각도로 대칭경사설치 되어져 폐가스의 체류면을 확대시킨 판형열교환부 어셈블리, 열교환부의 전열면을 통과해서도 미흡수된 열량대부분을 축열부인 허니콤세라믹에 축열해 그 축열된 열량을 24시간내내 보일러가 가동되는 환경에서도 축열된 열량을 재사용하는 필터용 축열제의 쌍구조 폐기열교환기At the inlet of the present invention, a symmetrical inclination is installed at a predetermined angle with the filter unit adsorbing the soot and the sulfur oxides, and the plate heat exchanger assembly which enlarges the retention surface of the waste gas is not absorbed even through the heat transfer surface of the heat exchange unit. Dual-type waste heat exchanger for filter heat accumulator which accumulates most of heat in honeycomb ceramic which is heat storage part and reuses the accumulated heat amount even in the environment where boiler is operated for 24 hours
KR1020010042522A 2001-07-11 2001-07-11 Twin Heat Exchanger of Filtering & Regenerative KR20010085003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010042522A KR20010085003A (en) 2001-07-11 2001-07-11 Twin Heat Exchanger of Filtering & Regenerative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010042522A KR20010085003A (en) 2001-07-11 2001-07-11 Twin Heat Exchanger of Filtering & Regenerative

Publications (1)

Publication Number Publication Date
KR20010085003A true KR20010085003A (en) 2001-09-07

Family

ID=19712172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010042522A KR20010085003A (en) 2001-07-11 2001-07-11 Twin Heat Exchanger of Filtering & Regenerative

Country Status (1)

Country Link
KR (1) KR20010085003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112426814A (en) * 2020-11-23 2021-03-02 娴峰钩 Environment-friendly high temperature flue gas desulphurization device with heat recovery function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112426814A (en) * 2020-11-23 2021-03-02 娴峰钩 Environment-friendly high temperature flue gas desulphurization device with heat recovery function
CN112426814B (en) * 2020-11-23 2021-12-28 江苏海默环保科技有限公司 Environment-friendly high temperature flue gas desulphurization device with heat recovery function

Similar Documents

Publication Publication Date Title
KR101160815B1 (en) Waste Heat Recovery System
CN102809168A (en) Air preheater and application thereof
KR20010085003A (en) Twin Heat Exchanger of Filtering &amp; Regenerative
CN205482504U (en) But fluoroplastics tubular heat exchanger structure that level was placed
US11585613B2 (en) System and method for installing external corrosion guards
CN212777349U (en) One-pit one-furnace type town domestic garbage incinerator air-smoke system
CN210601666U (en) Heat accumulator and heat accumulating type catalytic oxidation furnace adopting same
CN101871734A (en) Heat exchange device and waste gas purification system with same
KR200240776Y1 (en) Heat Exchanger of Filtering &amp; Regenerative 2
CN201837271U (en) Heat exchanging device and exhaust gas purification system with same
CN201476043U (en) Steam air preheater
CN106765008B (en) Heat accumulating combustion type gas heat pipe steam generator and method for comprehensively recovering flue gas waste heat thereof
CN110630995A (en) Positive pressure horizontal water pipe waste heat boiler
CN216367297U (en) Wet-type desulfurization flue gas reheating device
CN110440578A (en) A kind of vertical and cylindrical tubular heater
CN217441615U (en) Novel high-temperature flue gas bypass system
CN219956162U (en) Sodium bichromate calcining kiln waste heat steam boiler
KR101941162B1 (en) Gas-gas heat exchanger in a thermal power plant with improved corrosion protection
CN205208612U (en) Hot tubular air heater
KR200312509Y1 (en) Hot water boiler with steam function
CN101644443A (en) Steam air preheater
CN210891593U (en) Positive pressure horizontal water pipe waste heat boiler
CN220186861U (en) Vertical glass tube air preheater
CN210103738U (en) Device for recovering heat energy of smoke discharged by glass kiln by using water pipe
CN1012519B (en) Vertical boiler

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application