KR20010084574A - A new type photocatalyst dopped and coated on silicagel and its method of preparation - Google Patents

A new type photocatalyst dopped and coated on silicagel and its method of preparation Download PDF

Info

Publication number
KR20010084574A
KR20010084574A KR1020000009732A KR20000009732A KR20010084574A KR 20010084574 A KR20010084574 A KR 20010084574A KR 1020000009732 A KR1020000009732 A KR 1020000009732A KR 20000009732 A KR20000009732 A KR 20000009732A KR 20010084574 A KR20010084574 A KR 20010084574A
Authority
KR
South Korea
Prior art keywords
silica gel
photocatalyst
oxide
hours
sulfate
Prior art date
Application number
KR1020000009732A
Other languages
Korean (ko)
Other versions
KR100353242B1 (en
Inventor
김학진
권성웅
구태현
이종흔
Original Assignee
이형석
극동화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형석, 극동화학 주식회사 filed Critical 이형석
Priority to KR1020000009732A priority Critical patent/KR100353242B1/en
Priority to JP2000006208U priority patent/JP3075920U/en
Publication of KR20010084574A publication Critical patent/KR20010084574A/en
Application granted granted Critical
Publication of KR100353242B1 publication Critical patent/KR100353242B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • B01J35/39
    • B01J35/40
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Abstract

PURPOSE: A novel photocatalyst and its preparation method are provided, to improve the activity as a catalyst for increasing the formation velocity of hydroxide radical and to allow the catalysis activity to be showed stably in the range of the UV to the visible ray with weak energy. CONSTITUTION: The method comprises the steps of heating silica gel at 400-600 deg.C for 1-2 hours; adding the heated silica gel into water, and stirring and heating it with refluxing; dissolving TiOSO4 and a sulfate salt of other photocatalytic metal ions into water, to obtain an aqueous solution; injecting the aqueous solution into the silica gel solution by degrees, and heating it with refluxing for 2-3 hours; separating silica gel from the reaction mixture; drying the separated silica gel at 150-200 deg.C for 3 hours; and sintering it 400-600 deg.C for 30 min to 2 hours. Preferably the sulfate salt is selected from the group consisting of Fe2O3, ZnO, CoO, Cu2O, and their mixtures. The photocatalyst is such that titanium oxide and other metal ions are infiltrated and coated simultaneously on a single silica gel support; and the silica gel is spherical one with the size of 50 micrometer to 6 mm.

Description

실리카겔을 지지체로 하는 신규한 형태의 광촉매 및 그 제조방법 {A NEW TYPE PHOTOCATALYST DOPPED AND COATED ON SILICAGEL AND ITS METHOD OF PREPARATION}New type photocatalyst based on silica gel and its manufacturing method {A NEW TYPE PHOTOCATALYST DOPPED AND COATED ON SILICAGEL AND ITS METHOD OF PREPARATION}

본 발명은 광촉매 및 그 제조방법에 관한 것으로, 보다 상세하게는 비표면적이 넓고 세공면적과 크기가 큰 실리카겔을 지지체로 하여 여기에 티타닐설페이트(TiOSO4)와 다른 금속이온의 황산염을 가열가수분해시켜 실리카겔의 세공 내부와 표면에 함침 및 코팅시킴으로써 광촉매로서의 활성도를 높이고 수명을 지속화한 신규한 형태의 광촉매 및 그 제조방법에 관한 것이다.The present invention relates to a photocatalyst and a method for preparing the same, and more particularly, a silica gel having a large specific surface area, a large pore area, and a large pore size is used as a support to heat hydrolysis of sulfate of titanyl sulfate (TiOSO 4 ) and other metal ions. The present invention relates to a novel photocatalyst having a high activity as a photocatalyst and a long lifetime by impregnating and coating the inside and the surface of the pores of silica gel, and a method of manufacturing the same.

급속한 산업의 발달로 인하여 인간생활의 편리함과 안락함은 크게 향상되었으나 이로 인해 발생된 산업폐기물과 같은 부산물들은 다른 한편으로 환경의 파괴라는 심각한 문제를 낳고 있다. 최근에는 이러한 환경오염에 대한 관심도가 높아져 국가적인 차원에서도 많은 노력을 기울이고 있으나 아직까지 만족할만한 해결책을 찾지 못하고 있는 실정이다.The rapid development of industry has greatly improved the convenience and comfort of human life, but the by-products such as industrial waste generated on the other hand have serious problems of environmental degradation. Recently, due to the increased interest in environmental pollution, a lot of efforts have been made at the national level, but there are still no satisfactory solutions.

산업폐기물 중에서도 특히 난분해성 유기화합물들은 인류의 장래에까지 영향을 미치므로 그 문제가 더욱 심각하다고 할 수 있다. 이러한 난분해성 유기화합물을 손쉽고 빠르게 분해시킬 수 있는 방법으로 광촉매를 이용한 광분해반응이 제안되었다. 광촉매 분해반응이란 띠 간격 에너지(bandgap energy) 이상의 빛에너지를 광촉매에 조사하였을 때 전자와 양공이 발생하고, 이들에 의해 생성되는 수산화라디칼(·OH)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 반응, 즉 광촉매 물질이 광여기되었을 때 갖는 강력한 산화력으로 환경오염물질을 산화분해하는 반응을 말한다.Among industrial wastes, especially hard-degradable organic compounds affect the future of humankind, so the problem is more serious. Photodegradation reaction using a photocatalyst has been proposed as a method for easily and quickly decomposing such hardly decomposable organic compounds. Photocatalytic decomposition reaction means that when light energy above bandgap energy is irradiated on photocatalyst, electrons and holes are generated and gas or liquid phase adsorbed on the surface of photocatalyst by strong oxidizing power of radical hydroxide (· OH) produced by them. Refers to a reaction in which organic substances are decomposed, that is, a reaction oxidatively decomposes environmental pollutants with strong oxidizing power when the photocatalytic material is photoexcited.

이러한 광촉매 반응을 유도하는 물질로는 산화티타늄(TiO2), 산화지르코늄 (ZrO2), 산화비소(Sb2O4), 산화아연(ZnO), 산화주석(SnO2), 산화세륨 (CeO2), 산화텅스텐(WO3) 및 산화철(Fe2O3) 등이 알려져 있으며(미국특허 제5,045,288호), 이 중 산화티타늄은 높은 광활성과 강력한 분해능으로 가장 많이 사용되고 있다.Materials for inducing the photocatalytic reaction include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), arsenic oxide (Sb 2 O 4 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and cerium oxide (CeO 2). ), Tungsten oxide (WO 3 ), and iron oxide (Fe 2 O 3 ), and the like (US Pat. No. 5,045,288), among which titanium oxide is most commonly used for its high photoactivity and strong resolution.

아나타제형 티타니아(TiO2)가 촉매로서 광활성이 높고 강력한 분해능을 갖고 있다는 것은 1970년대 초부터 알려졌었다. 그러나, 종래의 광촉매 기술은 TiO₂나 ZnO, ZrO2, ZnS 등의 광촉매 특성을 갖는 화합물을 결정형태만 전환시키거나 (예를 들어, TiO₂의 경우 루타일형을 아나타제형으로), 또는 그대로 분말상태로 직접 사용하거나 또는 결합제(binder)를 사용하여 유리, 금속, 세라믹 등의 기판위에 도포하여 광촉매로 사용하였다 (한국공개특허 99-0043598, 98-00006840, 99-028236). 그리고, 이보다 개량된 형태로는 광촉매 특성을 가진 물질의 알콕사이드 화합물, 염화물 등을 졸로 만들거나(졸-겔법) 또는 가수분해시킨 형태로 만들어 이를 유리, 금속, 세라믹스 등의 기판위에 나노미터(nm) 두께로 박막 코팅하여 광촉매적 특성을 갖도록 하는 방법들이 있는데(한국공개특허 98-703128, 98-0035033), 이 중 졸-겔법은 현재 광촉매 제품의 주류를 이루고 있다.It was known from the early 1970s that anatase titania (TiO 2 ) is a catalyst with high photoactivity and strong resolution. However, the conventional photocatalyst technology converts a compound having photocatalytic properties such as TiO₂, ZnO, ZrO 2 , ZnS only into a crystalline form (for example, in the case of TiO₂, the rutile form into an anatase form), or as a powder state. Directly or by using a binder (binder) was applied to a substrate such as glass, metal, ceramics and the like as a photocatalyst (Korea Patent Publication 99-0043598, 98-00006840, 99-028236). In addition, the improved form may be made of a sol (sol-gel method) or hydrolyzed form of an alkoxide compound, chloride, etc. of a material having photocatalytic properties, and then formed into a nanometer (nm) on a substrate such as glass, metal, or ceramics. There are methods to have a photocatalytic property by coating a thin film in thickness (Korean Patent Publication No. 98-703128, 98-0035033), of which the sol-gel method is the mainstream of photocatalyst products.

그러나 상기 방법 중 분말을 그대로 사용하는 경우는 폐수 처리시 반응후 별도의 회수장치를 필요로 하고 여과 분리시에는 계외로 배출될 수 있으므로 원하지 않는 또 다른 오염원이 될 수 있다는 문제점이 있으며, 유리, 세라믹스, 플라스틱 등의 지지체에 광촉매를 도포하여 사용하는 경우에는 박막 도포시 사용하는 결합제가 시간의 경과에 따라 결합력이 저하되어 광촉매가 박리될 수 있다는 문제점이 있다. 또한, 알콕사이드 화합물과 염화물 등을 이용하는 방법은 출발 원료물질의 가격이 비싸 현실적으로 실용화하기 어렵고 제조방법 또한 까다롭다는 문제점이 있다.However, if the powder is used as it is, the waste water treatment requires a separate recovery device after the reaction and may be discharged out of the system during filtration separation, which may be another unwanted source of contamination, glass, ceramics. In the case where the photocatalyst is applied to a support such as a plastic, the binder used to apply the thin film has a problem in that the bonding force decreases with time, and the photocatalyst may be peeled off. In addition, the method using an alkoxide compound, chloride, etc. has a problem that the price of the starting raw material is expensive and difficult to be practically used, and the manufacturing method is also difficult.

이렇게 광촉매 분야는 최근까지 상당한 진보가 이루어졌으나 독성 난분해성 유기화합물을 분해시키는데 있어서 광분해 반응의 주체가 되는 광촉매의 수산화라디칼(-OH radical)의 형성속도를 보다 빠르게 해주면서도 제조방법이 간단하고 경제적인 측면에서 상용화하기에 적합한 촉매에 대한 개발 필요성은 계속 제기되고 있다.In the photocatalyst field, considerable advances have been made until recently, but the manufacturing method is simple and economical while speeding up the formation of hydroxyl radical (-OH radical) of the photocatalyst, which is the main agent of the photolysis reaction in decomposing toxic hardly decomposable organic compounds. There is a continuing need for development of suitable catalysts for commercialization.

본 발명은 수산화 라디칼(-OH radical)의 형성속도를 빠르게 하면서도 제조방법이 간단하고 경제적으로 상용화가 가능한 광촉매 및 그 제조방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a photocatalyst and a method for producing the same, which can speed up the formation of hydroxide radicals (-OH radicals) and can be commercialized simply and economically.

또한, 본 발명은 자외선은 물론 약한 에너지 수준의 가시광선 영역에서도 지속적이며 안정적인 촉매 활성을 나타내는 신규한 광촉매 및 그 제조방법을 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a novel photocatalyst and a method for producing the same, which exhibit continuous and stable catalytic activity not only in ultraviolet light but also in the visible light region at a weak energy level.

도 1은 본 발명에 따른 광촉매의 색도제거율 실험에 사용한 장치의 단면도이다.1 is a cross-sectional view of the apparatus used for the chromaticity removal experiment of the photocatalyst according to the present invention.

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1 : UV-A 램프 2 : UV-B 램프1: UV-A lamp 2: UV-B lamp

3 : UV-C 램프 4 : 광촉매3: UV-C lamp 4: photocatalyst

5 : 유리반응기 6 : 유리관(파이렉스)5: glass reactor 6: glass tube (pyrex)

7 : 유입관 8 : 배출관7: inlet tube 8: outlet tube

상기와 같은 목적을 달성하기 위해 본 발명에서는, 비표면적이 넓고 세공면적과 크기가 큰 실리카겔을 지지체로 하여 여기에 티타닐설페이트와 다른 금속이온의 황산염을 가열 가수분해시킴으로써 하나의 실리카겔 지지체에 주촉매로서 산화티타늄과 조촉매로서 광촉매기능을 갖는 다른 금속이온을 동시에 함침·코팅시킨 새로운 형태의 광촉매 및 그 제조방법을 제공한다.In order to achieve the above object, in the present invention, silica gel having a large specific surface area and a large pore area and a large size is used as a support, and a main catalyst is formed on one silica gel support by heating and hydrolyzing sulfates of titanyl sulfate and other metal ions. The present invention provides a new type of photocatalyst which is impregnated and coated with titanium oxide and other metal ions having a photocatalytic function as a cocatalyst and a method of producing the same.

즉, 본 발명은 하나의 실리카겔 지지체에 산화티타늄(TiO2)과 1∼2 종의 다른 광촉매 특성을 갖는 금속이온을 공유하도록 함으로써 촉매로서의 활성도를 높여 수산화라디칼의 형성속도를 빠르게 하고 자외선은 물론 약한 에너지 수준의 가시광선 영역에서도 지속적이며 안정적인 촉매 활성을 나타내도록 한다.That is, according to the present invention, titanium oxide (TiO 2 ) and metal ions having one or two different photocatalytic properties are shared on one silica gel support, thereby increasing the activity as a catalyst to speed up the formation of hydroxyl radicals and to weaken ultraviolet rays as well as weak light. In the visible light range of energy level, it shows continuous and stable catalytic activity.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 있어서 광촉매의 기본 지지체로는 2㎛∼50㎛의 소형 실리카겔과 50㎛∼1000㎛의 중형 실리카겔 및 1㎜∼6㎜의 대형 실리카겔이 용도에 따라 모두 사용될 수 있으며, 사용되는 실리카겔의 형상 또한 구형과 파형의 실리카겔이 모두 사용될 수 있다. 예를 들어, 폐수처리에는 대형 실리카겔이 사용될 수 있으며, 녹조, 적조처리 및 방오제로는 중형 실리카겔이 사용될 수 있다. 대부분의 경우에 보다 바람직하게는 비표면적이 큰 구형의 실리카겔이 사용될 수 있으며, 특히 폐수처리를 위해서는 1㎜∼6㎜의 구형 실리카겔이 사용될 수 있다.In the present invention, as a basic support of the photocatalyst, small silica gels of 2 μm to 50 μm, medium silica gels of 50 μm to 1000 μm, and large silica gels of 1 mm to 6 mm may be used depending on the application. In addition, both spherical and corrugated silica gel can be used. For example, large silica gel may be used for wastewater treatment, and medium silica gel may be used for green algae, red tide treatment, and antifouling agent. In most cases, more preferably, spherical silica gel having a large specific surface area may be used, and in particular, 1 mm to 6 mm spherical silica gel may be used for wastewater treatment.

실리카겔은 투명하여 빛을 통과시키면서도 흡착력이 크고 다공성으로 비표면적이 크다는 특성을 가지고 있다. 본 발명은 실리카겔의 이러한 특성에 착안한 것으로, 광촉매 활성을 갖는 물질을 보다 경제적이면서도 효과적인 방법으로 실리카겔 지지체에 코팅시킴으로써 촉매활성이 우수한 새로운 광촉매를 제공하고자 한 것이다. 본 발명에서는 촉매 지지체로서의 안정성을 확보하기 위해 실리카겔을 400℃∼600℃ 에서 소성 열처리한 후 사용한다.Silica gel is transparent and has high adsorptive power and high porosity and specific surface area while passing light. The present invention focuses on these characteristics of silica gel, and is intended to provide a new photocatalyst having excellent catalytic activity by coating a material having photocatalytic activity on a silica gel support in a more economical and effective manner. In the present invention, in order to ensure stability as a catalyst support, the silica gel is used after calcining heat treatment at 400 ° C to 600 ° C.

본 발명에서는 광촉매 물질로서 광활성이 높고 강력한 분해능을 가진 것으로 알려진 산화티타늄(TiO₂)을 주촉매로 사용한다. 구체적으로는 원료로 티타닐설페이트(TiOSO4)를 사용하여 이를 가열 가수분해시킴으로써 실리카겔의 세공 내부와 표면에 산화티타늄(TiO₂)이 함침 및 코팅되도록 한다.In the present invention, titanium oxide (TiO₂), which is known to have high photoactivity and strong resolution, is used as a photocatalyst as a main catalyst. Specifically, titanium oxide (TiO₂) is impregnated and coated on the inside and the surface of the pores of silica gel by heat hydrolysis using titanyl sulfate (TiOSO 4 ) as a raw material.

이렇게 본 발명에서 산화티타늄(TiO₂)의 원료로 사용되는 티타닐설페이트는 기존의 코팅원료로 사용되는 산화티타늄(TiO₂) 졸이나 산화티타늄(TiO₂) 분말 등에 비해 매우 저렴하기 때문에 본 발명은 기존의 졸-겔법은 물론 결합제를 이용하여 산화티타늄(TiO₂) 분말을 박막에 도포하는 방법에 비해서도 훨씬 경제적이며 방법이 간단하여 적용하기 쉽고 코팅효과는 기존의 졸-겔법과 동등하거나 그 이상이다.Thus, in the present invention, since the titanyl sulfate used as a raw material of titanium oxide (TiO₂) is very inexpensive compared to the titanium oxide (TiO₂) sol or titanium oxide (TiO₂) powder used as a coating material, the present invention is a conventional sol. -The gel method is much more economical than the method of applying titanium oxide (TiO₂) powder to a thin film using a binder, and the method is simple and easy to apply, and the coating effect is equal to or higher than that of the conventional sol-gel method.

또한, 본 발명에서는 광촉매 기능을 갖는 금속이온인 산화철(Fe2O3), 산화아연(ZnO), 산화코발트(CoO), 산화구리(Cu2O), 산화알루미늄(Al2O3), 백금(Pt) 및 란탄족 금속(Lanthanide Metal) 등으로부터 선택된 하나 이상의 물질을 조촉매로서 상기 실리카겔 지지체에 산화티타늄(TiO₂)과 함께 코팅시킨다. 구체적인 코팅방법은 황산제이철, 황산아연, 황산코발트, 황산구리 등의 황산염을 티타닐설페이트용액에 혼합하여 함께 가열 가수분해시킴으로써 이들 금속이온을 실리카겔에 함침, 코팅시킨다.In addition, in the present invention, iron oxide (Fe 2 O 3 ), zinc oxide (ZnO), cobalt oxide (CoO), copper oxide (Cu 2 O), aluminum oxide (Al 2 O 3 ), and platinum which are metal ions having a photocatalytic function One or more materials selected from (Pt), Lanthanide Metal, and the like are coated with titanium oxide (TiO₂) on the silica gel support as a promoter. The specific coating method is to impregnate and coat these metal ions with silica gel by mixing sulfates such as ferric sulfate, zinc sulfate, cobalt sulfate, and copper sulfate in a titanyl sulfate solution and heating and hydrolyzing them together.

본 발명은 티타닐설페이트와 조촉매의 황산염을 함께 가열 가수분해시키는 상기 코팅법을 사용함으로써 간단한 방법으로 실리카겔에 산화티타늄(TiO2)과 광촉매기능을 갖는 다른 금속이온을 동시에 함침·코팅시키게 되는데, 이렇게 하나의 지지체에 서로 다른 2 가지 이상의 금속이온을 동시에 코팅시키는 것은 기존의 졸-겔법으로는 용이하지 않은 일이었다.The present invention is to impregnate and coat titanium oxide (TiO 2 ) and other metal ions having a photocatalytic function at the same time by a simple method by using the above coating method of heating and hydrolyzing the titanyl sulfate and the sulfate of the cocatalyst together. This coating of two or more different metal ions on one support at the same time was not easy with the conventional sol-gel method.

즉, 기존의 졸-겔 코팅법은 지지체에 두 가지 이상의 다른 입자를 균일하게 분산시키기 위해 서로 다른 두 종류의 졸을 물리적으로 혼합하거나(미국 특허 제5,591,380호) 출발 물질인 두 종류의 알콕사이드(alkoxide)를 용매에 동시에 용해시켜 졸을 제조(미국 특허 제4,176,089호)하여야만 하였으나, 일반적으로 두 가지 종류의 졸을 혼합할 경우 졸의 안정성이 저하되어 짧은 시간내에 겔화되어 버리고, 코팅시 코팅막이 두꺼워져 열처리 후에 담체로부터 탈리될 우려가 있으며, 출발 물질을 동시에 용해하여 졸입자를 분산(peptixation)시킬 경우에는 제조조건이 정밀하게 조절되어야 하기 때문에 공정이 복잡해 진다는 문제점이 있었다. 또한, 이러한 문제점을 해결하기 위해 제조된 졸에 염을 일정량 녹임으로써 코팅층에 서로 다른 종류의 산화물을 균일하게 분산시키는 방법이 제시되어 있으나(한국특허 제225342호), 이 방법 또한 공정상의 번잡함은 크게 해소되지 않으면서 사용할 수있는 염은 알루미늄염으로 한정되고 첨가되는 염의 몰비가 제대로 제어되지 않을 경우 광촉매의 효율이 오히려 감소될 수 있다는 문제점이 있었다.That is, the conventional sol-gel coating method physically mixes two different types of sol to uniformly disperse two or more different particles on a support (US Pat. No. 5,591,380) or two kinds of alkoxides as starting materials. ) Should be dissolved in a solvent at the same time to prepare a sol (US Pat. No. 4,176,089), but in general, when two kinds of sol are mixed, the stability of the sol is deteriorated and gels in a short time, and the coating film becomes thick during coating. There is a possibility of detachment from the carrier after heat treatment, and when the starting material is dissolved at the same time to dissolve the sol particles (peptixation) there is a problem that the process is complicated because the manufacturing conditions must be precisely controlled. In addition, a method of uniformly dispersing different kinds of oxides in a coating layer by dissolving a predetermined amount of salt in a sol prepared to solve such a problem is proposed (Korean Patent No. 225342), but this method also has a large process complexity. Salts that can be used without being resolved are limited to aluminum salts and there is a problem that the efficiency of the photocatalyst can be rather reduced if the molar ratio of added salts is not properly controlled.

본 발명에서는 또한 주촉매로서 상기한 산화티타늄(TiO₂)외에 기존의 알려진 광촉매 물질인 산화지르코늄(ZrO2), 산화비소(Sb2O4), 산화아연(ZnO), 산화주석 (SnO2), 산화세륨(CeO2), 산화텅스텐(WO3) 및 산화철(Fe2O3) 등을, 이들의 황산염을 사용하는 등의 적절한 방법을 이용하여 사용할 수 있다.In the present invention, in addition to the above-described titanium oxide (TiO₂), zirconium oxide (ZrO 2 ), arsenic oxide (Sb 2 O 4 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and other known photocatalyst materials, Cerium oxide (CeO 2 ), tungsten oxide (WO 3 ), iron oxide (Fe 2 O 3 ), and the like can be used using an appropriate method such as using sulfates thereof.

또한, 본 발명에서는 조촉매로서 상기에서 열거한 것 외에 산화지르코늄 (ZrO2), 산화비소(Sb2O4), 산화아연(ZnO), 산화주석(SnO2), 산화세륨(CeO2), 산화텅스텐(WO3) 및 산화철(Fe2O3) 등과 같이 기존의 알려진 광촉매 물질을, 이들의 황산염을 사용하는 등의 적절한 방법을 이용하여 사용할 수 있다.In the present invention, in addition to those listed above as cocatalysts, zirconium oxide (ZrO 2 ), arsenic oxide (Sb 2 O 4 ), zinc oxide (ZnO), tin oxide (SnO 2 ), cerium oxide (CeO 2 ), Conventionally known photocatalytic materials, such as tungsten oxide (WO 3 ) and iron oxide (Fe 2 O 3 ), can be used using appropriate methods such as the use of sulfates thereof.

본 발명에 따른 광촉매의 구체적인 제조방법은 다음과 같다.Specific manufacturing method of the photocatalyst according to the present invention is as follows.

(1) 공정 1(1) Process 1

2㎛∼50㎛의 소형 실리카겔과 50㎛∼1000㎛의 중형 실리카겔 및 1㎜∼6㎜의 대형 실리카겔 중 하나를 용도에 따라 선택하여 400℃∼600℃ 부근에서 1∼2 시간 동안 가열한다.One of the small silica gel of 2 μm to 50 μm, the medium silica gel of 50 μm to 1000 μm, and the large silica gel of 1 mm to 6 mm is selected according to the application and heated for 1 to 2 hours at around 400 ° C. to 600 ° C.

(2) 공정 2(2) process 2

상기 열처리된 실리카겔을 물에 넣고 교반, 가열, 환류시킨다.The heat treated silica gel was put in water, stirred, heated and refluxed.

(3) 공정 3(3) process 3

티타닐설페이트(TiOSO4)와 별도로 준비한 조촉매물질의 황산염(황산제이철, 황산아연, 황산코발트, 황산구리 등)을 함께 물에 용해시켜 수용액을 만든다.Titanyl sulfate (TiOSO 4 ) and sulfates of the cocatalyst material separately prepared (ferric sulfate, zinc sulfate, cobalt sulfate, copper sulfate, etc.) are dissolved together in water to form an aqueous solution.

(4) 공정 4(4) process 4

상기 공정 3에서 만든 수용액을 공정 2에서 준비한 실리카겔액에 일정시간에 걸쳐 정량씩 투입한 후 2∼3시간 동안 계속 가열, 환류 반응시킨다.The aqueous solution prepared in step 3 was added to the silica gel solution prepared in step 2 in a fixed amount over a predetermined time, and then heated and refluxed for 2 to 3 hours.

(5) 공정 5(5) step 5

반응이 끝난 후 반응용액으로부터 실리카겔을 분리하여 150∼200℃에서 3시간 건조한 후 400∼600℃로 30분∼2시간 소성하여 본 발명의 촉매를 완성한다.After the reaction, the silica gel was separated from the reaction solution, dried at 150 to 200 ° C. for 3 hours, and calcined at 400 to 600 ° C. for 30 minutes to 2 hours to complete the catalyst of the present invention.

본 발명의 광촉매는 통상의 광촉매와 마찬가지로 유기화합물의 광분해반응에 사용될 수 있다. 특히, 본 발명의 광촉매는 우수한 촉매활성과 그 안정성 및 지속성으로 폐수처리, 공기정화, 녹조·적조 처리, 방오제, 항균제, 화훼토양제(생장촉진제) 등에 이용될 수 있다.The photocatalyst of the present invention can be used for photodegradation reaction of an organic compound similarly to a conventional photocatalyst. In particular, the photocatalyst of the present invention can be used for waste water treatment, air purification, green algae / red tide treatment, antifouling agent, antibacterial agent, flower soil agent (growth promoter) and the like with excellent catalytic activity and stability and durability.

이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예는 오로지 본 발명을 설명하기 위한 것으로 이들 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for illustrating the present invention and the present invention is not limited by these examples.

제조실시예 1Preparation Example 1

(ⅰ) 1㎜∼6㎜의 구형 실리카겔을 500℃에서 2 시간 동안 가열하였다.(Iii) 1 mm to 6 mm spherical silica gel was heated at 500 ° C. for 2 hours.

(ⅱ) (ⅰ)에서 준비한 실리카겔 1㎏을 물 5000㎖에 넣고 교반, 가열, 환류시켰다.(Ii) 1 kg of the silica gel prepared in (iii) was put in 5000 ml of water, and stirred, heated and refluxed.

(ⅲ) 티타닐설페이트(TiOSO42mol/L) 40g과 황산제이철(Fe(SO4)21mol/L) 0.1mol을 물 2000㎖에 용해시켜 촉매물질의 수용액을 만들었다.(Iii) 40 g of titanyl sulfate (TiOSO 4 2 mol / L) and 0.1 mol of ferric sulfate (Fe (SO 4 ) 2 1 mol / L) were dissolved in 2000 ml of water to prepare an aqueous solution of the catalyst material.

(ⅳ) (ⅲ)만든 수용액을 (ⅱ)에서 준비한 실리카겔 액에 한 시간에 걸쳐 정량씩 투입하고 3시간 동안 계속 가열, 환류 반응시켰다.(Iii) The aqueous solution (iii) was added to the silica gel solution prepared in (ii) one by one over a period of time, followed by heating and refluxing for 3 hours.

(ⅴ) 반응 후 반응용액으로부터 실리카겔을 분리하여 200℃에서 3시간 건조한 후 500℃로 1시간 소성하여 본 발명의 광촉매를 만들었다.(Iii) After the reaction, silica gel was separated from the reaction solution, dried at 200 ° C. for 3 hours, and calcined at 500 ° C. for 1 hour to prepare a photocatalyst of the present invention.

제조실시예 2Preparation Example 2

촉매물질의 수용액을 다음과 같이 하는 것을 제외하고는 제조실시예 1과 동일한 방법으로 본 발명의 광촉매를 만들었다.The photocatalyst of the present invention was prepared in the same manner as in Preparation Example 1, except that the aqueous solution of the catalyst material was carried out as follows.

티타닐설페이트 용액 40g/2000㎖(물)40 g / 2000 ml of titanyl sulfate solution (water)

황산아연 16.1g(0.1mol)/2000㎖(물)Zinc sulfate 16.1 g (0.1 mol) / 2000 ml (water)

제조실시예 3Preparation Example 3

촉매물질의 수용액을 다음과 같이 하는 것을 제외하고는 제조실시예 1과 동일한 방법으로 본 발명의 광촉매를 만들었다.The photocatalyst of the present invention was prepared in the same manner as in Preparation Example 1, except that the aqueous solution of the catalyst material was carried out as follows.

티타닐설페이트 용액 40g/2000㎖(물)40 g / 2000 ml of titanyl sulfate solution (water)

황산코발트 15.5g(0.1mol)/2000㎖(물)Cobalt sulfate 15.5 g (0.1 mol) / 2000 ml (water)

제조실시예 4Preparation Example 4

산화티타늄(TiO₂) 분말 28.8g(0.2mol/L)을 황산(H2SO4) 100g에 용해시킨 용액을 물 2000㎖에 용해시켜 촉매물질의 수용액으로 하는 것을 제외하고는 제조실시예 1과 동일한 방법으로 광촉매를 만들었다.Same as Preparation Example 1, except that a solution obtained by dissolving 28.8 g (0.2 mol / L) of titanium oxide powder in 100 g of sulfuric acid (H 2 SO 4 ) was dissolved in 2000 ml of water to form an aqueous solution of the catalytic material. The photocatalyst was made by the method.

제조실시예 5Preparation Example 5

산화티타늄(TiO₂) 분말 28.8g(0.2mol/L)을 황산(H2SO4) 100g에 용해시킨 용액과 황산아연(ZnSO4) 16.1g(0.1mol)을 물 2000㎖에 용해시켜 촉매물질의 수용액으로 하는 것을 제외하고는 제조실시예 1과 동일한 방법으로 광촉매를 만들었다.A solution of 28.8 g (0.2 mol / L) of titanium oxide (TiO₂) powder in 100 g of sulfuric acid (H 2 SO 4 ) and 16.1 g (0.1 mol) of zinc sulfate (ZnSO 4 ) were dissolved in 2000 ml of water to Photocatalysts were prepared in the same manner as in Preparation Example 1, except that the aqueous solution was used.

제조실시예 6Preparation Example 6

산화티타늄(TiO₂) 분말 28.8g(0.2mol/L)을 황산(H2SO4) 100g에 용해시킨 용액과 황산코발트(CoSO4) 15.5g(0.1mol)을 물 2000㎖에 용해시켜 촉매물질의 수용액으로 하는 것을 제외하고는 제조실시예 1과 동일한 방법으로 광촉매를 만들었다.A solution of 28.8 g (0.2 mol / L) of titanium oxide (TiO₂) powder dissolved in 100 g of sulfuric acid (H 2 SO 4 ) and 15.5 g (0.1 mol) of cobalt sulfate (CoSO 4 ) were dissolved in 2000 ml of water. Photocatalysts were prepared in the same manner as in Preparation Example 1, except that the aqueous solution was used.

실험실시예 1Laboratory Example 1

상기 제조실시예 1 내지 6에 따라 제조된 광촉매를 각각 100g씩 사용하여, 염료 다크 그린 2B 100ppm 용액 3L에 대한 색도제거율을 실험하였다. 실험에는 도 1에 도시된 장치를 사용하여, 염료용액이 유입관(7)을 따라 들어가고 배출관(8)을 통해 배출되면서 275nm의 UV-A 램프(1)와 302nm의 UV-B 램프(2), 352nm의 UV-C 램프(3)를 거쳐 순환되면서 광분해반응을 하도록 하였다. 촉매를 넣고 2시간 동안 순환 반응시킨 후 색도 제거율을 측정하였으며, 결과는 다음의 표 1과 같다.100 g each of the photocatalysts prepared according to Preparation Examples 1 to 6 were used to test the color removal rate of 3 L of the dye dark green 2B 100 ppm solution. In the experiment, using the apparatus shown in FIG. 1, a dye solution was introduced along the inlet tube 7 and discharged through the outlet tube 8, while a UV-A lamp 1 of 275 nm and a UV-B lamp 2 of 302 nm were used. , 352nm through the UV-C lamp (3) was allowed to undergo a photolysis reaction. After the catalyst was added and circulated for 2 hours, the color removal rate was measured, and the results are shown in Table 1 below.

구분division 색도 제거율(%)Chromaticity Removal Rate (%) 제조실시예 1Preparation Example 1 8080 제조실시예 2Preparation Example 2 8585 제조실시예 3Preparation Example 3 7070 제조실시예 4Preparation Example 4 8585 제조실시예 5Preparation Example 5 9090 제조실시예 6Preparation Example 6 8080

실험실시예 2Laboratory Example 2

염료로 옐로우 H-E4G 100ppm 용액 3L를 사용하는 것을 제외하고는 실험실시예 1과 동일한 방법으로 실시하였으며, 결과는 다음의 표 2와 같다.Except that 3L of yellow H-E4G 100ppm solution as a dye was carried out in the same manner as in Experimental Example 1, the results are shown in Table 2 below.

구분division 색도 제거율(%)Chromaticity Removal Rate (%) 제조실시예 1Preparation Example 1 8080 제조실시예 2Preparation Example 2 8585 제조실시예 3Preparation Example 3 7070 제조실시예 4Preparation Example 4 8585 제조실시예 5Preparation Example 5 9090 제조실시예 6Preparation Example 6 8080

실험실시예 3Laboratory Example 3

염료로 레드 H-E3B 100ppm 용액 3L를 사용하는 것을 제외하고는 실험실시예 1과 동일한 방법으로 실시하였으며, 결과는 다음의 표 3와 같다.Except for using 3L red H-E3B 100ppm solution as a dye was carried out in the same manner as in Example 1, the results are shown in Table 3.

구분division 색도 제거율(%)Chromaticity Removal Rate (%) 제조실시예 1Preparation Example 1 8585 제조실시예 2Preparation Example 2 9595 제조실시예 3Preparation Example 3 8080 제조실시예 4Preparation Example 4 9090 제조실시예 5Preparation Example 5 9595 제조실시예 6Preparation Example 6 8585

실험실시예 4Lab Example 4

D 염직의 염색폐수 20L에 대하여 제조실시에 1에서 제조한 광촉매 1㎏을 사용하여 실험하였으며, 나머지는 실험실시예 1과 동일한 방법으로 하였다. 시간별 색도제거율은 다음의 표 4와 같다.20L of D-dyed wastewater was tested using 1 kg of the photocatalyst prepared in Preparation Example 1, and the rest was performed in the same manner as in Laboratory Example 1. The chromaticity removal rate by time is shown in Table 4 below.

시간time 색도제거율(%)Color removal rate (%) 30분30 minutes 3030 1 시간1 hours 5050 1.5 시간1.5 hours 6565 2 시간2 hours 8080 2.5 시간2.5 hours 8585 3 시간3 hours 9595 5 시간5 hours 100100

상기 실시예로부터 알 수 있는 바와 같이, 본 발명은 비표면적과 세공이 큰실리카겔 지지체에 산화티타늄(TiO₂)과 다른 광촉매 특성을 갖는 금속이온을 공유하도록 함으로써 촉매로서의 활성도를 높여 수산화라디칼의 형성속도를 빠르게 하고 자외선은 물론 약한 에너지 수준의 가시광선 영역에서도 지속적이며 안정적인 촉매 활성을 나타내도록 하며 또한 지지체의 촉매 함침·코팅량이 많아 장시간 사용시에도 그 성능을 지속적으로 발현시킬 수 있게 되는 바, 이러한 특성을 갖는 본 발명의 광촉매는 일반 유기화합물의 광분해반응은 물론 폐수처리, 공기정화, 녹조·적조 처리, 방오제, 항균제, 화훼토양제(생장촉진제) 등의 분야에서도 유용하게 활용될 수 있다.As can be seen from the above examples, the present invention is to increase the activity as a catalyst by increasing the activity as a catalyst by sharing a metal ion having a different surface area and pores of silica gel support and other photocatalytic properties of titanium oxide (TiO₂) It shows fast and stable catalytic activity in the visible region of UV energy as well as weak energy level, and because of the large amount of catalyst impregnation and coating of the support, it can continuously express its performance even after long time use. The photocatalyst of the present invention can be usefully used not only in the photodegradation reaction of general organic compounds but also in the fields of wastewater treatment, air purification, green algae / red tide treatment, antifouling agents, antibacterial agents, flower soil (growth promoters) and the like.

Claims (12)

비표면적과 세공면적이 큰 2㎛∼6㎜의 실리카겔을 지지체로 하여 여기에 티타닐설페이트(TiOSO4)와 광촉매기능을 갖는 다른 금속이온의 황산염을 가열 가수분해시킴으로써 하나의 실리카겔 지지체에 산화티타늄(TiO2)과 다른 금속이온을 동시에 함침·코팅시킨 광촉매.Titanium oxide on one silica gel support was heated and hydrolyzed by the hydrogel of titanyl sulfate (TiOSO 4 ) and other metal ions having a photocatalytic function. Photocatalyst impregnated and coated with TiO 2 ) and other metal ions simultaneously. 제 1 항에 있어서,The method of claim 1, 상기 실리카겔은 50㎛∼6㎜의 구형 실리카겔인 것을 특징으로 하는 광촉매.The silica gel is a spherical silica gel of 50㎛ ~ 6mm, characterized in that the photocatalyst. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 실리카겔은 400℃∼600℃에서 소성 열처리한 것임을 특징으로 하는 광촉매.The silica gel is photocatalyst, characterized in that the plastic heat treatment at 400 ℃ to 600 ℃. 제 1 항에 있어서,The method of claim 1, 상기 금속이온은 산화철(Fe2O3), 산화아연(ZnO), 산화코발트(CoO), 산화구리(Cu2O), 산화알루미늄(Al2O3), 백금(Pt), 란탄족 금속 (Lanthanide Metal) 및 이들의 조합으로 이루어진 군으로부터 선택된 것임을 특징으로 하는 광촉매.The metal ion is iron oxide (Fe 2 O 3 ), zinc oxide (ZnO), cobalt oxide (CoO), copper oxide (Cu 2 O), aluminum oxide (Al 2 O 3 ), platinum (Pt), lanthanide metal ( Lanthanide Metal) and a combination thereof. 제 1 항에 있어서,The method of claim 1, 상기 금속이온은 산화철(Fe2O3)인 것을 특징으로 하는 광촉매.The metal ion is a photocatalyst, characterized in that the iron oxide (Fe 2 O 3 ). 제 1 항에 있어서,The method of claim 1, 상기 금속이온은 산화아연(ZnO)인 것을 특징으로 하는 광촉매.The metal ion is zinc oxide (ZnO) photocatalyst, characterized in that. 제 1 항에 있어서,The method of claim 1, 상기 금속이온은 산화철(Fe2O3)과 산화아연(ZnO)으로 이루어지는 것을 특징으로 하는 광촉매.The metal ion is a photocatalyst, characterized in that consisting of iron oxide (Fe 2 O 3 ) and zinc oxide (ZnO). 제 1 항에 있어서,The method of claim 1, 상기 금속이온은 산화철(Fe2O3)과 산화코발트(CoO)로 이루어지는 것을 특징으로 하는 광촉매.The metal ion is a photocatalyst, characterized in that consisting of iron oxide (Fe 2 O 3 ) and cobalt oxide (CoO). (a) 실리카겔을 400℃∼600℃에서 1∼2 시간 동안 가열 소성하는 공정과;(a) heating and calcining the silica gel at 400 ° C. to 600 ° C. for 1 to 2 hours; (b) 상기 열처리된 실리카겔을 물에 넣고 교반, 가열, 환류시키는 공정과;(b) putting the heat-treated silica gel into water, stirring, heating and refluxing; (c) 티타닐설페이트(TiOSO4)와 광촉매 기능을 갖는 다른 금속이온의 황산염을 함께 물에 용해시켜 수용액을 만드는 공정과;(c) dissolving titanyl sulfate (TiOSO 4 ) and sulfates of other metal ions having a photocatalytic function in water to form an aqueous solution; (d) 상기 (c)에서 만든 수용액을 상기 (b)에서 준비한 실리카겔액에 일정시간에 걸쳐 정량씩 투입한 후 2∼3시간 동안 계속 가열, 환류 반응시키는 공정과;(d) injecting the aqueous solution prepared in (c) into the silica gel solution prepared in (b) quantitatively over a predetermined time period, followed by heating and refluxing for 2 to 3 hours; (e) 반응이 끝난 후 반응용액으로부터 실리카겔을 분리하여 150∼200℃에서 3시간 건조한 후 400∼600℃로 30분∼2시간 소성하는 공정으로 이루어지는 것을 특징으로 하는 광촉매의 제조방법.(e) A method of producing a photocatalyst, comprising the step of separating silica gel from the reaction solution after drying and drying at 150 to 200 ° C. for 3 hours and then baking at 400 to 600 ° C. for 30 minutes to 2 hours. 제 9 항에 있어서,The method of claim 9, 상기 (c)의 황산염은 황산제이철, 황산아연, 황산코발트, 황산구리 및 이들의 조합으로 이루어진 군으로부터 선택된 것임을 특징으로 하는 제조방법.The sulfate of (c) is a manufacturing method, characterized in that selected from the group consisting of ferric sulfate, zinc sulfate, cobalt sulfate, copper sulfate and combinations thereof. 제 2 항의 광촉매를 포함하는 것을 특징으로 하는 폐수처리제.A wastewater treatment agent comprising the photocatalyst of claim 2. 제 2 항의 광촉매를 사용하는 것을 특징으로 하는 폐수처리방법.Wastewater treatment method characterized by using the photocatalyst of claim 2.
KR1020000009732A 2000-02-28 2000-02-28 A new type photocatalyst dopped and coated on silicagel and its method of preparation KR100353242B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020000009732A KR100353242B1 (en) 2000-02-28 2000-02-28 A new type photocatalyst dopped and coated on silicagel and its method of preparation
JP2000006208U JP3075920U (en) 2000-02-28 2000-08-29 Radical water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000009732A KR100353242B1 (en) 2000-02-28 2000-02-28 A new type photocatalyst dopped and coated on silicagel and its method of preparation

Publications (2)

Publication Number Publication Date
KR20010084574A true KR20010084574A (en) 2001-09-06
KR100353242B1 KR100353242B1 (en) 2002-09-18

Family

ID=19650571

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000009732A KR100353242B1 (en) 2000-02-28 2000-02-28 A new type photocatalyst dopped and coated on silicagel and its method of preparation

Country Status (2)

Country Link
JP (1) JP3075920U (en)
KR (1) KR100353242B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460648B1 (en) * 2001-12-03 2004-12-08 최규한 Supporting-body to immobilize compounds photocatalysts using a long-wavelenth range and manufacturing process
KR100804199B1 (en) * 2006-07-21 2008-02-20 한국화학연구원 Synthesis of mesoporous Pt-incorporated titania/silica using platinum precursor as a template
KR101404214B1 (en) * 2011-12-28 2014-06-10 한국에너지기술연구원 Manufacturing method for hybrid and alloy metal catalyst support using multi-melt-infiltration process of mixed metal salts and hybrid and alloy metal catalyst support thereof
KR20160123188A (en) * 2015-04-15 2016-10-25 정지희 Visible-light responsive photocatalytic coating composition and preparation methods thereof
KR20200134546A (en) * 2019-05-22 2020-12-02 주식회사 제이치글로벌 Surface reinforcement material contained visible light responsive photocatalytic material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292731B1 (en) * 2010-03-15 2013-08-02 심종섭 The gas captured type gas-liquid reactor and the water treatment apparatus, gas purification apparatus using thereof
KR20190047478A (en) 2017-10-27 2019-05-08 센서클라우드주식회사 Silica gel containing a photocatalyst for removing volatile organic compounds and a process for producing the same
CN114259892A (en) * 2021-12-30 2022-04-01 宜宾丝丽雅股份有限公司 ZnO solution blending process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2899744B2 (en) * 1995-03-01 1999-06-02 日本インシュレーション株式会社 Photocatalyst material and method for producing the same
JPH08257411A (en) * 1995-03-28 1996-10-08 Matsushita Electric Works Ltd Carrying method of photocatalyst
JP2987694B2 (en) * 1996-11-08 1999-12-06 大明化学工業株式会社 Water treatment flocculant and water treatment method
JPH10249210A (en) * 1997-03-14 1998-09-22 Titan Kogyo Kk Photocatalyst, its manufacture and applications
KR100225342B1 (en) * 1997-09-04 1999-10-15 명호근 Method for preparing titanium oxide photocatalyst
JPH11156214A (en) * 1997-11-25 1999-06-15 Toto Ltd Surface treating agent for forming photocatalytic coating film and formation of photocatalytic coating film using the same
EP1060128A4 (en) * 1998-02-24 2005-08-03 Rotem Amfert Negev Ltd A modified titanium dioxide and a method for its preparation
JPH11244709A (en) * 1998-02-27 1999-09-14 Shiseido Co Ltd Photocatalyst body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460648B1 (en) * 2001-12-03 2004-12-08 최규한 Supporting-body to immobilize compounds photocatalysts using a long-wavelenth range and manufacturing process
KR100804199B1 (en) * 2006-07-21 2008-02-20 한국화학연구원 Synthesis of mesoporous Pt-incorporated titania/silica using platinum precursor as a template
KR101404214B1 (en) * 2011-12-28 2014-06-10 한국에너지기술연구원 Manufacturing method for hybrid and alloy metal catalyst support using multi-melt-infiltration process of mixed metal salts and hybrid and alloy metal catalyst support thereof
KR20160123188A (en) * 2015-04-15 2016-10-25 정지희 Visible-light responsive photocatalytic coating composition and preparation methods thereof
KR20200134546A (en) * 2019-05-22 2020-12-02 주식회사 제이치글로벌 Surface reinforcement material contained visible light responsive photocatalytic material

Also Published As

Publication number Publication date
KR100353242B1 (en) 2002-09-18
JP3075920U (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
Hu et al. Plasmon-induced photodegradation of toxic pollutants with Ag− AgI/Al2O3 under visible-light irradiation
El-Shabasy et al. A green synthetic approach using chili plant supported Ag/Ag2O@ P25 heterostructure with enhanced photocatalytic properties under solar irradiation
Ishibai et al. Photocatalytic oxidation of NOx by Pt-modified TiO2 under visible light irradiation
KR100385301B1 (en) Novel titania photocatalyst and its manufacturing method
US7011808B2 (en) Titanium oxide and photocatalyst
JPH0334997B2 (en)
CN102498067A (en) Stable nano titania sols and a process for their production
CN1321743C (en) Bismuth contained composite oxide BiMO4 and Bi2NO6 semiconductor photocatalyst, preparation and use
CN103373750A (en) Light source device for removing organic matters and heavy metal ions by visible light and preparation method thereof
WO2004043863A1 (en) Photocatalytic rutile titanium dioxide
JP4053911B2 (en) Photocatalyst and method for producing photocatalyst
JP4507066B2 (en) Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body
KR100353242B1 (en) A new type photocatalyst dopped and coated on silicagel and its method of preparation
KR20020092067A (en) Synthesis of highly active photocatalytic TiO2-sol containing active metals
JP5627006B2 (en) Photocatalyst and method for producing the same
KR100503233B1 (en) Preparation of photocatalytic thin film and water-treatment apparatus using thereof
JPH10167727A (en) Modified titanium oxide sol, photocatalyst composition and its forming agent
JP3885248B2 (en) Photocatalyst composition
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
CN202558672U (en) Light source device using visible light to remove organics and heavy metal ions
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
Bouamrane et al. Preparation of TiO, Photocatalyst Using TiCl, as a Precursor and its Photocatalytic Performance
KR100378279B1 (en) Transparent TiO2 sol manufacturing method for normal temperature coating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee