KR20010081258A - Manufacturing method of near-net-shaped reaction-bonded silicon carbide - Google Patents

Manufacturing method of near-net-shaped reaction-bonded silicon carbide Download PDF

Info

Publication number
KR20010081258A
KR20010081258A KR1020000006460A KR20000006460A KR20010081258A KR 20010081258 A KR20010081258 A KR 20010081258A KR 1020000006460 A KR1020000006460 A KR 1020000006460A KR 20000006460 A KR20000006460 A KR 20000006460A KR 20010081258 A KR20010081258 A KR 20010081258A
Authority
KR
South Korea
Prior art keywords
silicon carbide
slurry
resin
molded body
thermoplastic resin
Prior art date
Application number
KR1020000006460A
Other languages
Korean (ko)
Other versions
KR100355350B1 (en
Inventor
송휴섭
이해원
전형우
이종호
하조웅
최윤호
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1020000006460A priority Critical patent/KR100355350B1/en
Publication of KR20010081258A publication Critical patent/KR20010081258A/en
Application granted granted Critical
Publication of KR100355350B1 publication Critical patent/KR100355350B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Abstract

PURPOSE: A reaction bonding silicon carbide with a complete pattern is provided to improve handling strength of molding and to manufacture a complex pattern with easiness at a low cost. CONSTITUTION: A method for manufacturing a reaction bonding silicon carbide with a complete pattern is comprised of the steps of: preparing a slurry by uniformly mixing silicon carbide powder, a thermohardening resin, and a thermoplastic resin; forming a molding by injecting the slurry to an intended mold and heating to harden the slurry; removing the thermoplastic resin by heating the molding; carbonizing the thermohardening resin by heating the molding; and spreading a melting metal silicon into the carbonized molding.

Description

실형상 반응결합 탄화규소 제조방법{MANUFACTURING METHOD OF NEAR-NET-SHAPED REACTION-BONDED SILICON CARBIDE}MANUFACTURING METHOD OF NEAR-NET-SHAPED REACTION-BONDED SILICON CARBIDE}

본 발명은 실형상 반응결합 탄화규소 제조방법에 관한 것이다.The present invention relates to a process for producing a solid reaction-bonded silicon carbide.

반응결합 탄화규소는 탄화규소와 탄소로 구성된 성형체에 용융 규소를 침투시켜 용융 규소와 탄소의 반응으로 형성되는 새로운 탄화규소가 처음 성형체를 구성하고 있던 탄화규소 입자를 결합하고 그 사이의 공극을 규소가 채우고 있는 소재이다. 반응소결 탄화규소는 내마모성, 내침식성, 내열성이 우수하고 열전도도가 높기 때문에 기계적 씰, 노즐 등의 고온 부식성 분위기에서 많이 사용되고 있으며, 반응결합 탄화규소의 전기전도성을 이용한 발열체로서도 활용이 기대된다.Reaction-bonded silicon carbide penetrates molten silicon into a molded body made of silicon carbide and carbon, and new silicon carbide formed by the reaction of molten silicon and carbon joins the silicon carbide particles that originally constituted the molded body, and the pores therebetween. It is filling material. Reaction-sintered silicon carbide is widely used in high temperature and corrosive atmospheres such as mechanical seals and nozzles because of its excellent wear resistance, erosion resistance, heat resistance, and high thermal conductivity.

반응결합 탄화규소의 상업적 응용을 위해서는 사출성형이나 정수압 성형과 같은 실형상 성형 공정이 필요하지만, 이들 성형방법은 결합제로 열가소성 수지를 주로 사용하기 때문에 결합제를 제거한 탈지체의 강도가 매우 낮아서 후속 공정에서의 핸들링이 어려운 단점이 있다. 또한, 정수압 성형이나 사출성형을 행하기 위해서는 혼합, 과립화, 성형 등에 고가의 장비가 필요하다.For commercial applications of reactive bonded silicon carbide, real-world molding processes such as injection molding and hydrostatic pressure molding are required.However, these molding methods mainly use thermoplastic resins as binders. There is a disadvantage of difficult handling. In addition, in order to perform hydrostatic molding or injection molding, expensive equipment is required for mixing, granulating, molding and the like.

따라서, 본 발명은 고가의 성형장치 없이도 고강도의 실형상 반응결합 탄화규소 제품의 제조가능한 방법을 제공하는데 있다.Accordingly, the present invention is to provide a method for producing a high strength, real-shaped reaction-bonded silicon carbide product without expensive molding apparatus.

도 1 은 본 발명에 의해 제조된 탄화규소 부품의 예를 보여주는 사진이다.1 is a photograph showing an example of a silicon carbide component produced by the present invention.

도 2 는 본 발명에 의해 제조된 탄화규소 부품의 또 다른 예를 보여주는 사진이다.2 is a photograph showing another example of a silicon carbide component manufactured by the present invention.

본 발명은 탄화규소 분말, 열경화성 수지, 열가소성 수지, 경화제 및 표면활성제를 균일하게 혼합하여 슬러리를 만들고, 상기 슬러리를 원하는 형상의 몰드에 주입하고 가열 경화시켜 성형체를 형성하고, 상기 성형체를 가열하여 열가소성 수지를 탈지시키고, 상기 성형체를 가열하여 열경화성 수지를 탄화시키고, 고온하에서 상기 성형체에 용융 금속규소를 침투시키는 것으로 이루어지는 실형상 반응결합 탄화규소 제조방법을 제공한다.The present invention provides a slurry by uniformly mixing silicon carbide powder, a thermosetting resin, a thermoplastic resin, a curing agent and a surface active agent, injecting the slurry into a mold of a desired shape and heat-cured to form a molded body, and heating the molded body to thermoplastic The present invention provides a method for producing a solid-state reaction-bonded silicon carbide comprising degreasing a resin, heating the molded body to carbonize a thermosetting resin, and infiltrating molten metal silicon into the molded body at a high temperature.

본 발명은 주입성형과 마찬가지로 슬러리를 몰드에 주입하고 경화시키는 방법을 사용하기 때문에 혼합장치 이외의 성형장치가 필요없으며, 열경화성 수지와 후속 탄화 처리에 의하여 형성되는 탄소결합에 의하여 강한 성형체를 얻을 수 있어 실형상 대형 부품의 제조도 가능하다.Since the present invention uses a method of injecting and curing the slurry into the mold and injecting the same as the injection molding, there is no need for a molding apparatus other than a mixing apparatus. It is also possible to manufacture large-scale parts in the shape of a thread.

본 발명은 다음과 같은 특징을 갖고 있다. 열경화성 수지에 의한 경화반응에 의하여 실형상으로 성형체를 제조할 수 있다. 또한 열경화성 수지와 열가소성 수지의 혼합비를 조정함으로써 1단계 열간 탈지에서 열가소성 수지를 제거하여 성형체에 3차원적 연결기공채널을 확보할 수 있어 후속되는 2단계 열경화성 수지의 열분해 탈지에서 발생하는 생성 기체를 효과적으로 제거하여 탈지결함을 방지할 수 있다. 또한 탄화 공정에 의하여 형성된 반응성이 높은 탄소는 탄화규소 분말의 표면 산화물을 승온과정에서 환원분해하여 탄화규소 분말 표면에 대한 용융 금속규소의 적심성을 향상시켜 치밀한 반응결합 탄화규소를 얻을 수 있다.The present invention has the following features. The molded object can be manufactured in a real form by the curing reaction with a thermosetting resin. In addition, by adjusting the mixing ratio of the thermosetting resin and the thermoplastic resin, it is possible to secure the three-dimensional connecting pore channel in the molded body by removing the thermoplastic resin in the first stage hot degreasing, thereby effectively removing the generated gas generated in the subsequent pyrolysis degreasing of the second stage thermosetting resin. It can be removed to prevent degreasing defects. In addition, the highly reactive carbon formed by the carbonization process may reduce and decompose the surface oxide of the silicon carbide powder in an elevated temperature process to improve the wettability of the molten metal silicon on the surface of the silicon carbide powder to obtain a dense reaction-bonded silicon carbide.

본 발명에 의한 반응결합 탄화규소의 제조방법을 보다 구체적으로 설명하면 다음과 같다.Referring to the method of manufacturing the reaction-bonded silicon carbide according to the present invention in more detail.

먼저, 탄화규소 분말, 열경화성 수지, 열가소성 수지, 경화제 및 표면활성제를 균일하게 혼합한다. 적정한 크기의 탄화규소 원료 분말을 적정한 분율로 평량하여 수지 조성물과 저온으로 혼합한다. 탄화규소 분말의 입경은 사용 온도나 최종 용도에 따라 달라질 수 있지만, 일반적으로 평균입경이 3㎛ 이상이면 충분하며 대부분의 내열성을 요구하는 부품에서는 3 ~ 500㎛ 범위가 바람직하다. 본 발명에서는 탄화규소의 평균입경을 3 ~ 2000㎛의 범위로 한다. 또한 탄화규소 분말은 혼합물에 대한 무게비가 60 ~ 90% 범위가 바람직하다.First, the silicon carbide powder, the thermosetting resin, the thermoplastic resin, the curing agent, and the surface active agent are mixed uniformly. The silicon carbide raw material powder of appropriate size is basis weighted at an appropriate fraction and mixed with the resin composition at low temperature. The particle size of the silicon carbide powder may vary depending on the use temperature or the end use, but in general, an average particle diameter of 3 μm or more is sufficient, and in a part requiring most heat resistance, a range of 3 to 500 μm is preferable. In the present invention, the average particle diameter of silicon carbide is in the range of 3 to 2000 µm. In addition, the silicon carbide powder preferably has a weight ratio of 60 to 90% of the mixture.

수지 조성물은 열경화성 수지와 열가소성 수지의 전구체 용액에 경화제, 그리고 표면활성제를 첨가한다. 열경화성 수지는 성형체의 강도를 결정하고 반응소결에 사용되는 탄소의 원료를 제공하며, 열가소성 수지는 열경화성 수지의 열분해 온도 보다 낮은 온도에서 성형체의 모세관을 통해 표면으로 이동하여 증발하여 후속 열분해 과정에서 발생하는 기체의 방출 통로를 확보해 주는 역할을 한다. 열경화성 수지와 열가소성 수지의 분율에 따라 열분해 과정에 도달하였을 때의 기공구조가 달라질 수 있기 때문에 열가소성 수지가 전체 수지량의 40% 이상 70%를 넘지 않는 것이 바람직하다. 경화제는 경화속도를 결정하기 때문에 몰드의 열전달이나 경화온도에 따라 적당히 조절할 필요가 있다. 열경화성 수지 전구체의 중합반응을 방지하기 위하여 상기 혼합 공정은 5℃ 이하의 저온을 유지하면서 수행하는 것이 바람직하고, 필요할 경우 혼합물을 진공에서 탈포 처리한다.The resin composition adds a curing agent and a surfactant to the precursor solution of the thermosetting resin and the thermoplastic resin. The thermosetting resin determines the strength of the shaped body and provides the raw material of carbon used for reaction sintering.The thermoplastic resin moves to the surface through the capillary of the shaped body and evaporates at a temperature lower than the thermal decomposition temperature of the thermosetting resin, resulting in the subsequent pyrolysis process. It serves to secure the gas discharge passage. Since the pore structure at the time of reaching the pyrolysis process may vary according to the fraction of the thermosetting resin and the thermoplastic resin, the thermoplastic resin is preferably not more than 40% and not more than 70% of the total resin amount. Since the curing agent determines the curing rate, it needs to be appropriately adjusted according to the heat transfer or curing temperature of the mold. In order to prevent polymerization of the thermosetting resin precursor, the mixing process is preferably performed while maintaining a low temperature of 5 ° C. or lower, and if necessary, the mixture is defoamed under vacuum.

그 다음, 상기 혼합물을 몰드에 부어 40 ~ 150℃ 로 가열 경화하여 실형상의 성형체를 제조한다. 혼합물은 금속, 플라스틱, 유리 등으로 만든 원하는 형상의 몰드에 채우고, 몰드를 가열함으로써 열경화수지 전구체의 경화를 유도한다. 성형체의 두께에 따라 다르지만, 가열 경화는 1 ~ 12 시간에 걸쳐 행하는 것이 바람직하다.Then, the mixture is poured into a mold and heat-cured at 40 to 150 ° C. to prepare a molded body. The mixture is filled into a mold of a desired shape made of metal, plastic, glass, or the like, and the mold is heated to induce curing of the thermosetting resin precursor. Although it changes with the thickness of a molded object, it is preferable to perform heat hardening over 1 to 12 hours.

그 다음으로, 상기 성형체를 150 ~ 250℃로 가열하여 열가소성 수지를 제거하는 1차 탈지 단계를 수행한다. 성형체의 수지 성분중 열가소성 수지가 모세관 이동과 표면증발에 의하여 제거된다. 이 과정에서 성형체는 연결된 기공구조로 변하는데 후속되는 열분해 탈지과정에서 성형체의 균열이나 뒤틀림, 휘어짐 등의 결함발생을 억제하기 위하여 열가소성 수지를 전체 수지의 40 ~ 70% 정도로 첨가하는 것이 바람직하다.Next, a primary degreasing step is performed to remove the thermoplastic resin by heating the molded body to 150 ~ 250 ℃. The thermoplastic resin in the resin component of the molded body is removed by capillary movement and surface evaporation. In this process, the molded article is changed into a connected pore structure. In the subsequent pyrolysis degreasing process, it is preferable to add a thermoplastic resin to about 40 to 70% of the total resin in order to suppress defects such as cracking, warping, and bending of the molded article.

그 다음으로 성형체를 진공 또는 불활성 분위기에서 300 ~ 1200℃로 가열하여 열경화성 수지를 열분해하면서 탄화시키는 2차 탈지 단계를 수행한다. 1차 탈지 후, 온도를 계속 상승시키면 400 ~ 500℃ 정도에서 성형체의 열경화성 수지의 열분해가 완료되고, 그 이상의 온도에서는 열분해 탄소의 소결이 진행되어 시편의 강도가 증가한다. 탄소의 실제적인 소결 현상은 1200℃ 이하에서 거의 완료된다.Next, a secondary degreasing step is performed in which the molded body is heated to 300 to 1200 ° C. in a vacuum or inert atmosphere to carbonize the thermosetting resin while pyrolyzing. After the first degreasing, if the temperature is continuously raised, thermal decomposition of the thermosetting resin of the molded body is completed at about 400 to 500 ° C., and at higher temperatures, sintering of pyrolytic carbon proceeds to increase the strength of the specimen. The actual sintering of carbon is almost complete at 1200 ° C or below.

다음 단계로, 탄화된 성형체를 진공이나 환원성 분위기에서 1410℃ 이상에서 용융 금속규소를 침투시킨다. 이 과정에서 성형체내의 탄소와 침투된 용융규소간의 반응이 일어나 탄화규소가 생성되고, 성형체 내의 나머지 기공에는 용융규소가 채워진다. 이것을 냉각하게 되면 최종적인 성형체는 탄화규소와 규소로 구성된 반응결합 탄화규소가 된다. 이 때 잔류 규소의 양이 반응결합 탄화규소의 물성에 큰 영향을 미치기 때문에 최초 혼합물에서 탄화규소 분말의 분율을 최적화해야 한다. 탄화규소의 분율이 높을수록 잔류규소의 분율은 감소하게 되므로 적정 유동성을 유지하면서탄화규소의 분율을 극대화하기 위하여 입경이 다른 여러 분말들을 혼합하여 사용하는 것이 바람직하다.In the next step, the carbonized shaped body is infiltrated with molten metal silicon at 1410 占 폚 or higher in a vacuum or reducing atmosphere. In this process, the reaction between the carbon in the molded body and the infiltrated molten silicon occurs to produce silicon carbide, and the remaining pores in the molded body are filled with molten silicon. When this is cooled, the final molded product is a reaction bonded silicon carbide composed of silicon carbide and silicon. At this time, the amount of residual silicon has a great influence on the properties of the reaction-bonded silicon carbide, so it is necessary to optimize the fraction of the silicon carbide powder in the initial mixture. As the fraction of silicon carbide is higher, the fraction of residual silicon decreases. Therefore, in order to maximize the fraction of silicon carbide while maintaining proper fluidity, it is preferable to use a mixture of powders having different particle diameters.

도 1 및 2에는 본 발명에 의해 제조된 탄화규소 부품의 예를 나타내었다. 도 1은 수지 성분들을 제거한 후의 12인치 나선형 성형체를, 도 2는 소결 후 연마한 4인치 성형체를 각각 보여주고 있다.1 and 2 show examples of silicon carbide parts produced by the present invention. 1 shows a 12 inch spiral molded body after removing the resin components, and FIG. 2 shows a 4 inch molded body polished after sintering.

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 이들 실시예에 의해 그 범위가 제한되지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited in scope by these examples.

반응결합 탄화규소 부품을 제조하기 위하여 본 실시예에서 사용한 탄화규소 분말의 입경은 5 ~ 210㎛ 였으며, 단일 크기의 분말을 사용하거나 2성분 이상의 탄화 규소 분말을 혼합하여 사용하였다. 열경화성 수지는 퍼푸릴알콜(furfuryl alcohol), 퍼푸릴알콜수지(furfuryl alcohol resin)을 사용하였으며, 두 성분의 무게비는 50/50 으로 하였다. 열가소성 수지로는 글리콜을 사용하였으며, 열경화성 수지와 열가소성 수지의 무게비는 50/50 을 기본으로 하여 70:30 ~ 40:60 의범위가 적절하다. 열경화성 수지의 분율이 70% 보다 많을 경우 급격히 경화가 진행되어 경화속도를 제거하기 어렵고, 열가소성 수지의 분율이 60% 이상이면 경화속도가 너무 느려지게 된다. 경화제로 자일렌술폰산(xylene sulfonic acid), p-톨루엔술폰산(p-toluene sulfonic acid)를 사용하였다. 액상수지의 균일한 혼합을 위하여 표면활성제로 Trition X-100(Union Carbide, USA)을 첨가하고, 혼합시 분말과 액상 수지의 적심성을 향상시키고 탈포를 용이하게 하기 위하여 혼합보조제로 부틸알콜을 첨가하였다. 표 1 및 2에 탄화규소, 액상 수지의 조성을 나타내었다.The particle size of the silicon carbide powder used in the present Example for preparing the reaction-bonded silicon carbide parts was 5 ~ 210㎛, was used a single size of powder or a mixture of two or more silicon carbide powder. The thermosetting resin was used furfuryl alcohol (furfuryl alcohol), furfuryl alcohol resin (furfuryl alcohol resin), the weight ratio of the two components was 50/50. Glycol was used as the thermoplastic resin, and the weight ratio of the thermosetting resin and the thermoplastic resin is in the range of 70:30 to 40:60 based on 50/50. When the fraction of the thermosetting resin is more than 70%, the curing proceeds rapidly and it is difficult to remove the curing rate, and when the fraction of the thermoplastic resin is 60% or more, the curing rate becomes too slow. Xylene sulfonic acid and p-toluene sulfonic acid were used as a curing agent. Trition X-100 (Union Carbide, USA) is added as a surface active agent for uniform mixing of the liquid resin, and butyl alcohol is added as a mixing aid to improve the wettability of powder and liquid resin and to facilitate defoaming during mixing. It was. Tables 1 and 2 show the compositions of silicon carbide and liquid resin.

탄화규소 분말의 조성(중량%)Composition (wt%) of silicon carbide powder 턴화규소조성Turned silicon composition 분말 평균 입경 (㎛)Powder Average Particle Size (㎛) 210210 150150 100100 6565 4545 3535 2525 1616 1010 55 1One 1010 4040 3535 1515 22 2525 5050 2525 33 8080 2020 44 7878 2222 55 15.615.6 10.410.4 8.38.3 7.37.3 7.37.3 7.37.3 6.36.3 37.537.5 66 100100 77 100100

수지의 조성(중량%)Composition of Resin (wt%) 조성Furtherance 열가소성 수지Thermoplastic resin 열경화성 수지Thermosetting resin 표면 활성제Surface active agent 혼합 보조제Mixing aids 경화제Hardener 1One 50.650.6 32.832.8 10.110.1 6.56.5 22 37.937.9 45.445.4 7.67.6 9.19.1 33 30.330.3 45.445.4 7.67.6 7.67.6 9.19.1 44 25.925.9 44.444.4 7.57.5 11.111.1 11.111.1 55 21.921.9 61.461.4 4.44.4 12.312.3

실시예 1Example 1

150㎛ 탄화규소 분말 19wt%, 35㎛ 탄화규소 분말 38wt%, 5㎛ 탄화규소 분말 19wt%, 에틸렌글리콜 7.4wt%, Triton X-100 1.8wt%, 부틸알콜 1.8wt%, 퍼푸릴알콜 5.4wt%, 퍼푸릴알콜수지 5.4wt%, 경화제 2.2wt%로 이루어진 혼합물을 준비하였다. 분말과 수지 혼합물 속의 기포를 제거하기 위하여 30 ~ 60분간 진공중에서 탈포하였다. 위에서 얻은 분말 혼합물을 몰드안에 부어 성형하고 50℃ 에서 초기경화를 시켰다. 단계적으로 70℃까지 승온하고 70℃ 에서 유지하며 액상수지를 경화시킨 후 자연 냉각하여 탈형하였다. 경화 과정 중 상분리에 의해 생성된 액상을 제거(1차 탈지)하기 위하여 150℃ 에서 유지하였다. 1차 탈지를 마친 성형체를 잔류액상의 완전한 탈지와 탄소를 생성하기 위하여 알곤 분위기에서 300 ~ 1000℃에서 1시간 열처리를 하였다. 탄화가 끝난 성형체는 진공, 또는 환원성 분위기에서 1410℃ 이상의 온도로 승온한 후 5 ~ 120분간 유지하여 용융규소를 침투시켜 소결체를 제조하였다.150㎛ silicon carbide powder 19wt%, 35㎛ silicon carbide powder 38wt%, 5㎛ silicon carbide powder 19wt%, ethylene glycol 7.4wt%, Triton X-100 1.8wt%, butyl alcohol 1.8wt%, perfuryl alcohol 5.4wt% , A mixture of perfuryl alcohol resin 5.4 wt%, a curing agent 2.2 wt% was prepared. Defoaming in vacuum for 30 to 60 minutes to remove bubbles in the powder and resin mixture. The powder mixture obtained above was poured into a mold and molded and subjected to initial curing at 50 ° C. Stepwise, the temperature was raised to 70 ° C, maintained at 70 ° C, the liquid resin was cured, and naturally cooled to demold. The liquid phase produced by the phase separation during the curing process was maintained at 150 ℃ to remove (primary degreasing). In order to completely degrease the residual liquid phase and produce carbon, the molded body after primary degreasing was heat-treated at 300 to 1000 ° C. for 1 hour in an argon atmosphere. The carbonized molded body was heated to a temperature of 1410 ° C. or higher in a vacuum or reducing atmosphere, and then maintained for 5 to 120 minutes to infiltrate molten silicon to prepare a sintered body.

실시예 2Example 2

35㎛ 탄화규소 분말 59.3wt%, 5㎛ 탄화규소 분말 16.7wt%, 디에틸렌글리콜 9.2wt%, X-100 1.8wt%, 퍼푸릴알콜 5.4wt%, 퍼푸릴알콜수지 5.4wt%, 경화제 2.2wt% 로 이루어진 혼합물을 준비하였다. 실시예 1과 동일한 방법으로 소결체를 제조하였다.35㎛ silicon carbide powder 59.3wt%, 5㎛ silicon carbide powder 16.7wt%, diethylene glycol 9.2wt%, X-100 1.8wt%, furfuryl alcohol 5.4wt%, furfuryl alcohol resin 5.4wt%, hardener 2.2wt A mixture consisting of% was prepared. A sintered body was manufactured in the same manner as in Example 1.

본 발명에 의하면 복잡한 형상을 가지는 반응결합 탄화규소 제품을 경제적으로 제조할 수 있다. 특히 공정 전체에 걸쳐 성형체의 핸들링 강도가 높고, 복잡한 형상을 제조하기 위하여 고가의 사출성형장치나 정수압성형장치가 필요없고, 형상가공을 위한 가공장비가 필요없이 완전한 실형상 반응결합 탄화규소 제품을 제조할 수 있다.According to the present invention, it is possible to economically manufacture a reaction-bonded silicon carbide product having a complicated shape. In particular, it has a high handling strength of the molded product throughout the process, and does not require expensive injection molding machine or hydrostatic pressure molding device to manufacture complex shape, and manufactures complete solid reaction bonded silicon carbide products without the need for processing equipment for shape processing. can do.

Claims (15)

탄화규소 분말, 열경화성 수지, 열가소성 수지를 균일하게 혼합하여 슬러리를 만들고,The slurry is made by uniformly mixing silicon carbide powder, thermosetting resin and thermoplastic resin, 상기 슬러리를 원하는 형상의 몰드에 주입하고 가열 경화시켜 성형체를 형성하고,The slurry is poured into a mold of a desired shape and heat cured to form a molded body, 상기 성형체를 가열하여 열가소성 수지를 탈지시키고,Heating the molded body to degrease the thermoplastic resin, 상기 성형체를 가열하여 열경화성 수지를 탄화시키고,Heating the molded body to carbonize the thermosetting resin, 상기 탄화된 성형체에 용융 금속규소를 침투시키는 것으로 이루어지는 실형상 반응결합 탄화규소 제조방법.A real-shaped reaction bonded silicon carbide production method comprising penetrating molten metal silicon into the carbonized molded body. 제1항에 있어서, 상기 탄화규소 분말의 평균입경은 3 ~ 2000㎛ 범위이고, 상기 슬러리에 대한 무게비가 60 ~ 90% 범위인 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the average particle diameter of the silicon carbide powder is in the range of 3 to 2000㎛, the weight ratio of the slurry is 60 to 90% range of the solid-state reaction-bonded silicon carbide manufacturing method. 제1항에 있어서, 상기 열경화성 수지는 퍼푸릴알콜(furfuryl alcohol) 및 퍼푸릴알콜수지(furfuryl alcohol resin)을 사용하는 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the thermosetting resin is furfuryl alcohol and furfuryl alcohol resin. 제1항에 있어서, 상기 열가소성 수지는 글리콜을 사용하는 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the thermoplastic resin uses glycol. 제1항에 있어서, 상기 슬러리에 경화제를 추가로 혼합하는 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the slurry is further mixed with a curing agent. 제5항에 있어서, 상기 경화제는 자일렌술폰산(xylene sulfonic aicd), p-톨루엔술폰산(p-toluene sulfonic acid)를 사용하는 실형상 반응결합 탄화규소 제조방법.The method of claim 5, wherein the curing agent is xylene sulfonic acid (xylene sulfonic acid), p-toluene sulfonic acid (p-toluene sulfonic acid) using a real-shaped reaction-bonded silicon carbide production method. 제1항에 있어서, 상기 슬러리에 표면활성제로 트리톤(Triton) X-100를 추가로 혼합하는 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the slurry is further mixed with Triton X-100 as a surface active agent. 제1항에 있어서, 상기 슬러리에 혼합보조제로 부탄올을 사용하는 실형상 반응결합 탄화규소 제조방법.The method according to claim 1, wherein butanol is used as a mixing aid in the slurry. 제1항에 있어서, 상기 슬러리의 열가소성 수지의 분율은 40 ~ 70% 범위인 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the fraction of the thermoplastic resin in the slurry ranges from 40 to 70%. 제1항에 있어서, 상기 슬러리의 열경화성 수지와 열가소성 수지의 무게비는 70:30 ~ 40:60의 범위인 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the weight ratio of the thermosetting resin and the thermoplastic resin of the slurry ranges from 70:30 to 40:60. 제1항에 있어서, 상기 슬러리의 각각의 구성 요소들을 5℃ 이하의 저온을 유지하면서 혼합된 것을 특징으로 하는 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein each component of the slurry is mixed while maintaining a low temperature of 5 ℃ or less. 제1항에 있어서, 상기 성형 단계는 40 ~ 150℃의 온도에서, 1 ~ 12 시간동안 수행하는 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the forming step is performed at a temperature of 40 to 150 ° C. for 1 to 12 hours. 제1항에 있어서, 상기 탈지 단계는 150 ~ 250℃ 의 온도에서 수행하는 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the degreasing step is performed at a temperature of 150 to 250 ° C. 3. 제1항에 있어서, 상기 탄화 단계는 진공 또는 불활성 분위기에서 400℃ 이상의 온도로 가열함으로써 수행하는 실형상 반응결합 탄화규소 제조방법.The method of claim 1, wherein the carbonization is performed by heating to a temperature of 400 ° C. or higher in a vacuum or inert atmosphere. 제1항에 있어서, 상기 탄화된 성형체에 용융 금속규소를 침투시키는 단계는 진공 또는 환원성 분위기에서 5 ~ 120분 동안, 1410 ~ 1650℃의 범위에서 수행하는 반응결합 탄화규소 제조방법.The method of claim 1, wherein the step of infiltrating the molten metal silicon into the carbonized molded body is performed in a range of 1410 to 1650 ° C. for 5 to 120 minutes in a vacuum or reducing atmosphere.
KR1020000006460A 2000-02-11 2000-02-11 Manufacturing method of near-net-shaped reaction-bonded silicon carbide KR100355350B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000006460A KR100355350B1 (en) 2000-02-11 2000-02-11 Manufacturing method of near-net-shaped reaction-bonded silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000006460A KR100355350B1 (en) 2000-02-11 2000-02-11 Manufacturing method of near-net-shaped reaction-bonded silicon carbide

Publications (2)

Publication Number Publication Date
KR20010081258A true KR20010081258A (en) 2001-08-29
KR100355350B1 KR100355350B1 (en) 2002-10-11

Family

ID=19645654

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000006460A KR100355350B1 (en) 2000-02-11 2000-02-11 Manufacturing method of near-net-shaped reaction-bonded silicon carbide

Country Status (1)

Country Link
KR (1) KR100355350B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471652B1 (en) * 2002-04-30 2005-03-08 한국과학기술연구원 Method of manufacturing reaction-bonded silicon carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471652B1 (en) * 2002-04-30 2005-03-08 한국과학기술연구원 Method of manufacturing reaction-bonded silicon carbide

Also Published As

Publication number Publication date
KR100355350B1 (en) 2002-10-11

Similar Documents

Publication Publication Date Title
CN106187195B (en) The method that silicon carbide ceramics are prepared using selective laser sintering technique
CN110372390B (en) Preparation method of continuous fiber reinforced SiC part based on additive manufacturing and product
CN105130438B (en) A kind of method that boron carbide ceramics composite is prepared based on reaction-sintered
CN110627517B (en) Gradient ultrahigh-temperature ceramic matrix composite material and preparation method thereof
CN102898141A (en) Preparation method of high-heat-conduction aluminum nitride ceramic shaped part
CN111423239A (en) Microwave ceramic dielectric filter and processing and forming method thereof
CN108610049B (en) Isotropic graphite material, method for the production thereof and use thereof
CN109467438A (en) A kind of silicon carbide ceramics Stereolithography method
CN102924106A (en) Method for preparing carbon-silicon carbon composite material and product thereof
CN101734923A (en) Aluminum nitride porous ceramic and preparation method thereof
CN104944948A (en) Preparation method for zirconia ceramic ferrule
CN112077318A (en) Metal-silicon carbide porous composite material and preparation method thereof
CN108585917A (en) Preparation method of silicon nitride-silicon carbide complex phase porous ceramic
US8048366B2 (en) Process for making copper tungsten and copper molybdenum composite electronic packaging materials
US8110165B2 (en) Process for manufacturing high density boron carbide
CN113930635B (en) Stainless steel reinforced aluminum silicon carbide composite material and preparation method thereof
KR100355350B1 (en) Manufacturing method of near-net-shaped reaction-bonded silicon carbide
KR20070064272A (en) Methods for producing glasslike carbon
WO2019194137A1 (en) SiC-Si COMPOSITE MEMBER PRODUCTION METHOD AND SiC-Si COMPOSITE MEMBER
CN1686942A (en) Method for producing components and parts made of aluminium nitride ceramics in high thermal conductivity and high dimensional accuracy
CN106830966A (en) Carbon/carbon compound material base substrate and forming method and application based on carbon fiber powder
KR100355349B1 (en) Manufacturing method of reaction-bonded silicon carbide
CN111892405A (en) Preparation method for preparing ceramic matrix composite material by interface-layer-free process
KR101142265B1 (en) High dense silicon carbide for core materials of glass lens and Preparing method thereof
KR101545813B1 (en) Manufacturing method of SiC Tube and Crucible using Si impregnation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120921

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130923

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140923

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161013

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 17