KR20010078438A - A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin - Google Patents

A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin Download PDF

Info

Publication number
KR20010078438A
KR20010078438A KR1020010001438A KR20010001438A KR20010078438A KR 20010078438 A KR20010078438 A KR 20010078438A KR 1020010001438 A KR1020010001438 A KR 1020010001438A KR 20010001438 A KR20010001438 A KR 20010001438A KR 20010078438 A KR20010078438 A KR 20010078438A
Authority
KR
South Korea
Prior art keywords
fuel
exhaust gas
tube
temperature plasma
pipe
Prior art date
Application number
KR1020010001438A
Other languages
Korean (ko)
Inventor
안승배
Original Assignee
임순자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임순자 filed Critical 임순자
Priority to KR1020010001438A priority Critical patent/KR20010078438A/en
Priority to PCT/KR2001/000186 priority patent/WO2002055867A1/en
Publication of KR20010078438A publication Critical patent/KR20010078438A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M27/042Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • F02M31/18Other apparatus for heating fuel to vaporise fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE: A fuel pre-processing and purifying system with exhaust gas of an internal combustion engine is provided to burn fuel completely by converting to active gas with passing high temperature exhaust gas through a fuel pipe, and to eliminate used ozone by oxidizing the exhaust gas with the high voltage and high density ozone. CONSTITUTION: A fuel pipe is formed in a low-temperature plasma reaction pipe(3), and a reaction core having a downward inclined face is formed in the fuel pipe. Exhaust gas is streamed through the low-temperature plasma reaction pipe and a high voltage ozone apparatus(9), and purified in a high-temperature plasma reaction pipe(14). A reaction core in round rod type is formed in the fuel pipe. Fuel is crossed with exhaust gas, formed at low density by accelerating in vacuum, and converted into active gas by fluid collision. The density is increased with the downward inclined face, and the state of sublimate gas is kept. The active gas is formed with adjusting the thickness of the fuel pipe according to volatility of fuel and according to the length of the low-temperature plasma reaction pipe.

Description

내연기관의 배기가스로 연료전처리한 후 정화토록 하는 시스템{A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin}A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin}

본 발명은 배기가스를 이용하여 플라즈마 상태로 연료전처리를 함으로서 완전연소 유도와 완전연소로 유도되어진 배기가스 중에서도 함유되어지는 유해물질을 오존과 플라즈마 방전에 의하여 처리토록 하는 시스템에 관한 것이다.The present invention relates to a system for treating hazardous substances contained in exhaust gas induced by complete combustion and complete combustion by ozone and plasma discharge by performing fuel pretreatment in a plasma state using exhaust gas.

종래에 내연기관에서 연료 절감을 위한 전처리와 배기가스 정화를 동시에 할 수 있도록 되는 장치나 시스템은 없었고, 단지 연료 절감을 하거나 배출가스를 정화토록 하는 각각의 장치로 제공되었던 것이다.In the past, there have been no devices or systems capable of simultaneously performing pretreatment and exhaust gas purification for fuel reduction in an internal combustion engine, but have been provided as individual devices for reducing fuel or purifying exhaust gas.

또한 연료 절감에 의한 최상의 연비 실현을 위하여 채용되어지는 것들도 대부분은 연료를 활성기체로 변환토록 하지 못하기 때문에 완전연소에 의한 최상의 연비를 얻지 못하게 되는 단점이 있고, 이와 같이 완전연소가 이루어지지 않게 됨으로 사용되어지는 배출가스 정화수단도 실효성이 없는 단점이 있었던 것이다.In addition, most of those employed to realize the best fuel economy by saving fuel have a disadvantage in that they cannot convert the fuel into an active gas and thus do not obtain the best fuel economy by complete combustion. Exhaust gas purification means to be used also had a disadvantage that is not effective.

즉 내연기관의 연료 절감을 위한 수단으로는, 첫째 자력에 의한 방식이 있으나 자력선의 발생을 위하여 사용되는 자석은 고온에서의 자성저하의 발생과 고착물질에 대한 인젝터의 막힘현상이 초래되는 단점이 있고, 둘째 화학적 촉매에 의한 방식은 시간이 경과함에 따라 촉매표면 감소와 실시간 활성화 미비로 비효율적이며, 셋째 기계적인 방식은 연료의 분자조성을 분리할 수 없으며, 발생되는 미세한 금속성의 물질이 인젝터 및 실린더의 내부에 유입되는 문제가 있으며, 넷째 ECU제어방식은 차량 전체를 통제하는 기능과는 거리가 있고 기존차량의 ECU와의 실시간 처리 및 응답에 문제가 있다고 알려져 있다.In other words, as a means to save fuel in the internal combustion engine, the first method is by the magnetic force, but the magnet used for the generation of magnetic lines has the disadvantage that the magnetic deterioration at high temperature and the clogging of the injector to the stuck substance is caused. Second, the chemical catalyst method is inefficient due to the decrease of the surface of the catalyst and inadequate real-time activation over time, and the third mechanical method is inseparable from the molecular composition of the fuel. Fourth, the ECU control method is known to be far from the function of controlling the entire vehicle and has a problem in real time processing and response with the ECU of the existing vehicle.

따라서 완전연소에 의한 최상의 연비를 얻지 못하게 되어 단지 속도의 변화에 따른 연료의 적정한 공급에 대한 제어에 의하여 연비를 향상시키고 있는 것이다.Therefore, it is not possible to obtain the best fuel economy due to complete combustion, and only improves fuel efficiency by controlling the proper supply of fuel according to the change of speed.

따라서 운전자가 이러한 규정을 무시하고 운전할 경우에는 최상의 연비의 실현이 불가능한 단점이 있는 것이다.Therefore, if the driver ignores these regulations, the best fuel economy is impossible.

또한 이와 같은 연료의 사용에 의한 배기가스는 불완전 연소에 따른 유해한 배기가스의 배출이 발생됨으로 완전한 배출가스의 정화가 불가능한 것이다.In addition, the exhaust gas by the use of such a fuel is impossible to completely clean the exhaust gas because the emissions of harmful exhaust gas generated by incomplete combustion.

알려진 바에 의하면 통상의 배기가스는 내연기관에서 연소된 연료가 배기관을 통하여 삼원촉매장치와 머플러 등을 통하여 배기되고 있는 것이고, 현재 대기오염의 주범이 산업체와 난방에서 자동차로 변환되고 있는 시점에서 아황산가스(SO2) 및 먼지농도는 감소하고 있으나 자동차 배출가스의 주 원인인 질소산화물(NOx) 및 오존(O3)농도는 증가하고 있는 실정이며 경유자동차에 의한 입자상의 물질 배출로대기중에 미세입자 농도가 증가하여 시정장애 현상이 매년 악화되고 있는 실정이다.It is known that the normal exhaust gas is exhausted fuel from the internal combustion engine through the exhaust pipe through the three-way catalyst and muffler, and at the time when the main cause of air pollution is being converted from industrial and heating to automobiles. (SO 2 ) and dust concentrations are decreasing, but the concentrations of nitrogen oxides (NO x ) and ozone (O 3 ), which are the major causes of automobile emissions, are increasing. As the concentration increases, the phenomenon of visual disturbance is worsening every year.

따라서 최근에는 배출가스의 저감기술로서는 연료개선과 연소실 및 연료계의 개선을 위하여 고압분사 즉 커먼레일 및 연료분사량 및 분사시기의 전자조절과 배기가스 재순환 등의 엔진개량 부분과 후처리기술로 입자상 물질의 여과장치(DPF) 및 산화촉매(DOC)및 DeNOx촉매 SCR촉매 등을 사용하고 있는 것이다.Therefore, in recent years, as a technology to reduce emissions, particulate matters have been improved through high-pressure injection, that is, common rail and fuel injection quantity, electronic control of injection timing, and exhaust gas recirculation and post-treatment techniques for fuel improvement and combustion chamber and fuel system improvement. Filtration apparatus (DPF), oxidation catalyst (DOC), DeNOx catalyst and SCR catalyst are used.

그러나 삼원촉매에 의한 방식은 미반응 탄화수소나 SOx에 의한 촉매독의 제거가 용이하지 못하여 정화효율이 떨어지는 단점이 있다.However, the three-way catalyst has a disadvantage in that the purification efficiency is lowered because it is not easy to remove the catalyst poison by the unreacted hydrocarbon or SO x .

따라서 최근에는 트랩 머플러식을 채용하고 있으나 이러한 방식은 기존의 머플러를 교체하여야 하는 단점과 비용이 고가라는 것에 의하여 경제적이지 못한 단점이 있다.Therefore, although a trap muffler type is recently adopted, this method has disadvantages that are not economical due to the disadvantage of having to replace the existing muffler and the high cost.

본 발명은 상기한 종래의 문제점을 해결하기 위하여 안출한 것으로서, 고온의 배기가스를 액상의 연료가 흐르는 연료관과 역방향으로 통과시키면 반응코아에 의하여 진공상태에서 가속이 되면서 연료는 저밀도 상태에서 활성기체로 되면서 온도 차이에 의하여 발생되는 정전기에 의한 자장을 이용하여 액상의 연료를 플라즈마 상태로 유도하여 연료가 밀도별 플라즈마의 활성기체로 변환토록 하여 완전연소토록 하고, 이러한 전처리에 사용된 배기가스는 고전압 고농도에 의한 오존에 의하여 배기가스를 산화토록 한 후 고온플라즈마 반응관에 의하여 오존에 의하여 미처리된 것과 사용된 오존을 제거토록 한 것이다.The present invention has been made in order to solve the above-mentioned problems, and when passing the high-temperature exhaust gas in the reverse direction with the fuel pipe flowing liquid fuel is accelerated in a vacuum state by the reaction core while the fuel is activated gas in a low density state By using the magnetic field caused by the static electricity generated by the temperature difference, the liquid fuel is induced into the plasma state, and the fuel is converted into the active gas of the plasma according to the density so as to completely burn the exhaust gas. After the exhaust gas is oxidized by the ozone at high concentration, the untreated by ozone and the used ozone are removed by the high temperature plasma reaction tube.

도 1은 본 발명의 외관 구성을 나타낸 상태도1 is a state diagram showing the appearance configuration of the present invention

도 2는 저온플라즈마 반응관에 배기관이 연결되는 상태도.2 is a state in which the exhaust pipe is connected to the low-temperature plasma reaction tube.

도 3은 저온프라즈마 반응관의 내부구조를 나타낸 상태도Figure 3 is a state diagram showing the internal structure of the low-temperature plasma reaction tube

도 4는 저온플라즈마 가변관의 배열 구성을 나타낸 상태도.Figure 4 is a state diagram showing the arrangement of the low-temperature plasma variable tube.

도 5는 도 4의 가변관의 절단된 상태의 측면도5 is a side view of the cut state of the variable tube of FIG.

도 6은 반응코아의 가공수단을 나타낸 공정도.Figure 6 is a process chart showing the processing means of the reaction core.

도 7은 전자제어 및 솔레노이드 밸브의 구성을 나타낸 것.Figure 7 shows the configuration of the electronic control and solenoid valve.

도 8은 고전압 오존발생관의 구조를 나타낸 단면도.8 is a cross-sectional view showing the structure of a high voltage ozone generating tube.

도 9는 고온플라즈마 반응관의 구조를 나타낸 단면도.9 is a cross-sectional view showing the structure of a high temperature plasma reaction tube.

도10은 고온 플라즈마 반응관의 내부에 반응코아를 도시한 것.10 shows a reaction core inside a high temperature plasma reaction tube.

<도면의주요부분에대한부호의설명>Explanation of symbols on the main parts of the drawing

1: 배기관 2: 연료관1: exhaust pipe 2: fuel pipe

3: 저온플라즈마반응관 4: 반응코아3: low temperature plasma reaction tube 4: reaction core

5: 경사면 6: 전자제어장치5: inclined surface 6: electronic controller

7: 솔레노이드밸브 8: 저온플라즈마가변관7: solenoid valve 8: low temperature plasma variable tube

9: 오존발생기 10: 외부방전관9: ozone generator 10: external discharge tube

11: 내부방전관 12: 방전코일11: internal discharge tube 12: discharge coil

13: 방전극판 14: 고온플라즈마 반응관13: discharge plate 14: high temperature plasma reaction tube

15: 포집통 16: 배출통15: collection bin 16: discharge bin

17: 반응코아 18: 연료출구17: reaction core 18: fuel outlet

이하에서는 첨부 도면을 참조하여 본 발명의 가장 바람직한 일 실시 예를 상세히 설명하기로 한다. 우선, 각 도면을 설명함에 있어 동일한 구성 요소들에 한해서는 비록 다른 도면상에 도시되더라도 가능한 한 동일한 참조부호를 갖는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in describing each of the drawings, the same components have the same reference numerals as much as possible even though they are shown in different drawings.

도1에 도시한 바와 같이 본 발명의 구성은, 배기가스와 연료가 교차되어지도록 저온플라즈마 반응관(3)의 내부에는 연료관(2)이 형성되고, 상기 연료관(2)의 내부에는 반응코아(4)가 형성되며 이러한 반응코아(4)는 연료가 흐르는 방향의 끝단으로 하향경사면(5)이 형성되는 것이고, 배기가스는 연료가 흐르는 방향과 교차되면서 저온플라즈마 반응관을 통과하여 고전압오존발생기(9)를 통과하게 되고, 고전압오존발생기(9)를 통과한 배기가스는 고온플라즈마 반응관(14)을 통과하면서 연료 전처리는 배기가스가 정화토록 되는 구성이다.As shown in Fig. 1, in the configuration of the present invention, the fuel pipe 2 is formed inside the low temperature plasma reaction tube 3 so that the exhaust gas and the fuel cross each other, and the reaction inside the fuel tube 2 is carried out. The core 4 is formed and the reaction core 4 has a downward inclined surface 5 formed at the end of the fuel flowing direction. The exhaust gas crosses the fuel flowing direction and passes through the low temperature plasma reaction tube to generate a high voltage ozone. The exhaust gas passing through the generator 9 and passing through the high voltage ozone generator 9 passes through the high temperature plasma reaction tube 14 while the fuel pretreatment is configured to purify the exhaust gas.

이때 저온플라즈마 반응관(3)의 내부로는 내연기관에서 배기관(1)을 통하여 배기가스가 유입되는 것이고, 상기 저온플라즈마 반응관(3)의 내부에는 장착된 연료관(2)은 별도의 지지대(도시안됨)를 이용하여 고정토록 하는 것이다.At this time, the exhaust gas is introduced into the low temperature plasma reaction tube (3) through the exhaust pipe (1) from the internal combustion engine, the fuel pipe (2) mounted inside the low temperature plasma reaction tube (3) is a separate support It is fixed using (not shown).

또한 연료관(2)의 내부에는 봉 형상의 반응코아(4)가 형성되며 이러한 반응코아(4)는 배기가스와 교차되는 연료가 진공상태에서 벤츄리에 의한 가속으로 저밀도 상태로 되면서 활발한 유체충돌현상에 의하여 가속되면서 활성기체로 변환되어 지는 것이고 절정구간(a)에서는 하향경사면(5)에 의하여 증가되는 체적에 의하여 밀도가 커지게 되면서 승화성 기체분자의 상태를 유지토록 하는 것이다.In addition, a rod-shaped reaction core 4 is formed inside the fuel pipe 2, and the reaction core 4 has an active fluid collision phenomenon as the fuel crossing the exhaust gas becomes low density due to the acceleration by venturi in a vacuum state. It is converted to the active gas by accelerating by, and in the peak section (a) is to maintain the state of the sublimable gas molecules as the density is increased by the volume increased by the downward slope (5).

상기의 반응코아(2)의 경사면(5)은 저온플라즈마 반응관(3)을 흐르는 배기가스와 교차되는 연료관(2)의 연료가 진공상태에서 가속에 의한 저밀도 상태로 되면서 활성기체로 변환되어 유체 충돌현상이 가속되면서 절정구간에서는 부분점화에 의한 연소가 이루어지기 시작하는 시점을 기준으로 체적을 증가시켜 승화성 기체분자의 상태를 유지토록 하기 위한 것이고, 이러한 경사면의 가공은 우선 환봉을 반응코아(4)로 사용하여 배기가스와 연료를 교차시키면서 부분점화가 이루어지는 시점에 마크선(19)이 형성되기 시작하게 되고, 이러한 마크선(19)을 일정한 깊이로 턱(20)이 지게 가공하여 턱(20)이 지게 가공된 부분을 연결하여 경사면(5)을 가공토록 하는 것이다.The inclined surface 5 of the reaction core 2 is converted into an active gas while the fuel of the fuel pipe 2 intersecting with the exhaust gas flowing through the low temperature plasma reaction tube 3 becomes a low density state by acceleration in a vacuum state. This is to maintain the state of the sublimable gas molecules by increasing the volume based on the point where the combustion starts by partial ignition in the peak section as the fluid collision phenomenon accelerates. The mark line 19 starts to be formed at the time of partial ignition while crossing the exhaust gas and the fuel by using (4), and the mark line 19 is processed so that the jaw 20 is processed to a certain depth. 20 is to be connected to the forklifted portion to process the inclined surface (5).

이때 각각의 턱이진 부분을 그 상태대로 사용할 수 있으나 이때에는 승화성 기체분자의 유동현상이 불규칙하게 변화됨으로서 연료의 정확한 공급을 기대하지 못하게 되는 단점이 있는 것이다.In this case, each jaw portion can be used as it is, but at this time, the flow phenomenon of the sublimable gas molecules is changed irregularly, so there is a disadvantage in that the accurate supply of fuel cannot be expected.

또한 연료의 휘발성에 따라 연료관(2)의 두께를 달리 함으로서 활성기체로의 변화를 조절할 수 있는 것이고, 저온플라즈마반응관(3)의 길이에 따라서도 활성기체로의 변화를 조절할 수 있는 것이다.In addition, it is possible to control the change to the active gas by varying the thickness of the fuel pipe (2) according to the volatility of the fuel, it is possible to control the change to the active gas depending on the length of the low temperature plasma reaction tube (3).

또한 이러한 저온플라즈마반응관(3)은 그 내부에 각각의 연료관(2)을 집합토록 하는 저온플라즈마 가변관(8)을 형성하여 저온플라즈마 가변관(8)에서 엔진의 출력상태에 따라 각각의 가변관(8)에 형성되는 연료출구(18)를 통하여 연료가 분사토록 하는 것이고, 이러한 분사는 전자제어장치(6)에 의하여 솔레노이드밸브(7)를 이용하여 조정되어지는 것이다.In addition, such a low temperature plasma reaction tube (3) forms a low temperature plasma variable tube (8) for the assembly of each fuel tube (2) therein, and according to the output state of the engine in the low temperature plasma variable tube (8) The fuel is injected through the fuel outlet 18 formed in the variable pipe 8, and this injection is controlled by the solenoid valve 7 by the electronic controller 6.

따라서 흡입밸브 진공상태의 유도에 따라 연료증발이 1차 단계로 연료진행방향으로 시작되어 고온이 배기가스와 교차하면서 에너지를 받아 액체상태 연료의 고유밀도가 기체 혼합상태의 가변밀도 상태로 유도하게 되며 2차 단계는 가변된 연료밀도를 더욱더 저밀도로 변환되게 하기 위하여 분자 조성간의 거리가 최대한 넓고 자유스럽게 유지되도록 하여 가변가속도에 상응하는 저밀도의 기체 상태로 반응코아(4)에 의한 오리피스 내경부를 갖는 통로구간(b)을 거치게 되며 3차 단계로는 배기가스의 고온과 연료의 저온에 따른 온도차를 이용하여 천연 자기장이 발생되는 방향으로 전자장이 발생되는 상태를 유도하여 플라즈마 발생이 되는 이온상태가 되도록 연료분자에 극성 유도가 되는 조건을 부여하게 되며 4차 단계로 상호고온과 저온의 교차열의 발생 경계면에서 발생되는 고전압 정전기에 의해 극성 유도된 연료분자는 저온 플라즈마 열 가역반응에 의하여 분자 조성 변형이 반응코아의 연료 진행방향으로 순차적으로 진행되며, 5차 단계에서는 저온 플라즈마에 의한 부분방전이 진행되며 이 상태를 계속 유지하여야 실린더까지 이온화 극성을 띈 연료공급이 가능하도록 반응코아의 플라즈마 발생점에서 벤츄리 진공에 의한 공기밀도를 저하시켜 저온 플라즈마 상태의 변형된 연료 분자 조성을 유지하게 된다.Therefore, the fuel evaporation starts in the first direction of fuel flow in accordance with the induction of the vacuum of the intake valve, and the high temperature crosses the exhaust gas and receives energy, leading to the inherent density of the liquid fuel in the variable density state of the gas mixture. The second stage has an orifice inside diameter by the reaction core 4 in a gas state of low density corresponding to variable acceleration, so that the distance between the molecular compositions is maintained as broadly and freely as possible in order to convert the variable fuel density into even lower density. It passes through the passage section, and in the third step, by using the temperature difference according to the high temperature of the exhaust gas and the low temperature of the fuel, the electromagnetic field is generated in the direction in which the natural magnetic field is generated to become the ion state in which the plasma is generated. It gives the condition that polarity is induced to fuel molecule. Fuel molecules that are polarized by high voltage static electricity generated at the generation interface are sequentially transformed in the fuel traveling direction of the reaction core by low temperature plasma thermal reversible reaction, and partial discharge by low temperature plasma proceeds in the fifth step. It is necessary to maintain this state to maintain the modified fuel molecule composition in the low temperature plasma state by reducing the air density due to the venturi vacuum at the plasma generation point of the reaction core so as to enable fuel supply with ionization polarity to the cylinder.

만일 이와 같은 반응코아의 발생점이 일정치 아니할 경우에는 부분연소를 넘어서는 과정이 발생되어 완전연소가 실린더의 내부에서 일어나야 하나 외부에서 점화현상이 발생하게 되는 것이다.If the point of occurrence of the reaction core is not constant, a process beyond partial combustion occurs and complete combustion must occur inside the cylinder, but ignition occurs outside.

또한 이러한 각각의 활성화 된 기체분자들은 각각의 가변밀도 상태에 따라 저온플라즈마 가변관(8)에서 연료출구(18)를 통하여 배출되면서 가변밀도에 적합한연료공급이 이루어지게 되는 것이고, 이러한 공급은 전자제어장치(6)에 의한 솔레노이드 밸브(7)에 의하여 제공되는 것이다.Also, each of these activated gas molecules is discharged through the fuel outlet 18 from the low temperature plasma variable tube 8 according to each variable density state, and thus the fuel supply suitable for the variable density is achieved. It is provided by the solenoid valve 7 by the device 6.

따라서 고속과 저속 상태와 저속상태에서 많은 회전수를 요구하는 각각의 상태별로 운전상황에 따라 저온플라즈마 가변관(8)에서 연료출구(18)를 통하여 연료가 공급됨으로 가장 적합한 조건으로 연료가 공급되면서 활성기체에 의한 완전연소를 이룰 수 있게 되는 것이다.Therefore, the fuel is supplied in the most suitable condition as the fuel is supplied through the fuel outlet 18 from the low temperature plasma variable tube 8 according to the operating conditions for each state requiring a large number of revolutions at high speed, low speed and low speed. It will be able to achieve complete combustion by the active gas.

또한 배출가스의 1차 정화를 위한 고전압오존발생기(9)의 구조는 방전극판(13)이 형성된 외부방전관(10)의 내부로는 배기가스를 통과하고 배기가스가 통과하는 내부에는 방전코일(12)이 장착된 내부방전관(11)이 장착되어지는 것이다.In addition, the structure of the high voltage ozone generator 9 for the primary purification of the exhaust gas passes through the exhaust gas inside the outer discharge tube 10 having the discharge plate 13 formed therein and discharge coils 12 inside the exhaust gas. ) Is equipped with the inner discharge tube (11).

또한 고온플라즈마 반응관(14)의 구조는 고온플라즈마 반응관(14)의 내부에 다수개의 배기관(1)이 장착되고, 배기관(1)의 양측 선단으로는 가스유입을 안내하는 포집통(15)과 배출을 유도하는 배출통(16)이 장착되고, 배기관(1)의 내부에는 반응코아(17)가 배기가스의 흐름방향과 동일한 방향으로 장착되어 있는 것이다.In addition, the structure of the high temperature plasma reaction tube 14 has a plurality of exhaust pipes 1 mounted inside the high temperature plasma reaction tube 14, and collecting vessels 15 for guiding gas inflow to both ends of the exhaust pipe 1. The discharge cylinder 16 for inducing excessive discharge is mounted, and the reaction core 17 is mounted inside the exhaust pipe 1 in the same direction as the flow direction of the exhaust gas.

따라서 고전압 오존발생기(9)는 외부방전관(10)과 내부방전관(11)이 분리되어 있으며 고압 도선은 방수 및 방열 된 것으로 사용되어 배기가스가 고전압에 의하여 점화가 되지 않토록 되어 있고, 산소가 통과하는 관은 밀폐되어 있으며 방전을 일으키는 방전발생면 사이를 유동하도록 설계되어 있다.Therefore, the high voltage ozone generator 9 is separated from the external discharge tube 10 and the internal discharge tube 11, and the high-voltage wire is used to be waterproof and heat-dissipated so that the exhaust gas is not ignited by the high voltage, and oxygen passes through The pipe is hermetically sealed and designed to flow between the discharge generating surfaces causing the discharge.

또한 고압에 의한 배기가스는 방전코일(12)과 방전극판(13) 사이에 발생되는 2만볼트의 강제 고압방전에 의하여 분리되며 고밀도로 생성된 오존과 결합하여 고속의 강제 부식을 유도하여 배기가스 내의 유해물질을 강제 산화시키도록 되는 것이다.In addition, the exhaust gas by the high pressure is separated by the forced high-pressure discharge of 20,000 volts generated between the discharge coil 12 and the discharge electrode plate 13 and combined with ozone generated in high density to induce high-speed forced corrosion and exhaust gas It is to oxidize the harmful substances within.

또한 고온 플라즈마반응관(14)은 오존으로 처리된 산화배기가스와 미 제거된 유해물질 및 사용된 오존을 제거하기 위하여 고온플라즈마 반응을 통하여 평행한 상호 조정간격의 원형관을 통하여 설치하되 반응기의 길이를 반복실험에 의한 연장거리를 합산하여 설치한다.In addition, the high temperature plasma reaction tube 14 is installed through a circular tube of mutually adjustable intervals in parallel through a high temperature plasma reaction in order to remove the ozone-treated exhaust gas, unremoved harmful substances and used ozone, but the length of the reactor Summing up the extension distance by repeat test.

또한 고온플라즈마 반응관(14)의 반응코아(17)는 발생점을 넘어서 급격한 연소가 되는 것을 방지하기 위한 것이며 순간적인 발생열은 1만도 정도이기 때문에 잔류유해가스를 제거할 수 있는 고온플라즈마 조건을 충족하게 됨으로 유해가스 제거량에 의거하여 순간고열에 견딜 수 있는 재질을 선택 사용하여야 한다.In addition, the reaction core 17 of the high temperature plasma reaction tube 14 is to prevent the rapid combustion beyond the generation point, and the instantaneous heat generated is about 10,000 degrees to satisfy the high temperature plasma condition capable of removing residual harmful gas. Therefore, the material that can endure instantaneous high temperature should be selected and used based on the amount of harmful gas removed.

이와 같이 정화되어진 배기가스는 기존의 삼원 촉매장치에 적합한 온도로 유지되게 하기 위하여 적절한 배기가스의 온도 조절을 위하여는 반응코아의 길이를 적절히 조절하여야 하는 것이다.In order to maintain the appropriate temperature for the three-way catalytic device, the purified exhaust gas must be properly adjusted to the length of the reaction core in order to properly control the temperature of the exhaust gas.

상술한 바와 같이 본 발명에 의하면 연료가 고온의 배기가스에 의하여 활성화되면서 활성화된 분자는 연료의 가변밀도 및 가변분자량과 가변조성을 인젝터를 통하여 엔진에 분사하게 됨으로 연료의 최적 효율을 얻을 수 있는 것이며 사용된 배기가스는 오존과 고온플라즈마반응에 의하여 완전 정화되어지는 것이다.As described above, according to the present invention, the activated molecules are activated by the high temperature exhaust gas, and thus the optimum efficiency of the fuel can be obtained by injecting the variable density, variable molecular weight and variable composition of the fuel into the engine through the injector. The exhaust gas is completely purified by ozone and high temperature plasma reaction.

Claims (8)

배기가스와 연료가 교차되어지도록 저온플라즈마 반응관의 내부에는 연료관이 형성되고, 상기 연료관의 내부에는 연료가 흐르는 방향의 끝단으로 하향경사면이 형성되는 반응코아가 형성되고, 사용된 배기가스는 고전압오존발생기를 통과하게 되고, 고전압오존발생기를 통과한 배기가스는 고온플라즈마 반응관을 통과토록 됨을 특징으로 하는 내연기관의 배기가스로 연료전처리한 후 정화토록 하는 시스템.A fuel tube is formed inside the low temperature plasma reaction tube so that the exhaust gas and the fuel intersect, and a reaction core is formed inside the fuel tube in which a downward slope is formed at the end of the fuel flow direction. The system passes through the high voltage ozone generator, and the exhaust gas passing through the high voltage ozone generator passes through the high temperature plasma reaction tube to purify the fuel after the fuel pretreatment with the exhaust gas of the internal combustion engine. 제1항에 있어서, 반응코아는 연료가 흐르는 방향의 끝단으로 하향경사면이 형성되어지는 내연기관의 배기가스로 연료전처리한 후 정화토록 하는 시스템.The system according to claim 1, wherein the reaction core is purged after the fuel pretreatment with the exhaust gas of the internal combustion engine in which the downward slope is formed at the end of the fuel flow direction. 제1항에 있어서, 저온플라즈마 반응관은 그 내부에 각각의 연료관을 집합토록 하는 저온플라즈마 가변관을 형성하여 저온플라즈마 가변관에서 엔진의 출력상태에 따라 각각의 가변관에 형성되는 연료출구를 통하여 연료가 분사토록 하는 내연기관의 배기가스로 연료전처리한 후 정화토록 하는 시스템.The low temperature plasma reaction tube according to claim 1, wherein the low temperature plasma reaction tube forms a low temperature plasma variable tube for collecting each fuel tube therein, and thus the fuel outlet formed in each variable tube according to the output state of the engine in the low temperature plasma variable tube. A system for purifying fuel after pretreatment with exhaust gas from an internal combustion engine that allows fuel to be injected. 제1항에 있어서, 고전압오존발생기는 방전극판이 형성된 외부방전관의 내부로는 배기가스를 통과시키고 배기가스가 통과하는 내부에는 방전코일이 장착된 내부방전관이 장착되어지는 내연기관의 배기가스로 연료전처리한 후 정화토록 하는시스템.The fuel pretreatment of claim 1, wherein the high voltage ozone generator passes exhaust gas into an inner discharge tube having a discharge electrode plate and exhaust gas of an internal combustion engine equipped with an inner discharge tube equipped with a discharge coil inside the discharge tube. System to clean up after cleaning. 제1항에 있어서, 고온플라즈마 반응관은 반응관의 내부에 다수개의 배기관이 장착되고, 배기관의 양측 선단으로는 가스유입을 안내하는 포집통과 배출을 유도하는 배출통이 장착되고, 배기관의 내부에는 반응코아가 배기가스의 흐름방향과 동일한 방향으로 장착되어 있는 내연기관의 배기가스로 연료전처리한 후 정화토록 하는 시스템.According to claim 1, wherein the high temperature plasma reaction tube is equipped with a plurality of exhaust pipes inside the reaction tube, both ends of the exhaust pipe is equipped with a collecting pipe for guiding the gas inlet and a discharge pipe for inducing discharge, the inside of the exhaust pipe A system in which a reaction core is pretreated with the exhaust gas of an internal combustion engine mounted in the same direction as the flow direction of the exhaust gas and then purified. 제1항에 있어서, 연소의 시작점을 마크선에 의한 확인에 의하여 이를 턱이지게 가공한 후 이를 일직선상으로 가공하여 경사면을 갖도록 함을 특징으로 하는 내연기관의 배기가스로 연료 전 처리한 후 정화토록 하는 시스템.The method of claim 1, wherein the starting point of the combustion is processed to be chin by checking the mark line, and then it is processed in a straight line to have an inclined surface to purify after fuel pretreatment with the exhaust gas of the internal combustion engine. System. 제3항에 있어서, 상기 분사는 전자제어장치에 의하여 솔레노이드밸브를 이용하여 조정되어지는 내연기관의 배기가스로 연료전처리한 후 정화토록 하는 시스템.4. The system according to claim 3, wherein the injection is performed after fuel pretreatment with exhaust gas of an internal combustion engine, which is regulated using a solenoid valve by an electronic controller. 제5항에 있어서, 반응코아의 선단으로는 경사면이 형성된 내연기관의 배기가스로 연료전처리한 후 정화토록 하는 시스템.A system according to claim 5, wherein the front end of the reaction core is purged after fuel pretreatment with exhaust gas of an internal combustion engine having an inclined surface.
KR1020010001438A 2001-01-10 2001-01-10 A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin KR20010078438A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020010001438A KR20010078438A (en) 2001-01-10 2001-01-10 A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin
PCT/KR2001/000186 WO2002055867A1 (en) 2001-01-10 2001-02-08 A system of converting fuel into a plasma state to reduce fuel consumption and pollutants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010001438A KR20010078438A (en) 2001-01-10 2001-01-10 A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin

Publications (1)

Publication Number Publication Date
KR20010078438A true KR20010078438A (en) 2001-08-21

Family

ID=19704483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010001438A KR20010078438A (en) 2001-01-10 2001-01-10 A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin

Country Status (2)

Country Link
KR (1) KR20010078438A (en)
WO (1) WO2002055867A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080016272A (en) * 2006-08-18 2008-02-21 강중희 Fuel save apparatus internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010078438A (en) * 2001-01-10 2001-08-21 임순자 A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin
US7104224B2 (en) * 2003-03-25 2006-09-12 Plasmadrive, Inc. System for improving the fuel efficiency of an engine
FR2926606A1 (en) * 2008-01-21 2009-07-24 Hypnow Alternative vaporized fuel pre-treating device for e.g. oil engine of motor vehicle, has excitation unit for exciting electromagnetic fields for acting on fuel in section of supply tube, where section is housed in exhaust pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019403A (en) * 1998-09-11 2000-04-06 조용준 Removal device of noxious substance in diesel engine exhaust gas
KR20000031393A (en) * 1998-11-06 2000-06-05 송민종 Method and device for disposing exhaust gas of vehicle by using plasma
KR20010078435A (en) * 2000-12-29 2001-08-21 임순자 A purification device for waste gas of the internal-combustion engine
KR20010078436A (en) * 2000-12-29 2001-08-21 임순자 A fuel reduction device using plasma
WO2002055867A1 (en) * 2001-01-10 2002-07-18 Soonja Lim A system of converting fuel into a plasma state to reduce fuel consumption and pollutants

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039870B2 (en) * 1980-09-03 1985-09-07 住友重機械工業株式会社 Diesel engine fuel supply system
JPS5831118B2 (en) * 1980-12-20 1983-07-04 俊春 山下 Light oil reformer
JPS5818548A (en) * 1981-07-27 1983-02-03 Tokyo Tatsuno Co Ltd Automobile
JPS6075752A (en) * 1983-09-30 1985-04-30 Mitsubishi Electric Corp Controller for gas fuel engine
JPH06346807A (en) * 1993-06-07 1994-12-20 Aqueous Res:Kk Carburetor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019403A (en) * 1998-09-11 2000-04-06 조용준 Removal device of noxious substance in diesel engine exhaust gas
KR20000031393A (en) * 1998-11-06 2000-06-05 송민종 Method and device for disposing exhaust gas of vehicle by using plasma
KR20010078435A (en) * 2000-12-29 2001-08-21 임순자 A purification device for waste gas of the internal-combustion engine
KR20010078436A (en) * 2000-12-29 2001-08-21 임순자 A fuel reduction device using plasma
WO2002055867A1 (en) * 2001-01-10 2002-07-18 Soonja Lim A system of converting fuel into a plasma state to reduce fuel consumption and pollutants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080016272A (en) * 2006-08-18 2008-02-21 강중희 Fuel save apparatus internal combustion engine

Also Published As

Publication number Publication date
WO2002055867A1 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
US6557340B1 (en) System and method for purifying exhaust gases
JP3068040B2 (en) Corona discharge pollutant destruction equipment for treating nitrogen oxides
CA2512726A1 (en) Methods and apparatus for combustion of fuels
EP1425497B1 (en) Device and method for exhaust gas after-treatment
DE69410608D1 (en) METHOD AND DEVICE FOR REDUCING POLLUTANTS IN COMBUSTION ENGINE EXHAUST GASES BY FLAME COMBUSTION
JP2951831B2 (en) Exhaust gas purification device for internal combustion engine
US7121079B2 (en) System for exhaust gas treatment comprising a gas ionizing system with ionized air injection
Kuwahara et al. Pilot-scale combined reduction of accumulated particulate matter and NO x using nonthermal plasma for marine diesel engine
CA2515722C (en) Exhaust purification method and exhaust purification apparatus of internal combustion engine
KR20010078438A (en) A system for lighting after pre-processing of fuel with waste gas of the internal-combustion engin
JPH116465A (en) Fuel economizing device for internal combustion engine
Mohapatro et al. Studies on $\hbox {NO} _ {\rm X} $ Removal From Diesel Engine Exhaust Using Duct-Type DBD Reactor
US20020053283A1 (en) Magnetic pollution filter
WO2000031386A1 (en) Method and apparatus to reduce engine exhaust emissions
KR20010078435A (en) A purification device for waste gas of the internal-combustion engine
Lepperhoff et al. Exhaust emission reduction of combustion engines by barrier discharge-A new reactor/generator system
Susilo et al. The effect of magnet strength and engine speed on fuel consumption and exhaust gas emission for gasoline vehicle
RU42075U1 (en) AIR PREPARATION UNIT AS A MAIN FUEL COMPONENT
KR20120018254A (en) Exhaust gas purification appraratus and exhaust gas purifying method for ship
KR100187139B1 (en) Air purifying device
EP1379761B1 (en) Emission control device and method
JP2006132496A (en) Nitrogen oxide purifying device
KR20010078436A (en) A fuel reduction device using plasma
Yamamoto et al. Performance evaluation of nonthermal plasma reactors for NO oxidation in diesel engine exhaust gas treatment
Jhunjhunwala et al. INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

Legal Events

Date Code Title Description
G15R Request for early opening
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application