KR20010066099A - Nagative pole recycling method for Ni-MH battery - Google Patents

Nagative pole recycling method for Ni-MH battery Download PDF

Info

Publication number
KR20010066099A
KR20010066099A KR1019990067681A KR19990067681A KR20010066099A KR 20010066099 A KR20010066099 A KR 20010066099A KR 1019990067681 A KR1019990067681 A KR 1019990067681A KR 19990067681 A KR19990067681 A KR 19990067681A KR 20010066099 A KR20010066099 A KR 20010066099A
Authority
KR
South Korea
Prior art keywords
negative electrode
battery
cathodic
induction furnace
ingot
Prior art date
Application number
KR1019990067681A
Other languages
Korean (ko)
Other versions
KR100534889B1 (en
Inventor
김치명
Original Assignee
이계안
현대자동차주식회사
류정열
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계안, 현대자동차주식회사, 류정열, 기아자동차주식회사 filed Critical 이계안
Priority to KR10-1999-0067681A priority Critical patent/KR100534889B1/en
Publication of KR20010066099A publication Critical patent/KR20010066099A/en
Application granted granted Critical
Publication of KR100534889B1 publication Critical patent/KR100534889B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: Provided is a cathode recycling method in a Ni-MH battery which separates a cathodic plate, neutralizes, discharges and re-fuses so that it simplifies recycling process with raising recycling degree. CONSTITUTION: The cathode recycling method in the Ni-MH battery comprises the steps of: (i) separating a cathodic battery from waste batteries, grinding finely, washing in water and weak acidic solution and neutralizing in strong alkali; (ii) pressing dried cathodic activated material in a powder form at a vacuum induction furnace, charging pressed powder alloy into the vacuum induction furnace and separating dissolved slag and ingot to be discharged and cooled; and (iii) analyzing ingot through ICP or EDS analysis, adding lacking component as cathodic material and re-fusing.

Description

Ni-MH 전지의 음극 재활용 방법{Nagative pole recycling method for Ni-MH battery}Negative pole recycling method for Ni-MH battery

본 발명은 Ni-MH 전지의 음극 재활용 방법에 관한 것으로, 더욱 상세하게는 전지의 음극판을 분리하여 중화작업을 한 다음 전기 유도로에서 용해시켜 출탕하여 성분을 분석하고, 여기에 부족한 다른 성분을 첨가하여 재용해함으로써, 복잡한 습식 재활용 방법에 비해 공정이 단순하면서도 재활용도를 높일 수 있고, 또한 환경오염을 줄일 수 있는 Ni-MH 전지의 음극 재활용 방법에 관한 것이다.The present invention relates to a negative electrode recycling method of a Ni-MH battery, and more particularly, to neutralize the negative electrode plate of the battery, and then to dissolve it in an electric induction furnace for tapping to analyze the components and add other components that are insufficient. The present invention relates to a negative electrode recycling method of a Ni-MH battery, which is simpler than a complicated wet recycling method and can increase recyclability and reduce environmental pollution.

일반적으로 많이 사용되는 전지는 수명이 다하게 되면 보통 납전지만을 회수하여 재활용하고 나머지는 폐기하게 되어, 전지에 의해 환경오염이 커지게 되는 문제가 발생하게 되었다.In general, a battery that is frequently used is the end of its life, usually only lead-acid battery is recovered and recycled, the rest is discarded, the environmental pollution caused by the battery will increase.

이러한 점 때문에, 선진업체에는 전지의 재활용 방안에 대하여 많은 연구가 진행되고 있는데, 보통 습식법을 통하여 Ni-Cd 전극의 양극에서 Co와 Ni 등 유가 금속을 회수하는 방법과 Cd를 회수하는 방법이 알려져 있다.For this reason, a lot of researches are being conducted on the recycling method of the battery by advanced companies, and a method of recovering valuable metals such as Co and Ni from the anode of the Ni-Cd electrode and a method of recovering Cd are known. .

또한, 전기자동차에 많이 사용되는 Ni-MH 전지의 경우 음극에 대한 재활용이 극히 부분적으로 이루어지고 있는데, 재활용도에 비해 설비투자가 많고 V-Ni의 형태로 제강업계에 제공하고 있다.In addition, in the case of Ni-MH batteries, which are frequently used in electric vehicles, recycling to the negative electrode is made in part, and investment in facilities is much higher than that of recycling, and is provided to the steelmaking industry in the form of V-Ni.

그러나, 종래의 화학공정인 습식 제련법(hydrometallurgical process)는 화학 약품을 이용하여 폐전지의 활물질을 녹인 다음 염이나 산화물 형태로 전환이 가능하기 때문에 재생이 어려워 전지 재료로 사용하기 어려운 점이 있었다.However, the conventional chemical process hydrometallurgical process (hydrometallurgical process) is difficult to use as a battery material because it is difficult to recycle because it can be converted to the salt or oxide form after dissolving the active material of the spent battery using a chemical.

본 발명은 이러한 점을 감안하여 안출한 것으로, 폐전지로부터 음극 전지를 분리하여 잘게 부수고 여기에 물과 약산성액으로 세척하고 나서 강알카리로 중화시켜 주고 이를 건조하는 전처리 공정과; 건조된 음극 활물질을 진공 유도로에서 분말형태로 소정의 크기로 프레스 가공하고, 프레스 가공된 분말합금을 진공유도로에 장입하여 용해된 슬래그와 인곳으로 분리하여 출탕시켜 냉각하는 합금용액 성형공정과; 상기 합금용액을 모합금으로 하여 ICP 또는 EDS 분석을 통해 성분을 분석하고 음극 재료로서 부족분만큼의 성분을 추가하여 재용융하는 용융공정으로 이루어진 것을 특징으로 하는 Ni-MH 전지의 음극 재활용 방법을 제공하는데 그 목적이 있는 것이다.The present invention has been made in view of the above-mentioned, separating the negative cell from the waste battery, and finely crushed, washed with water and weakly acidic solution, neutralized with strong alkali, and dried it; An alloy solution forming step of pressing the dried negative active material to a predetermined size in a powder form in a vacuum induction furnace, charging the press-processed powder alloy into a vacuum induction furnace, separating the dissolved slag into ingots, and tapping and cooling it; To provide a negative electrode recycling method of Ni-MH battery, characterized in that the alloy solution as a mother alloy by analyzing the components through ICP or EDS analysis and the melting process of remelting by adding as much components as the negative electrode material. The purpose is.

도 1은 본 발명에 따른 인곳의 산세 처리 후 아크용융(Arc melting)한 시편을 나타내는 사진.1 is a photograph showing the specimen by arc melting after pickling treatment of the ingot according to the present invention.

[도면의 주요 부분에 대한 부호의 설명][Description of Symbols for Main Parts of Drawing]

A : 슬래그 층 B : 인곳A: slag layer B: ingot

이하, 본 발명에 따른 Ni-MH 전지의 음극 재활용 방법을 공정별로 설명하면 다음과 같다.Hereinafter, the method for recycling the negative electrode of the Ni-MH battery according to the present invention will be described as follows.

먼저, 전처리 공정은 폐전지로부터 음극 전지를 분리하고 그 표면에 묻어 있는 불순물을 제거하는 단계로, 분리된 음극 전지를 잘게 부순 다음 물과 약산성 용액으로 세척을 하게 된다.First, the pretreatment process is a step of separating the negative electrode battery from the waste cell and removing impurities on the surface thereof, and then crushing the separated negative electrode cell and then washing with water and a weakly acidic solution.

이때, 본 발명의 바람직한 실시예에서는 물을 이용하여 6번 세척을 하고 난 다음 약산성 용액으로 3번 세척하게 되는데, 이때 사용되는 약산성 용액으로는 Hcl, HNO3, H2SO4중에서 어느 하나를 사용하여 세척하게 된다.At this time, in a preferred embodiment of the present invention is washed six times with water and then washed three times with a weakly acidic solution, wherein the weakly acidic solution used is any one of Hcl, HNO 3 , H 2 SO 4 Will be washed.

이렇게 물과 약산성 용액으로 세척을 하는 동안 잘게 부서진 음극은 전하를 잃게 되어 pH값이 떨어지게 되는데, 세척횟수에 대한 pH값의 변화는 다음 표 1과 같다.Thus, the finely broken cathode loses the charge while washing with water and weakly acidic solution, and the pH value drops. The change in pH value for the number of washing is shown in Table 1 below.

구분division 수세Defensive 산세Pickling 회수collection 1회1 time 2회Episode 2 3회3rd time 4회4 times 5회5 times 6회6th 7회7th 8회8th 9회9th pHpH 12.512.5 12.312.3 12.112.1 11.811.8 11.511.5 11.111.1 10.810.8 9.69.6 9.39.3

본 발명의 바람직한 구현예에서, 세척하는 횟수는 음극 분말을 중화될때까지 반복하여 진행하게 되는데, pH값이 7.5 이하로 떨어질 때까지 반복하여 세척 공정을 진행하게 된다.In a preferred embodiment of the present invention, the number of times to be washed is repeated repeatedly until the negative powder is neutralized, the washing process is repeatedly performed until the pH value falls below 7.5.

이와 같이 중화 상태인 음극분말 상태로 세척을 끝내게 되면 그 다음으로 약 150℃의 온도 범위에서 건조하게 되면 전처리 공정을 모두 마치게 된다.As such, when the cleaning is finished in the neutralized cathode powder state, and then dried in the temperature range of about 150 ℃ to complete all the pretreatment process.

상기 합금용액 성형공정은 전처리 공정에서 수세와 산세에 의해 중화되어 건조가 끝난 합금분말(음극분물)을 용융시켜 슬래그(slag)를 제거하고 인곳(ingot)을 분리하여 출탕시켜 냉각하는 과정으로, 이렇게 냉각된 합금은 음극용 모재로 사용하게 된다.The alloy solution forming process is a process of melting the alloy powder (cathode powder), which is neutralized by washing with water and pickling in a pretreatment process, removing slag, separating ingots, and tapping them to cool them. The cooled alloy is used as a base material for the negative electrode.

합금분말은 분말형태로된 음극활물질을 성형하게 되며, 이때의 음극 활물질 분말은 프레스를 사용하여 일정 크기로 성형하여 진동 유도로에 장입하여 용해하게 된다.The alloy powder is to form a negative electrode active material in the form of a powder, and the negative electrode active material powder is molded into a predetermined size using a press and charged into a vibration induction furnace to be dissolved.

용해된 음극 활물질은 충분히 용해된 상태로 진동 유도로에서 음극을 재생하기 위한 인곳(ingot)과 나머지 잔여물질인 슬래그(slag)로 분리되어 출탕되면서 냉각시키게 된다.The dissolved negative electrode active material is cooled by being separated into ingots for regenerating the negative electrode in the vibration induction furnace and slag, which is the remaining residue, in a sufficiently dissolved state.

여기서, 상기 진동 유도로에서는 소정의 압력과 온도, 그리고 일정 용융시간하에서 음극 활물질을 얻게 된다.Here, in the vibration induction furnace, a negative electrode active material is obtained under a predetermined pressure and temperature and a predetermined melting time.

또한, 첨부도면 도 1은 본 발명에 따른 음극 활물질의 인곳을 산세 처리후 Arc melting하여 얻어진 사진으로, 시편에서 부호 A로 표시된 어두운 부분은슬래그층을 나타내고 있으며, 이 슬래그층은 EDS 분석결과 주로 Zr, Ti 등의 성분으로 이루어져 있으며, 그 외에도 미량의 타 성분도 검출되었다.In addition, Figure 1 is a photograph obtained by the arc melting after the pickling treatment of the ingot of the negative electrode active material according to the present invention, the dark portion indicated by the symbol A in the specimen represents the slag layer, which is mainly Zr as a result of EDS analysis , Ti and the like, and other trace components were also detected.

여기서 보는 것처럼, 폐전지의 음극은 전지의 화학반응을 통해 생성된 옥시드들이 모합금과 분리되어 별도의 슬래그층으로 존재하는 것을 알 수 있으며, 건식법(pyrometallurgical process)로 슬래그를 재생하게 되면 슬래그를 제외한 밝은 부분(도면 1에서 B부분)에서 Zr, Ti 등의 농도가 상대적으로 낮아 원래 상태로 재생하는 것이 불가능하게 된다.As shown here, the negative electrode of the waste battery can be seen that the oxides generated through the chemical reaction of the cell is separated from the master alloy exists as a separate slag layer, when the slag is regenerated by the pyrometallurgical process In the bright parts (part B in FIG. 1) except for the relatively low concentrations of Zr, Ti, etc., it becomes impossible to regenerate the original state.

따라서, 전처리 공정에서 환원 조건의 확립을 통해서 옥시드층을 최소화하고 멜팅을 용이하게 할 필요가 있는 것이다.Therefore, it is necessary to minimize the oxide layer and facilitate the melting through the establishment of reducing conditions in the pretreatment process.

이와 같이 음극 활물질로 합금용액을 성형하는 과정이 끝나게 되면 마지막으로 재생 음극을 제조하기 위한 용융공정을 진행하게 되는데, 용융에 앞서 음극 활물질의 성분을 조사하게 된다.As such, when the process of forming the alloy solution with the negative electrode active material is finished, a melting process for manufacturing a regenerated negative electrode is finally performed, and the components of the negative electrode active material are investigated before melting.

상기 성분조사는 ICP 또는 EDS 분석을 통해 성분을 분석하게 되는데, 표 3은 음극의 성분 뿐만 아니라 본 발명에 따른 각 공정에서의 성분을 비교하여 나타낸 것이다.The component investigation is to analyze the components through ICP or EDS analysis, Table 3 shows the components of each process according to the present invention as well as the components of the negative electrode.

구분division TiTi ZrZr CrCr MnMn VV NiNi CoCo 음극cathode 11.7911.79 26.9526.95 4.274.27 7.227.22 15.0415.04 27.9527.95 6.776.77 수명종료전지Life End Battery 11.111.1 2424 3.73.7 66 1515 26.626.6 6.76.7 산세처리Pickling treatment 11.0211.02 23.1423.14 4.454.45 6.196.19 12.5912.59 27.8127.81 8.578.57 1차용해합금Primary Melting Alloy 12.8112.81 9.489.48 4.964.96 0.330.33 20.1420.14 40.740.7 11.5211.52 1차용해슬래그Primary melting slag 12.1412.14 57.0157.01 0.40.4 0.0540.054 2.22.2 3.33.3 0.650.65

표 2에서 보는 바와 같이 1차로 용해된 합금인 음극 활물질은 원래 음극에 함유되는 각 성분의 함량과 달리 나타내는 것을 볼 수 있는데, 이 음극 활물질을 재활용하기 위해 이 음극 활물질을 모합금으로 하여 Zr, Ti, Co, Mn, Ni, V 등의 성분 요소를 필요한 양만큼 첨가하여 성분비를 맞추게 된다.As shown in Table 2, it can be seen that the negative electrode active material, which is the primary dissolved alloy, is different from the content of each component contained in the original negative electrode. In order to recycle the negative electrode active material, the negative electrode active material is used as a master alloy to form Zr, Ti. Component ratios such as, Co, Mn, Ni, and V are added in the required amounts to match the component ratios.

이때, 원래 음극에 함유된 성분보다 음극 활물질에 함유된 성분이 많은 경우에는 성분비를 맞춰 주게 된다.At this time, when there are more components contained in the negative electrode active material than the components originally contained in the negative electrode, the component ratio is adjusted.

이와 같이 원래 음극에 함유된 성분비와 비교하여 부족하거나 많은 성분에 대한 첨가가 끝나게 되면 2차로 용융을 하게 되고, 용융 후에 음극 재생용 음극 합금을 얻게 되는데, 이 음극 합금에 대해서 다시 한번 ICP, P-C-T 등의 성분 분석을 하게 된다.As such, when the addition of the components that are insufficient or much compared to the components contained in the negative electrode is completed, the secondary melting is performed, and after melting, the negative electrode alloy for regenerating the negative electrode is obtained. The component analysis of.

표 3에서 보는 바와 같이 수소 저장량이 중화(수세), 산세처리된 시편이 조립전에 MH 합금(as-cast로 표시됨)과 대비하여 1/2로 줄어 든 것을 알 수 있다.As shown in Table 3, it can be seen that the hydrogen storage amount was reduced to 1/2 compared to the MH alloy (marked as-cast) before the neutralization (washing) and pickling treatments.

여기에서 보는 바와 같이, 수소저장량이 반으로 줄어 들게 되어 폐음극을 수세와 산세로 중화된 상태에서 용융된 합금을 얻게 되고, 이 합금을 성분분석하여 원래 음극에 함유된 각각의 성분비를 맞춘 다음 재용융함으로써, 다시 음극으로 재활용이 가능한 음극용 합금을 얻을 수 있게 되는 것이다.As shown here, the hydrogen storage is reduced in half to obtain a molten alloy in which the waste cathode is neutralized by washing with water and pickling. By melting, it is possible to obtain a negative electrode alloy that can be recycled back to the negative electrode.

이상에서 본 바와 같이 본 발명은 폐전지의 음극을 분리하여 수세와 산세를 통해 세척하여 중화처리 한 다음 전기 유도로에 유입시켜 융해하고, 융해된 합금의 성분비를 조사하여 원래 음극에 함유된 각 성분의 성분비를 맞추고 다시 재용융시켜 음극 제조용 합금을 성형함으로써, 음극 재료의 재활용도를 높일 수 있을 뿐만 아니라 환경친화도를 더욱 높일 수 있는 효과가 있는 것이다.As described above, in the present invention, the negative electrode of the waste battery is separated, washed with water and pickling, neutralized, and then melted by induction in an electric induction furnace. By adjusting the component ratio of and re-melting again to form an alloy for producing a negative electrode, it is possible not only to increase the recyclability of the negative electrode material, but also to increase the environmental friendliness.

Claims (2)

폐전지로부터 음극 전지를 분리하여 잘게 부수고 여기에 물과 약산성액으로 세척하고 나서 강알카리로 중화시켜 주고 이를 건조하는 전처리 공정과;A pretreatment step of separating the negative cell from the waste cell, crushing it finely, washing it with water and a weak acid solution, neutralizing it with strong alkali, and drying it; 건조된 음극 활물질을 진공 유도로에서 분말형태로 소정의 크기로 프레스 가공하고, 프레스 가공된 분말합금을 진공유도로에 장입하여 용해된 슬래그(slag)와 인곳(ingot)으로 분리하여 출탕시켜 냉각하는 합금용액 성형공정과;The dried negative electrode active material is press-processed to a predetermined size in a powder form in a vacuum induction furnace, charged into a vacuum induction furnace, separated into molten slag and ingot, and then cooled by cooling. Alloy solution forming process; 이 인곳을 모합금으로 하여 ICP 또는 EDS 분석을 통해 성분을 분석하고 음극 재료로서 부족분만큼의 성분을 추가하여 재용융하는 용융공정으로 이루어진 것을 특징으로 하는 Ni-MH 전지의 음극 재활용 방법.A method of recycling a negative electrode of a Ni-MH battery, comprising a melting process of analyzing the components by ICP or EDS analysis using the ingot as a master alloy and remelting the components by adding a shortage as a negative electrode material. 제 1 항에 있어서, 상기 약산성액은 Hcl, HNO3, H2SO4중에서 선택된 어느 하나인 것을 특징으로 하는 Ni-MH 전지의 음극 재활용 방법.The method of claim 1, wherein the weak acid solution is a negative electrode recycling method of Ni-MH battery, characterized in that any one selected from Hcl, HNO 3 , H 2 SO 4 .
KR10-1999-0067681A 1999-12-31 1999-12-31 Nagative pole recycling method for Ni-MH battery KR100534889B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0067681A KR100534889B1 (en) 1999-12-31 1999-12-31 Nagative pole recycling method for Ni-MH battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0067681A KR100534889B1 (en) 1999-12-31 1999-12-31 Nagative pole recycling method for Ni-MH battery

Publications (2)

Publication Number Publication Date
KR20010066099A true KR20010066099A (en) 2001-07-11
KR100534889B1 KR100534889B1 (en) 2005-12-08

Family

ID=19634783

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0067681A KR100534889B1 (en) 1999-12-31 1999-12-31 Nagative pole recycling method for Ni-MH battery

Country Status (1)

Country Link
KR (1) KR100534889B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206446A1 (en) * 2003-07-09 2008-08-28 Maxwell Technologies, Inc. Recyclable dry-particle based adhesive electrode and methods of making same
CN102569719B (en) * 2003-07-09 2017-04-05 麦斯韦尔技术股份有限公司 Electrochemical appliance and its manufacture method based on dry particl
US10547057B2 (en) 2003-07-09 2020-01-28 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104562B1 (en) 2019-11-26 2020-04-24 한국지질자원연구원 Method for separating anode active material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532640B2 (en) * 1994-12-08 2004-05-31 株式会社三徳 Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode
JPH10284050A (en) * 1997-04-09 1998-10-23 Asahi Chem Ind Co Ltd Electrode used for nonaqueous secondary battery and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206446A1 (en) * 2003-07-09 2008-08-28 Maxwell Technologies, Inc. Recyclable dry-particle based adhesive electrode and methods of making same
CN102569719B (en) * 2003-07-09 2017-04-05 麦斯韦尔技术股份有限公司 Electrochemical appliance and its manufacture method based on dry particl
US10547057B2 (en) 2003-07-09 2020-01-28 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
US11430613B2 (en) 2003-07-09 2022-08-30 Tesla, Inc. Recyclable dry-particle based adhesive electrode and methods of making same

Also Published As

Publication number Publication date
KR100534889B1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
Dobó et al. A review on recycling of spent lithium-ion batteries
JP6314814B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
CN112424383A (en) Recovery method for recovering valuable metals from waste lithium ion batteries
KR100717389B1 (en) A valuable material recovery method of a scrapped Lithium ion battery
CN110719963B (en) Treatment method of lithium ion battery waste
CN111370801B (en) Method for recovering waste lithium iron phosphate positive plate
JP2010174366A (en) Method of recovering metal from used nickel-metal hydride battery
KR20050112487A (en) High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries
EA038396B1 (en) Process for recycling cobalt-bearing materials
KR100534889B1 (en) Nagative pole recycling method for Ni-MH battery
JP6402535B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
Yang et al. Recovery of battery-grade products from mixed spent LiFePO4/LiMn2O4 cathodes via slurry electrolysis
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
JP3485208B2 (en) Method for recovering active ingredient from nickel-hydrogen storage alloy secondary battery
KR20210145456A (en) Reuse method of active material of positive electrode scrap
CN114256527A (en) Method for removing impurities and separating positive electrode and negative electrode of waste lithium ion battery mixed material
CN115799694A (en) Crushing, disassembling and recycling method for lithium battery
TWI625882B (en) Method for recovering positive electrode material resources in waste lithium iron battery
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
CN115367776A (en) Method for recycling lithium iron phosphate battery
JP6201905B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
US20140308183A1 (en) Method for producing nickel-containing acid solution
Lyman et al. Recycling of nickel-metal hydride battery alloys
JP3614987B2 (en) Method for reducing oxygen in hydrogen storage alloys

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141128

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 13