KR20010065118A - Vaccum chamber temperature sensor setting method - Google Patents

Vaccum chamber temperature sensor setting method Download PDF

Info

Publication number
KR20010065118A
KR20010065118A KR1019990064932A KR19990064932A KR20010065118A KR 20010065118 A KR20010065118 A KR 20010065118A KR 1019990064932 A KR1019990064932 A KR 1019990064932A KR 19990064932 A KR19990064932 A KR 19990064932A KR 20010065118 A KR20010065118 A KR 20010065118A
Authority
KR
South Korea
Prior art keywords
temperature
temperature sensor
vacuum chamber
heater
value
Prior art date
Application number
KR1019990064932A
Other languages
Korean (ko)
Other versions
KR100334512B1 (en
Inventor
최석원
최준민
이주진
Original Assignee
장근호
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장근호, 한국항공우주연구원 filed Critical 장근호
Priority to KR1019990064932A priority Critical patent/KR100334512B1/en
Publication of KR20010065118A publication Critical patent/KR20010065118A/en
Application granted granted Critical
Publication of KR100334512B1 publication Critical patent/KR100334512B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/003Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using pyroelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Abstract

PURPOSE: A temperature sensor setting method for a vacuum chamber is provided to easily control a temperature in a vacuum chamber by setting a representative temperature in spite of mounting an electric heater directly in the chamber. CONSTITUTION: A temperature sensor setting method for a vacuum chamber includes the steps of deducting a temperature value sensed by a second temperature sensor(7) mounted in the center of an upper part of a heater(3) of a thermal vacuum chamber(1) from an internal temperature of the thermal vacuum chamber, adding a previous temperature value sensed by a first temperature sensor(6) mounted in front of the heater of the thermal vacuum chamber to the deduction value, and changing a setting value of the first temperature sensor by the add value.

Description

진공챔버용 온도센서 설정방법{Vaccum chamber temperature sensor setting method}Vacuum chamber temperature sensor setting method

본 발명은 진공 및 고온환경을 만들어 부품들을 구워내는(Bake-out)시키는 챔버(Chamber)의 내부온도를 조절하는 진공챔버용 온도센서 설정방법에 관한 것이다.The present invention relates to a method for setting a temperature sensor for a vacuum chamber for controlling the internal temperature of a chamber for baking out parts by creating a vacuum and a high temperature environment.

진공 및 고온환경을 제공하는 열진공 챔버를 제작할 때 전기히터를 챔버 내부에 설치하고 이를 이용하여 진공챔버의 내부온도를 상승시키게 된다.When manufacturing a thermal vacuum chamber providing a vacuum and a high temperature environment, an electric heater is installed inside the chamber and the internal temperature of the vacuum chamber is increased by using the same.

그러나 진공챔버 내에서는 유체가 존재하지 않으므로 대류현상이 없이 전도및 복사에 의해서만 열이 전달되므로 진공챔버의 내부온도를 제어하기 위한 대표온도를 설정하는데 어려움이 따르게 된다.However, since there is no fluid in the vacuum chamber, heat is transmitted only by conduction and radiation without convection, which makes it difficult to set a representative temperature for controlling the internal temperature of the vacuum chamber.

즉 대기압에서 작동하는 열주기 챔버의 경우는 내부에 작동유체인 공기가 존재하므로 팬(fan)등을 이용하여 공기를 순환시키면 챔버의 내부온도가 어느곳에서나 거의 균등하게 만들 수 있으며, 이에 따라 챔버내부의 온도제어를 위한 대표온도 설정에 문제가 없으나, 진공상태에서 작동하는 열진공 챔버의 경우는 대류현상이 존재치 않아 상기된 열주기 방식의 대표온도를 설정하면 히터부근에서 국부과열이 발생하게 되는등 온도구배가 심하여 온도조절을 제대로 할 수 없는 것이었다.That is, in the case of a heat cycle chamber operating at atmospheric pressure, air, which is a working fluid, exists inside, so circulating air by using a fan can make the internal temperature of the chamber almost uniform anywhere. There is no problem in setting the representative temperature for temperature control, but in the case of the thermal vacuum chamber operating in a vacuum state, convection does not exist, so setting the representative temperature of the heat cycle method causes local overheating near the heater. The back temperature was so severe that it was impossible to control the temperature properly.

따라서 기존에는 도 1 에 도시된 바와 같이 진공챔버(1)내에 슈라우드(Shroud)(2) 또는 베이스플레이트(5)를 설치하고 상기 슈라우드(2)의 외측이나 베이스플레이트(5)에 히터(3)를 설치하여 상기 슈라우드(2)나 베이스플레이트(5)를 가열시킨 후 상기 슈라우드(2)내측이나 베이스플레이트(5)에 온도센서(4)를 부착하여 진공챔버(1)내부온도를 조절하도록 하고 있다.Therefore, conventionally, as shown in FIG. 1, a shroud 2 or a base plate 5 is installed in the vacuum chamber 1, and the heater 3 is disposed on the outside of the shroud 2 or the base plate 5. After installing the shroud (2) or the base plate (5) to heat the inside of the shroud (2) or the base plate (5) by attaching a temperature sensor (4) to adjust the temperature inside the vacuum chamber (1) have.

그러나 상기된 방식은 슈라우드(2)나 베이스플레이트(5)의 설치에 따른 구조적 복잡함이 따르게 되고 또한 간접가열방식에 따른 고가의 히터(3)를 사용하여야 하는 문제점이 따르게 된다.However, the above-described method is accompanied by structural complexity due to the installation of the shroud 2 or the base plate 5, and also requires the use of an expensive heater 3 according to the indirect heating method.

본 발명은 진공 및 고온환경을 만들어 주는 열진공 챔버에서, 챔버 내측에 저가의 전기히터를 직접 사용하면서도 대표온도 설정이 가능토록 하여 열진공챔버의 내부온도 조절이 가능토록 한 것이다.In the present invention, in a vacuum chamber for creating a vacuum and a high temperature environment, a low-temperature electric heater is used directly inside the chamber, but the representative temperature can be set so that the internal temperature of the thermal vacuum chamber can be controlled.

이러한 본 발명은 열진공 챔버의 내부설정온도에서 열진공 챔버의 히터 윗쪽중심부에 설치된 제2온도센서로 감지된 온도를 감산하고 상기 감산된 값에 열진공챔버의 히터 전방에 설치된 제1온도센서의 전단계 온도를 가산한 값으로 제1온도센서의 셋팅값을 변경시켜 주도록하므로 이루어진다.The present invention subtracts the temperature detected by the second temperature sensor installed in the heater upper center portion of the thermal vacuum chamber from the internal set temperature of the thermal vacuum chamber, and the subtracted value of the first temperature sensor installed in front of the heater of the thermal vacuum chamber. Since the setting value of the first temperature sensor is changed to the value obtained by adding the previous temperature.

도 1 은 기존 진공챔버의 온도센서 설치상태도1 is a state sensor installation state of the existing vacuum chamber

도 2 는 대표온도 설정이 어려운 진공챔버 설명도2 is an explanatory diagram of a vacuum chamber in which representative temperature is difficult to set.

도 3 은 본 발명의 온도센서 설치상태도3 is a state diagram of the temperature sensor installation of the present invention

[도면의 주요부분에 대한 부호의 설명][Explanation of symbols on the main parts of the drawings]

1 : 진공챔버 2 : 슈라우드 3 : 히터1: vacuum chamber 2: shroud 3: heater

4 : 온도센서 5 : 베이스플레이트 6,7 : 온도센서4 temperature sensor 5 base plate 6,7 temperature sensor

본 발명은 도 2 와 같이 열진공챔버(1)의 내측에 히터(3)를 단속적으로 설치할때 챔버(1)내부온도를 제어해주는 것으로, 이같이 직접가열 방식을 채택하는 경우 챔버 내부온도 조절에 필요한 대표온도 설정이 어려운 것이다.The present invention controls the internal temperature of the chamber 1 when the heater 3 is intermittently installed inside the thermal vacuum chamber 1 as shown in FIG. 2. It is difficult to set the representative temperature.

열진공챔버(1)의 내부에 히터(3)를 직접 설치하는 경우 저가형 챔버제작이 가능하나 이경우 복사열전달에 의해 온도구배가 심하므로 대표온도 설정이 어려우나 본 발명에서는 이를 해결한 것이다.In the case of directly installing the heater 3 inside the thermal vacuum chamber 1, it is possible to manufacture a low-cost chamber, but in this case, it is difficult to set the representative temperature because the temperature gradient is severe by radiant heat transfer.

본 발명은 도 3 과 같이 히터(3)가 내부에 설치되어 복사열 전달방식을 채용한 열진공챔버(1)에서,In the present invention, the heater 3 is installed inside the thermal vacuum chamber 1 employing a radiant heat transfer method as shown in FIG.

히터(3)의 전방 5㎝ 정도 이격된 위치에서 히터(3)를 바라보게 0.5㎝ 정도의 흑색으로 처리된 구에 제1온도센서(6)를 설치하고, 진공챔버(1)의 윗쪽 중심부에 동일한 제2온도센서(7)를 설치한다.The first temperature sensor 6 is installed in a sphere treated with black as 0.5 cm so as to face the heater 3 at a position 5 cm away from the front of the heater 3, and in the upper center of the vacuum chamber 1 The same second temperature sensor 7 is installed.

진공상태에서는 복사에 의해서만 열이 전달됨으로 임의의 위치에서의 온도는 다음과 같은 식 ①로 표현될 수 있다.In the vacuum state, since heat is transferred only by radiation, the temperature at an arbitrary position can be expressed by the following equation ①.

---- ① ---- ①

여기서 ε는 방사율, A는 면적, k는 Stepan-Voltman 상수, Ts는 측정점의 온도, Twi은 측정점의 위치에 보이는 임의위치의 온도이다.Where ε is the emissivity, A is the area, k is the Stepan-Voltman constant, T s is the temperature of the measuring point, and T wi is the temperature at any position shown at the measuring point.

히터(3)가 단속적으로 설치되어 있으나, 복사에 대한 뷰팩터(View Factor)를 면적으로 고려하면, 결국 챔버(1)중심에 설치된 작은 흑색구의 제2온도센서(7)는 챔버(1)의 평균 평형온도를 가리키게 된다.Although the heater 3 is intermittently installed, considering the view factor for radiation, the second black temperature sensor 7 of the small black sphere installed in the center of the chamber 1 eventually becomes This will indicate the average equilibrium temperature.

이론적으로는 제2온도센서(7)의 온도를 히터(3)의 PID 콘트롤하는 입력온도로 설정하면 가장 편하겠으나, 히터(3)의 온도변화와 챔버(1)의 대표온도인 제2온도센서(7)는 선형적으로 비례하지 않고, 시간지연등을 가짐으로 이 온도를 이용하여서는 좋은 PID 콘트롤을 할 수가 없게 된다.Theoretically, it is most convenient to set the temperature of the second temperature sensor 7 to the input temperature for PID control of the heater 3, but the second temperature sensor which is the temperature change of the heater 3 and the representative temperature of the chamber 1 is the most convenient. (7) is not linearly proportional and has a time delay, so good PID control cannot be achieved using this temperature.

본 발명에서는 제1온도센서(6)의 온도를 이용한다.In the present invention, the temperature of the first temperature sensor 6 is used.

제1온도센서(6)의 위치는 측정점이 히터(3)바로 앞에 있어, 히터(3)의 복사온도(Th)에 직접 커플링(Coupling)되어 있으므로, 히터(3)와 제1온도센서(6)와의 열교환량은 식 ②로 표현된다.The position of the first temperature sensor 6 is that the measuring point is directly in front of the heater 3 and is directly coupled to the radiation temperature T h of the heater 3, so that the heater 3 and the first temperature sensor are The heat exchange amount with (6) is expressed by equation (2).

----- ② ----- ②

적은 온도변화에 대해서는= Constant 로 볼 수 있으므로, 제1온도센서(6)의 온도변화는 히터온도 변화에 대해, 적은 온도변화에 대한 선형적 비례식을 가짐으로 PID 콘트롤 할 수 있는 좋은 입력값으로 사용할 수 있게 된다.For small temperature changes Since it can be seen as a constant, the temperature change of the first temperature sensor 6 can be used as a good input value that can be PID control by having a linear proportional expression for the small temperature change with respect to the heater temperature change.

이 온도를 이용하여 챔버(1)의 온도를 제어하며, 챔버온도가 평형이 이루어졌을 때는 제1온도센서(6)와 제2온도센서(7)의 온도차이를 측정하여 추후시험시 Offset 기능으로 이용하여 보정하면 된다.The temperature of the chamber 1 is controlled using this temperature. When the chamber temperature is equilibrated, the temperature difference between the first temperature sensor 6 and the second temperature sensor 7 is measured. This can be corrected by using.

즉 챔버(1)의 평균온도를 80℃로 설정하였는데 제2온도센서(7)는 75℃이고 제1온도센서가 80℃이면, 히터(3)앞에 있는 제1온도센서(6)의 온도를 85℃로 설정하면 챔버(1)전체의 유효 평균온도는 80℃가 되게 된다.That is, when the average temperature of the chamber 1 is set to 80 ° C., but the second temperature sensor 7 is 75 ° C. and the first temperature sensor is 80 ° C., the temperature of the first temperature sensor 6 in front of the heater 3 is determined. When the temperature is set to 85 ° C, the effective average temperature of the entire chamber 1 is 80 ° C.

이것은 PID의 온도조정을 1개 온도만 할 수 있는 경우에 사용하면, 만일 컴퓨터 등을 이용해 온도를 임의로 설정할 수 있으며, 제2온도센서(7)의 온도가 설정온도가 되도록 제1온도센서(6)의 세팅값을 다음의 식 ③에 의거 자동으로 변경시켜주면 된다.If the temperature of the PID can be adjusted to only one temperature, the temperature can be arbitrarily set using a computer or the like, and the first temperature sensor 6 can be set so that the temperature of the second temperature sensor 7 becomes the set temperature. ) Can be changed automatically according to the following formula ③.

제1온도센서값 = 설정온도-제2온도센서값+전단계의제1온도센서값 --- ③1st temperature sensor value = set temperature-2nd temperature sensor value + 1st temperature sensor value of previous stage --- ③

즉 제1온도센서(6)를 설정함에 있어서,That is, in setting the first temperature sensor 6,

설정된 설정온도에서 제2온도센서(7)값을 감산한 값에 전단계의 제1온도센서(6)값을 가산하여 얻어진 값으로 제1온도센서(6)를 제어하게 된다.The first temperature sensor 6 is controlled by a value obtained by adding the value of the first temperature sensor 6 in the previous step to the value obtained by subtracting the value of the second temperature sensor 7 from the set temperature.

여기서 제2온도센서(7)의 값이 설정온도에 최대치(max)를 가산한 값 보다 크면 제2온도센서(7)는 설정온도에 최대치(max)를 가산한 값으로 고정하여 히터(3)의 온도가 과열되지 않게 안전조치를 부여한다.If the value of the second temperature sensor 7 is greater than the maximum value max added to the set temperature, the second temperature sensor 7 is fixed to the value obtained by adding the maximum value max to the set temperature to the heater 3. Provide safety measures to prevent overheating.

통상 최대치(max)는 10℃ 정도로 설정함이 적당하다.Usually, it is appropriate to set the maximum value max to about 10 ° C.

본 발명은 복사열전달을 이용한 제어용 온도센서 설정방법에 관한 것으로 대기압에서 작동하는 열주기챔버 등에서 흔히 사용하듯이 단속적으로 히터를 챔버내에 설치하고도 진공챔버내에서 온도를 쉽게 제어할 수 있으며, 온도조절은 저가용 전기히터를 사용하는 열진공챔버를 제작할 수 있다.The present invention relates to a method for setting a temperature sensor for control using radiant heat transfer, such as commonly used in heat cycle chambers operating at atmospheric pressure, even if the heater is intermittently installed in the chamber, and the temperature can be easily controlled in the vacuum chamber. It is possible to manufacture a thermal vacuum chamber using a low cost electric heater.

Claims (1)

허터가 단극적으로 설치된 열진공챔버의 온도센서 조절에 있어서,In adjusting the temperature sensor of the thermal vacuum chamber in which the hutter is installed monopolarly, 열진공챔버의 내부온도에서 열진공챔버의 히터 윗쪽 중심부에 설치된 제2온도센서로 감지된 온도값을 감산하고,Subtract the temperature value detected by the second temperature sensor installed in the upper center of the heater of the thermal vacuum chamber from the internal temperature of the thermal vacuum chamber, 상기 감산값에 열진공챔버의 히터전방에 설치된 제1온도센서로 감지된 전단계온도값을 가산하며,The first temperature sensor detected by the first temperature sensor installed in front of the heater of the thermal vacuum chamber is added to the subtracted value, 상기 가산된 값으로 제1온도센서의 셋팅값을 변경시키는 것을 특징으로 하는 진공챔버용 온도센서 설정방법.And a setting value of the first temperature sensor is changed to the added value.
KR1019990064932A 1999-12-29 1999-12-29 Vaccum chamber temperature sensor setting method KR100334512B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990064932A KR100334512B1 (en) 1999-12-29 1999-12-29 Vaccum chamber temperature sensor setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990064932A KR100334512B1 (en) 1999-12-29 1999-12-29 Vaccum chamber temperature sensor setting method

Publications (2)

Publication Number Publication Date
KR20010065118A true KR20010065118A (en) 2001-07-11
KR100334512B1 KR100334512B1 (en) 2002-04-26

Family

ID=19632188

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990064932A KR100334512B1 (en) 1999-12-29 1999-12-29 Vaccum chamber temperature sensor setting method

Country Status (1)

Country Link
KR (1) KR100334512B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971941B1 (en) * 2010-02-25 2010-07-23 (주) 세모 Assembling type buoy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971941B1 (en) * 2010-02-25 2010-07-23 (주) 세모 Assembling type buoy

Also Published As

Publication number Publication date
KR100334512B1 (en) 2002-04-26

Similar Documents

Publication Publication Date Title
US20050209813A1 (en) Temperature sensing device
WO1997003236A3 (en) System and method for thermal processing of a semiconductor substrate
US6701790B2 (en) Temperature regulator for use with a pressure sensing device
US20080134904A1 (en) Method for determining the variation with time of the amount of steam released from a food product during a cooking process in a cooking chamber of a baking oven
JP2015172600A (en) Solar radiation amount calculation device, solar radiation amount calculation method and solar radiation amount calculation program
CN109815596A (en) Semiconductor devices environment temperature simulation system and method based on temperature-controlled radiator
CN109682499A (en) Temperature measurement calibrating installation constant temperature electric probe device and constant-temperature control method
KR100334512B1 (en) Vaccum chamber temperature sensor setting method
US6365877B1 (en) Blackbody furnace
WO2019076141A1 (en) Vacuum coating device
CN113432730A (en) Anti-frosting low-temperature surface source black body
BR0312345A (en) Vacuum insulated refrigerator cabinet, and method for estimating the thermal conductivity of an insulation space of a vacuum insulated refrigerator cabinet
EP3246782B1 (en) Control means for a valve arrangement, valve arrangement, and method for monitoring temperatures with a control means for a valve arrangement
JP3757809B2 (en) air conditioner
CN213632420U (en) High-precision blackbody radiation source with improved target surface
JP2004117020A (en) Infrared detection device and air conditioner using it
CN209399757U (en) The novel nitriding furnace of double-door type
CN220602729U (en) Emissivity-compensated radiation source
CN220206860U (en) Emissivity-compensated large-caliber plane radiation source
CN219164748U (en) Constant temperature device
CN212482714U (en) Thermal infrared imaging module temperature control device
CN113325901B (en) Large-caliber nonlinear crystal heating method, system and device
CN210244173U (en) Light source constant temperature device applied to grating sensing system
JPH04175611A (en) Warmth environment measuring device
KR100706528B1 (en) Method for predicting atmosphere temperature in heat treatment chamber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060328

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee